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Abstract— Hydrogen sulfide (H2S) presents many hazardous
traits such as corrosive, explosive, toxic, and flammable. It is
slightly denser than air, and a mixture of H2S and air can be
volatile. Therefore, a reliable and robust measurement system
is required to effectively detect and quantify H2S in many
applications, such as oil and gas industries. There are several
methods available in the literature to quantify H2S in fuel gases;
however, only a few are available in case of air samples. Fur-
thermore, array-based sensors are more reliable in the detection
of volatile organic compounds (VOCs); however, sensor arrays
are more expensive and challenging to produce. To overcome
the limitations of producing physical sensor arrays, this article
proposes a concept of virtual sensing that enables to augment
a single sensing platform into a virtual array, thus, increasing
the detection accuracy at no extra cost of producing a large
physical sensors array. The merits of the proposed system are as
follows: 1) a virtual sensing concept is combined with a physical
sensing platform to enhance the proposed model’s estimation
power in quantifying H2S in air samples; 2) a new feature
extraction method based on fractional derivatives is proposed to
further enhance the model’s learning capabilities; 3) an array
of four gas sensors is fabricated in the in-house foundry to
record and analyze the signature of H2S at various concentration
levels; 4) a shallow neural network (NN) model is trained and
tested on the recorded data, and based on the NN’s input–output
relation, a mathematical model is presented for the quantification
of H2S; and 5) the proposed model is a highly sensitive and
reliable H2S gas sensing scheme with the ability to detect the
gas instantaneously. The proposed gas quantification model has
the advantages of being low cost, easy to implement, and fast
operation compared with the analytical solutions. Furthermore,
it is extensively tested and validated using real gas data.

Index Terms— Electronic nose, gas estimation, mathematical
modeling, neural networks (NNs), sensors, virtual sensing.
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I. INTRODUCTION

HYDROGEN sulfide (H2S) is a highly toxic colorless gas
which possesses a characteristic odor of rotten eggs.

Health effects due to the exposure of H2S remain negative
in the majority of the well-documented studies, especially if
the levels of H2S are above 1 ppm in air [1]. The human
nervous system and the respiratory tract remain most sensitive
to the exposure of H2S. Although the odor of H2S becomes
detectable at 0.0005 ppm by a human nose, at higher con-
centrations (100 ppm), the sense of smell is lost after an
exposure of 2–15 min [2]. Therefore, the odor of gas remains
an ineffective warning toward the presence and detection of
the respective gas.

Gas chromatography (GC)-based methods have been fre-
quently employed to monitor the presence of H2S in dif-
ferent scenarios with high precision [3]–[5]. However, the
applicability of these methods in real scenarios, especially
in environmental monitoring, is not very simple and requires
a multistage protocol starting from sampling till the final
quantification [6]. Besides chromatography [GC/high perfor-
mance liquid chromatography (HPLC)], there exist a variety
of other analytical approaches for the detection of H2S. These
approaches include fluorimetry and colorimetry, electrochem-
istry, and inductively coupled plasma-optical emission spec-
troscopy (ICP-OES) [7]–[14]. Among these, GC and ICP-OES
also perform a nonstatic type of detection and require a
tedious procedure of sample pretreatment, and incur high
cost [15], [16]. Besides these analytical approaches, there are
studies based on optical approaches [17]–[19] and nanopar-
ticle sensors [20]–[22]. Although these approaches exhibit
high sensitivity, the opaque solution of metrices and colored
interferents limit their detection accuracy [15].

In comparison with approaches based on chromatography,
optical, and acoustic gas sensing, electrochemical gas sensing
has remained popular due to: 1) being more inexpensive as
compared with others; 2) high selectivity and reproducibility;
3) low energy linear output; and 4) ppm-level detection with
high accuracy [23]. However, electrochemical sensors have
a low shelf life and remain highly sensitive to temperature
fluctuations [24].

Mostly used chemical sensors for monitoring harmful
pollutants in real time are either electrochemical sen-
sors [25], metal-oxide semiconducting sensors [26]–[29],
optical sensors [30], piezoelectric sensors [31], or sensors’
array [32], [33]. These sensor-based devices have several
advantages, such as low cost, high sensitivity, easy operation,
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and fast response [6]. Among these, metal oxide gas sensors
have demonstrated a capability to detect more than 150 gases
with an added advantage of low cost, ease of use, portability,
compact size, low power consumption, and high sensitiv-
ity [34]. A complete review on the recent advances and use of
metal oxide gas sensors for the detection of H2S is provided
in [34]. In terms of sensing H2S using a metal-oxide sensor, the
most important material is an n-type WO3 due to its structural
simplicity, high sensitivity, and low cost, especially in nano-
size structures [35]. Moreover, there are studies in existing
literature suggesting that the Ag-doped WO3 has better sensing
performance and shorter recovery time as compared with the
pure WO3 sensor [36]–[38].

Furthermore, an approach known as smart gas sensing
combines a sensing array with a machine learning model.
This combination enhances the prediction accuracy of the
system [39]. There are several existing studies based on smart
sensing incorporating artificial intelligence/machine learning
models for enhancing the prediction accuracy of the system for
quantification and identification of gases [40]–[42]. Electronic
noses are devices built on the concept of smart sensing
for various applications, including the monitoring of toxic
gases [43], [44]. Although, these systems require training data
to train the ML model, but once the model is trained, the
system can predict and quantify the gases with high accuracy.
Furthermore, these systems have already demonstrated robust-
ness against the sensors’ long-term drift problem, which makes
them feasible for long-term real operations [45], [46].

Keeping in view the demonstrated advantages of electronic
nose systems, metal oxide gas sensors, and limitations of
producing large sensor arrays, this work proposes a system
based on the concept of virtual sensing, which enables to
augment a single sensing platform into a virtual array, and
thus increases the prediction accuracy of the system. In order
to build a virtual sensors array, an array of four physical gas
sensors is used and is operated at four different temperatures.
By operating the four sensors array at four different temper-
atures, a virtual response of 16 sensors array is recorded and
analyzed for estimation of H2S in air samples. The four sensors
array is built in the in-house foundry using tungsten oxide
(WO3) and silver with different weight percentages (0%, 1%,
3%, and 5%). The virtual sensors array is used to acquire
different signatures of H2S at different concentration values.
The collected data are used to define a mathematical model
based on the input–output relation of a shallow NN, and to
further enhance the estimation performance of the proposed
model, a new set of fractional derivative features (FDFs) are
proposed. The newly proposed feature extraction scheme is
based on fractional calculus, which is a branch of calculus that
generalizes the differentiation and integration to a fundamental
noninteger-order operator. Thus, it enables to provide a better
realization of complex systems where details provided by
integer order operator are not sufficient. The newly proposed
FDF extraction scheme has enabled to significantly improve
the performance of the overall system in terms of estimating
the concentration of H2S in air samples.

After extensive experimentation, some useful recommenda-
tions are drawn from the study to quantify H2S in different

Fig. 1. Cross-sectional SEM image of 3% Ag/WO3 thin film deposited on
silicon substrate.

scenarios. A comparison of performance based on actual ver-
sus virtual sensors and a comparison based on the performance
of actual response versus the proposed FDFs is provided in
detail, highlighting the benefits and limitations of the proposed
system.

The rest of this article is organized as follows. Section II
(Experimental Setup), Section III (Methodology), Section IV
(Performance Evaluation), and Section V (Conclusion).

II. EXPERIMENTAL SETUP

A. Sensor Fabrication

Gold interdigitated electrodes (IDEs) with a gap of 200 μm
between the electrodes are used to fabricate the sensor.
A platinum heating layer on the back of the electrodes is
used to control the temperature through the highly conductive
ceramic substrate. Two 5-cm-long wires were soldered on the
electrodes to perform electrical measurements. For creating a
homogeneously deposited layer on the gold IDE, an ultrasonic
spray pyrolysis machine is used to spray the electrodes with
a mixed solution of tungsten oxide (WO3) and silver with
different weight percentages (0%, 1%, 3%, and 5%). The
uniformity of the layer is controlled by using an ultrasonic
spray pyrolysis machine for deposition of the material. The
method used ensures that the thickness is from few nanometers
to micrometers by adjusting the number of deposition cycles.
Fig. 1 shows the scanning electron microscope (SEM) cross
section image of the surface of 3% Ag/WO3 thin film with 15
deposition cycles. The thickness of the thin film was on
average between 1 and 2 μm.

To control the moisture effect, a flow of zero (dry) air was
flushed into the gas testing chamber which contains the sensor.
This was done before and after each gas testing to ensure
that the effect of humidity was minimum. The gas is diluted
with the same synthesized pure dry air with 99.999%, and
this ensures the elimination of moisture. Moreover, the gas
generator device is provided with moisture traps that eliminate
any moisture. Another experiment was done where humidity
was introduced inside the gas testing chamber.

To study the tungsten oxide doped silver (Ag/WO3)
microstructure, transmission electron microscope (TEM) was
used to explore the variations in the nanoparticles of tungsten
and to detect the presence of Ag species. TEM micrographs
of tungsten oxide-doped silver oxide (Ag/WO3) are shown
in Fig. 2. The micrographs show that there are sheet-like
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Fig. 2. TEM micrograph of Ag/WO3 nanoparticles with different scales.
(a) 500 nm. (b) 100 nm. (c) 10 nm.

nanoparticles of WO3 with sizes varying from 20 to 60 nm.
The particles are agglomerated together and exist in coales-
cences of nanosheets. The Ag nanoparticles are well dispersed
on the edges of the surface of the WO3 particles in sizes that
vary between 5 and 15 nm, as can be seen in Fig. 2(c).

B. Data Acquisition System

The sensor is mounted inside a testing chamber that encom-
passes a heating plate for temperature control of the sensor.
A gas generator (Dynacalibrator VICI 340) that includes a
permeation tube with concentrated gas (a liquid phase of H2S)
is used to generate precise gas concentrations. The concen-
tration is controlled by varying the temperature and dilution
gas flow, which is supplied from the synthetic air cylinder.
It generates gas vapor from heating a permeation tube, and the
concentration is controlled by changing the diluting airflow.
To measure the concentration, a mathematical equation is
provided in the user manual of VICI 340 Dynacalibrator.
Keithley 2450 source meter is used to obtain the voltage and
current variations in the sensor signal due to gas exposure, and
the data are transferred and analyzed through a computer. The
sampling rate to store the response is kept at 600 samples/min,
and a normalized response is recorded as

R =
∣∣∣∣�I

IA

∣∣∣∣, �I = IG − IA (1)

where IG is the current flow recorded when the gas is
exposed to the sensor, IA is the current flow recorded on
the exposure of dry air, and �I represents the change in
response of the sensor. The response of sensors is recorded
at four varying temperatures (T = 25 ◦C, 80 ◦C, 150 ◦C,
200 ◦C). This occurs due to the fact that upon exposure to
ambient air, the nanomaterial absorbs oxygen on its surface
by capturing free electrons. This creates a depletion region on
the surface of oxidized material which affects the conductivity
of the sensor and varies with operating temperature. Due
to this change in conductivity of the sensor, operating the
sensor at different temperatures provides different responses
toward the concentration of H2S. Therefore, the combined
change in response by different sensors operating at different
temperatures can be used as a unique signature by a pattern
recognition algorithm to estimate different concentration levels
of H2S. Fig. 3 provides an overview of the experimental setup
and the in-house fabricated gas sensors.

III. METHODOLOGY

The proposed methodology is based on a virtual sensing
concept which employs a shallow NN model to quantify

H2S in air samples. The performance of the model is further
enhanced by proposing new FDFs. The details of the proposed
model are given below:

A. Feature Extraction

Features play a vital role in the recognition accuracy
of a machine/deep learning model. The state-of-the-art fea-
ture extraction and selection methods like principal compo-
nent analysis (PCA), linear discriminant analysis (LDA), and
particle swarm optimization (PSO) have been successfully
used in the literature for gas identification and quantifica-
tion [47]–[50]. In order to effectively utilize a neural net-
work (NN) for the estimation of H2S, a new set of features
based on the fractional derivatives is proposed for learning an
NN in this study.

Fractional order differential equations are generalized
noninteger-order differential equations that may be generated
in time and space using the nonlocal relationships’ power
law memory kernel. They are a useful tool for describing
the memory of various substances as well as the nature of
heredity. A noninteger differentiation/integration operator is
used in fractional calculus to investigate various possible ways
of defining real number powers or complex number powers
of the operator. Based on the real number powers of the
differentiation operator, the fractional derivative models are
able to provide details that are not provided by the integer-
type operator or by other linear transformation methods. PCA
(unsupervised method) and LDA (supervised method), on the
other hand, are both linear transformation methods that decom-
pose matrices of eigenvalues and eigenvectors. Compared with
PCA and LDA, FDFs have shown significant performance in
terms of estimation of H2S in air samples.

For fractional calculus, suppose a noninteger-order operator
aDα

t , where αεR and the bounds of operation are a and t .
A continuous aDα

t operator can be defined as

aDα
t =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dα

dtα , α > 0

1, α = 0∫ t

a
(dτ )α, α < 0.

(2)

The most commonly used definition of general differ-
integral is Grünwald–Letnikov [51], defined as

aDα
t f (t) = lim

h→0
h−α

[ t−a
h ]∑

j=0

(−1) j

(
α
j

)
f (t − jh). (3)

For the calculation of fractional-order derivative, a relation
derived from (3) can be used which is defined as

(k− Lm
h )Dq

tk f (t) ≈ h−q
k∑

j=0

(−1) j

(
q
j

)
f (tk − j)

= h−q
k∑

j=0

c(q)
j f (tk − j) (4)

where tk = kh, h is the time step, Lm is the “memory length,”
and c(q)

j ( j = 0, 1, . . . , k) are binomial coefficients calculated
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Fig. 3. Experimental setup. (a) Data acquisition system. (b) Sensors built in the inhouse foundry.

as

c(q)
0 = 1, c(q)

j =
(

1 − 1 + q

j

)
c(q)

j−1. (5)

The generalization of binomial coefficients to noninteger
values can be made if the factorial is written as a gamma
function [52]

(−1) j

(
q
j

)
= (−1) j �(q + 1)

�( j + 1)�(q − j + 1)

= �( j − q)

�(−q)�( j + 1)
(6)

where � is the gamma function defined as

�(n) = (n − 1)! ∀nεR. (7)

The above Grünwald–Letnikov definition of fractional
derivate is used to extract different features from the response
curve of sensors and a feature vector is recorded. Ten values
of fractional order derivative between 0 < α < 1 are used
to extract the features for each sensor response. An array of
four sensors is used to record the response at four different
operating temperatures, and for each response, ten additional
FDFs are extracted. MATLAB code to compute fractional
derivatives using the above Grünwald–Letnikov definition and
α values is given in [53].

B. Mathematical Model

The estimation of H2S is mathematically modeled by
employing a shallow NN model. Different experimentations
were carried out by varying the number of neurons and layers
of an NN and based on the performance of different archi-
tectures in terms of estimation accuracy and computational
complexity, a shallow network of ten hidden neurons is recom-
mended to derive a final mathematical model. Fig. 4 describes
a general feedforward NN architecture used for mathematical
modeling where i represents the number of inputs, j represents
the number of hidden neurons, and k represents the number of

Fig. 4. Architecture of shallow NN used for mathematical modeling of H2S
concentration estimation, i represents the number of inputs, j represents the
number of hidden neurons, and k represents the number of outputs.

outputs. In this case study, the value of k = 1 remains constant
to estimate the concentration of H2S.

Five different values of j = 5, 10, 15, 20, and 30 with
one and two hidden layers were tested before finalizing the
estimation model. The results for this experimentation using
an array of four sensors array operating at 25 ◦C are provided
in Table I and are visually analyzed in Fig. 5. From the results
provided, it can be seen that the estimation accuracy of H2S
increases with an increase in the number of neurons and hidden
layers. However, increasing the number of hidden layers and
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TABLE I

NN SIMULATION RESULTS FOR FOUR SENSORS ARRAY OPERATING AT 25 ◦C WITH DIFFERENT NUMBER OF NEURONS AND HIDDEN LAYERS

Fig. 5. Performance analysis with respect to an increase in number of neurons
and hidden layers.

the number of neurons brings more computational complex-
ity, thus requiring more computational resources. Therefore,
to limit the number of hidden layers and the number of
neurons, the concept of virtual sensing enhanced with FDFs
is proposed. The proposed idea enables to limit the number of
hidden neurons to ten with only one hidden layer making the
proposed architecture computationally less expensive.

In the case of inputs, a comprehensive analysis is performed
to evaluate different sensors, different sensors operating at
different temperatures, and the combined effect of sensors as
a special case of virtual sensing.

After extensive experimentation and testing, the following
mathematical model is proposed for the estimation of H2S in
air samples:

y =
j∑

n=1

W (2)
n

(
tansig

(
i∑

m=1

W (1)
m Xm + B(1)

1 j

))
+ B(2)

1k (8)

which can be further expanded as

y =
j∑

n=1

W (2)
n ×

(
2

1 + e−2×∑i
m=1 W (1)

m Xm+B(1)
1 j

− 1

)
+ B(2)

1k (9)

where W (2)
n is the hidden layer weights, W (1)

m is the input layer
weights, B(2)

1k is the output bias, B(1)
1 j is the hidden layer biases,

Fig. 6. Shallow NN architecture for a single sensor evaluation.

Xm is the input vector of length m, n is the number of hidden
neurons, and y is the output representing the estimated value
of H2S.

IV. PERFORMANCE EVALUATION

The evaluation of the proposed system is performed in
four different ways: 1) evaluation of a single sensor operating
at different temperatures; 2) evaluation of four sensors array
operating at different temperatures; 3) evaluation of proposed
FDFs; and 4) evaluation of virtual sensors array. The sampling
rate for data acquisition is kept at 600 samples/min, and the
normalized response for 26 833 samples at seven different
concentration levels is used for experimentation. The total data
size for four different evaluations varies based on the evalua-
tion. The data size for the evaluation of a single WO3 sensor
at four different temperatures is 26 833 × 4. The data size for
the evaluation of four sensors array operating at four different
temperatures is 26 833 × 16, whereas, for the evaluation with
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Fig. 7. Response of sensors toward seven different concentration levels of H2S. Sensors operating at (a) 25 ◦C, (b) 80 ◦C, (c) 150 ◦C, and (d) 200 ◦C.

FDFs, ten extra features are calculated for each response
variable which makes a maximum data size of 26 833 × 176.
Out of these 176 response variables, 16 correspond to the
16 virtual sensors, whereas the remaining 160 correspond to
the FDF features. All these evaluations are provided in detail,
as follows.

A. Evaluation of a Single WO3 Sensor Operating at Different
Temperatures

The NN architecture employed for a single sensor evaluation
is shown in Fig. 6. The architecture used for the evaluation of
a sensor has the ability to estimate the concentration of H2S at
any given instance. The sensor’s response is directly fed to the
network and there is no requirement to wait until the steady-
state response of the sensor. As soon as the network receives
a response value from the sensor, it gives an estimation of the
concentration of H2S.

The actual response of individual sensors operating at
different temperatures toward an increase in the concentration
of H2S is shown in Fig. 7(a–d). The concentration levels of
H2S exposed to the sensors are 10, 15, 20, 50, 100, 200, and
400 ppm. It can be seen from the response curves in Fig. 7 that

Fig. 8. Ag 3-D XPS spectra of Ag/WO3 in room temperature (red) and
when annealed to 200 ◦C (blue).

the WO3 sensor has a low sensitivity toward the concentration
of H2S while operating at low temperatures. In contrast, the
sensors doped with Ag remain more stable toward the change
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Fig. 9. Performance of a shallow NN for prediction of H2S using a single WO3 sensor operating at 25 ◦C. (a) Performance based on mean square error.
(b) Training state and validation checks. (c) Error histogram. (d) Regression.

in operating temperature. Moreover, the response of Ag-doped
sensors reduces at higher temperatures. This happens because
Ag nanoparticles work as active catalytic sites that increase
the conductivity of the material. The depletion layer width
is reduced when Ag is added to WO3 due to the transfer
of electrons from Ag. However, at higher temperatures, the
rate of oxidation of Ag nanoparticles results in an increase of
depletion region and, hence, reduces the conductivity of the
sensor. This result is supported by the X-ray photoelectron
spectroscopy (XPS) shown in Fig. 8. At room temperature,
the Ag 3-D spectrum shows a mixture state: a metallic state
at 368 eV appearing at the shoulder of the Ag 3-D, and a
main oxidation state signal at 367.4 eV. This indicates that at
RT, the Ag is partially oxidized. While after annealing at 200
◦C, the metallic signal disappears completely, leaving only a
sharp oxidation state. The results indicate that annealing has
increased significantly the oxidation rate of the Ag surface in
the sample.

Total 26 833 sampling points are used to train, test, and
validate a shallow NN with one hidden layer and ten hid-
den neurons. The estimation performance of the NN-based
only on a single WO3 sensor operating at 25 ◦C is given

in Fig. 9, where the mean squared error (mse) observed is
quite high and the best validation performance achieved is
8233.91 after six validation checks. As the response of the
sensor while operating at 25 ◦C is not very sensitive toward
the concentration of H2S, the performance of the NN is also
weak.

Furthermore, as the response of the sensor becomes more
sensitive while operating at higher temperatures, as shown in
Fig. 7, the performance of the NN model is also observed to
achieve high prediction accuracy. The actual and estimated
concentration values of H2S using the response of sensor
at four different temperatures (T = 25 ◦C, 80 ◦C, 150 ◦C,
200 ◦C) are shown in Fig. 10(a–d). It can be seen from the
results in Fig. 10 that the model is able to estimate the concen-
tration of gas more accurately at higher temperatures, while the
performance remains weak at lower operating temperatures.
Table II enlists some performance evaluation parameters for
the single WO3 sensor operating at different temperatures.

In order to further enhance the performance of the model,
the response of four sensors is combined and is tested for
estimation of H2S. The performance of an array of four sensors
toward the prediction of H2S is given in detail in Section IV-B.
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Fig. 10. Actual versus estimated concentration using a single pure WO3 sensor response. Sensor operating at (a) 25 ◦C, (b) 80 ◦C, (c) 150 ◦C, and (d) 200 ◦C.

TABLE II

PERFORMANCE EVALUATION OF A SINGLE WO3 SENSOR

B. Performance of Four Sensors Array Operating at Different
Temperatures

The prediction performance of the sensors array is shown in
Fig. 11, where the concentration of H2S is estimated using the
sensors array operating at four different temperatures. From
the prediction results, it can be seen that there is a significant
improvement as compared with the results of a single sensor
operating at the same temperatures, specifically at 25 ◦C. This
shows that an array of different sensors has a powerful dis-
criminatory power as compared with a single sensor operating

TABLE III

PERFORMANCE EVALUATION OF FOUR SENSORS ARRAYS

at lower temperatures. However, a comparable performance
is observed at higher operating temperatures. Table III enlists
the performance evaluation parameters for the array of sensors
operating at four different temperatures.

C. Performance of FDFs

FDFs are proposed as a new set of features for the
estimation of the concentration of gases. The performance
of the proposed features extracted from the response of a
single sensor is shown in Fig. 12. It can be seen from the
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Fig. 11. Actual versus estimated concentration using an array of four sensors. Sensor operating at (a) 25 ◦C, (b) 80 ◦C, (c) 150 ◦C, and (d) 200 ◦C.

TABLE IV

PERFORMANCE EVALUATION WITH FDF OF A SINGLE SENSOR

estimation results reported in Fig. 12 that the proposed features
are powerful enough to estimate the concentration of H2S
using only a single sensor operating at 25 ◦C. However, the
estimation of low concentration values is not as good as the
estimation of higher concentration values. The results shown
in Fig. 12 clearly demonstrate the ability of proposed features
to estimate the concentration of H2S. Table IV enlists the
performance evaluation parameters of FDFs extracted from a
single sensor response, operating at different temperatures.

Furthermore, to make the feature vector stronger toward the
estimation of gas, the features extracted from the response
of the sensors array is also used. The results of features

TABLE V

PERFORMANCE EVALUATION WITH FDF OF FOUR SENSORS ARRAY

extracted from the response of array of four sensors operating
at different temperatures are shown in Fig. 13. The visual
results depicted in Fig. 13 further strengthen the concept of
employing fractional derivate features for the estimation of
H2S as the performance is greatly improved at all operating
temperatures, specifically at 25 ◦C. Table V enlists the perfor-
mance evaluation parameters of FDF extracted from an array
of sensors responses operating at different temperatures.

D. Performance of Virtual Sensors Array

When four physical sensors are operated at four different
temperatures, a maximum of 16 virtual sensors array is cre-
ated. The 16-channel response of this virtual sensors array is
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Fig. 12. Actual versus estimated concentration using fractional derivative computed from a single sensor response. Sensor operating at (a) 25 ◦C, (b) 80 ◦C,
(c) 150 ◦C, and (d) 200 ◦C.

TABLE VI

PERFORMANCE EVALUATION OF VIRTUAL SENSORS ARRAY

recorded and analyzed for estimation of H2S in air samples.
The estimation results of this 16 virtual sensors array are
shown in Fig. 14. The estimation results using the concept of
virtual sensing are the most promising results as the concept
has clearly demonstrated the highly accurate estimation of
H2S. However, to practically implement the concept, an oper-
ation of sensors at high temperatures is required, whereas a
good estimation is also possible using the newly proposed FDF
concept and operating the sensors at 25 ◦C. Table VI enlists the
performance evaluation of virtual sensing arrays with different
lengths and the performance evaluation of virtual sensing with
associated FDF. From the results reported in Table VI, it can
be seen that with an increase in the amount of virtual sensors,

TABLE VII

PERFORMANCE COMPARISON

the estimation accuracy of H2S is increased. This shows that
the variation in sensors response caused by different operating
temperatures can result in unique signatures for different
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Fig. 13. Actual versus estimated concentration using fractional derivative computed from sensors array response. Sensor operating at (a) 25 ◦C, (b) 80 ◦C,
(c) 150 ◦C, and (d) 200 ◦C.

Fig. 14. Estimation using the concept of virtual sensing: combined response
of four different sensors operating at four different temperatures.

concentration levels of H2S. Thus, more variations recorded
result in more accurate estimation. Furthermore, it can also be
seen that the addition of FDF further enhances the estimation
performance of the proposed system.

In order to better realize the effectiveness of the proposed
FDF features, the performance comparison results with the two

most commonly used state-of-the-art methods PCA and LDA
are provided in Table VII. The two types of feature extraction
methods are used to extract features from the virtual sensing
array and the results are compared with the proposed FDF
features extracted from the same virtual sensing array. From
the results in Table VII, it is clearly seen that the proposed
FDF features contain powerful discriminatory information as
compared with the PCA and the LDA.

V. CONCLUSION

A highly precise and robust system to estimate the con-
centration of H2S in air samples is proposed. The proposed
system is based on a virtual sensing concept that employs
WO3 sensors developed in the in-house foundry and a shallow
NN model enhanced with FDFs. The mse value for estimation
of H2S dropped from 159.80 [best performance in case of four
physical sensors array operating at 1500C (see Table III)] to
4.61 [in case of 16 virtual sensors array (see Table VI)]. The
use of FDF along with virtual sensors array further decreased
the mse value to 0.9076, resulting in best performance for
estimation of H2S in air samples. However, to implement the
concept demonstrated by virtual sensing in real scenarios,
it requires an operation of sensors at higher temperatures.
Contrary to the virtual sensing concept, the newly proposed
feature extraction technique called FDF also resulted in high
precision estimation of H2S with sensors operating at 25 ◦C.
Therefore, features derived from fractional derivatives are
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highly recommended for scenarios where the operation of
sensors at high temperatures is not feasible, whereas the results
drawn from virtual sensing provide a strong recommendation
to use a combined response of different sensors operating
at different temperatures to estimate the concentration of
H2S in scenarios where the operation of sensors at higher
temperatures is feasible.
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