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Abstract— Eddy current testing (ECT) is an effective tech-
nique for evaluating depth of metal surface defects. However,
in practice, evaluation primarily relies on the experience of an
operator and is often carried out by manual inspection. In this
article, we address the challenges of automatic depth evaluation
of metal surface defects by virtual of state-of-the-art deep learn-
ing (DL) techniques. The main contributions are threefold. First,
a highly integrated portable ECT device is developed, taking
the advantage of an advanced field-programmable gate array
(Zynq-7020 system on chip) and provides fast data acquisi-
tion and in-phase/quadrature demodulation. Second, a dataset,
termed metal defects of different depths by ECT (MDDECT),
is constructed using the ECT device by human operators and
made openly available. It contains 48 000 scans from 18 defects of
different depths and liftoffs. Third, the depth evaluation problem
is formulated as a time series classification problem, and various
state-of-the-art 1-D residual convolutional neural networks are
trained and evaluated on the MDDECT dataset. A 38-layer 1-D
ResNeXt achieves an accuracy of 93.58% in discriminating the
surface defects in a stainless steel sheet with depths from 0.3 to
2.0 mm in the resolution of 0.1 mm. In addition, the results show
that the trained ResNeXt1D-38 model is immune to liftoff signals.

Index Terms— Convolutional neural network, deep learn-
ing (DL), eddy current testing (ECT), metal surface defect
evaluation, nondestructive testing (NDT).

I. INTRODUCTION

EDDY current testing (ECT) is a nondestructive testing
(NDT) method harnessing the principle of electromag-

netic induction, which, compared to other NDT methods, has
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the virtue of high speed, low cost, and no contact [1]. These
features make ECT an attractive technique in the detection
and evaluation of surface defects for conductive materials [2].
Recovering the profiles of a defect, e.g., location and depth,
from sensor impedance signals is a major topic in the research
of ECT, where machine learning (ML) plays an important
role [3].

Conventional ML algorithms have been adopted in vari-
ous ECT applications, and many of these studies generally
utilized a two-step approach. First, raw eddy current (EC)
signals would be subject to a feature transform or extraction
process, such as principal component analysis [4]–[9], time–
frequency analysis by the Rihaczek distribution [10], wavelet
transform [4], [11], [12], Hilbert–Huang transform [13], [14],
geometry recognition from the Lissajous figure [15]–[20],
and convolutional sparse coding [21]. Next, the resultant
feature representations, in order to achieve the ultimate task of
detecting and classifying defects, would be fed to a classifi-
cation or clustering algorithm such as support vector machine
(SVM) [7], [11], [14], [15], [20], multilayer perceptron [4],
[8], [11], [12], [15]–[19], K-means [6], [10], K-nearest
neighbors [11], [20], decision tree [17]–[20], and naive
Bayes [17]–[20]. These conventional ML algorithms still
remain vibrant today in the research of ECT, and yet, deep
learning (DL) methods prevail more recently, which is encour-
aged by the remarkable success of DL in many other areas.

A deep belief network (DBN), constructed by stacking
multiple restricted Boltzmann machines, was exploited in [22]
so as to, from the EC scan images of the defects on the
surface of a titanium sheet, extract features that were then fed
to a least-square SVM algorithm to classify the defects. The
dataset was also evaluated in [23] with a plain convolutional
neural network (CNN), which, in contrast to [22] where the
feature extractor and classifier were separate, was trained end-
to-end from EC signals to the classification labels of defects.
Classification accuracy increased to 99.79% from the 96%
in [22]. In [24], an encoder–decoder CNN, named EddyNet,
was proposed aiming at learning an inverse model, which pre-
dicted a crack profile given an EC signal. However, the inverse
model was more difficult to solve than the associated forward
model. As a result, training samples were procured from the
forward model, with inputs and outputs exchanged, which
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Fig. 1. Summary of the sizes of datasets used in [4]–[26]. In terms of the
conventional ML works before 2019, the sizes of the datasets are below 1000.
However, in 2019 and 2020, the numbers of training samples are more than
20 000 in the DL-motivated works [24]–[26].

were randomly generated crack profiles and the corresponding
EC signals, respectively. The trained CNN achieved a mean
absolute error of 0.198 between the predicted profiles and
ground truth. In terms of pulsed ECT, a multitask CNN was
developed in [25], which installed a softmax layer and a full
connection layer as two outputs in order to simultaneously
classify the type and predict the depth of flaw, respectively.
The total loss was an addition of the classification loss and
regression loss. Accuracies of over 90% were obtained for dif-
ferent experiments. In [26], a plain CNN was used to estimate
the crack depth for a heat transfer tube of the steam generator
of a pressurized water reactor. Compared to conventional
numerical models, the trained CNN was less computationally
expensive at inference time. In addition, crack depth could be
estimated with a high accuracy of about 0.05-mm error under
the condition that the liftoff fluctuation was about ±1 mm.
These DL-motivated studies shared some common features.
First, they all entailed a larger dataset compared to those
using conventional ML algorithms, which can be seen from
Fig. 1 that displays the sizes of the datasets in [4]–[26].
Specifically, the numbers of training samples in [24]–[26] were
more than 20 000, while most others were a few hundreds.
Second, the samples were labeled into multiple classes and
the training was in a supervised manner. Finally, an end-to-
end strategy was adopted, and domain knowledge- or hand
engineering-based feature extraction was absent. Instead, prop-
erly designed loss function and network architecture played
important roles. In [23]–[26], CNN was used, which was one
of the most popular networks in DL research. Nonetheless,
the adopted CNNs were wide and shallow, which was at
variance with the “deep” feature of modern neural networks.

The recent advancement of CNN was largely driven
by the ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC) [27]. AlexNet [28], the winner in 2012, was
regarded as the breakthrough and drew the attention on CNNs.
In 2014, two very deep CNNs emerged. The first one was
GoogLeNet (with inception modules) [29], which adopted a
sparsely connected architecture of stacking inception modules
composed of filters of various sizes. In contrast, the second,
VGG [30], exploited smaller filters of the same size for all the

convolutional layers and increased the depth. Both very deep
CNNs were able to achieve compelling performances, and
however, they usually suffered the degradation problem [31]
that training accuracy would saturate and then degrade as the
depth increased. In 2015, ResNet [32] was proposed to address
the degradation problem and won the ILSVRC-2015 with
an ultradeep network of 152 layers. The fundamental idea
was to let the network fit a residual mapping, instead of the
original propagation, by adding skipping connections between
some layers, so that in principle, a deep network would
not produce higher training error than its shallower counter-
part. The additional shortcut connections enabled gradients to
propagate backward to earlier layers more easily and hence
resulted in easier training than VGG. Later, ResNet evolved to
the second version [33], where in each unit, the activation layer
preceded the convolutional layer. In 2016, ResNeXt [34] was
proposed, which, in the residual module, harnessed the split-
transform-merge pattern akin to the inception module. These
revolutionary CNN architectures have influenced many deep
networks in applications beyond image classification. In par-
ticular, the state-of-the-art residual CNNs, such as ResNet
and ResNeXt, can be applied to the research of defect depth
estimation with ECT; however, it has not been seen in the
literature.

In this article, the problem of estimating the depth of a
surface defect of a metallic sheet is addressed using a new ECT
device and the state-of-the-art DL techniques. The main con-
tributions are threefold. First, a portable multifunctional ECT
device is introduced, which integrates a field-programmable
gate array (FPGA), an ARM processor, and the Windows
10 operating system. Second, the defect depth estimation
problem is formulated as a time series classification problem,
and a dataset using the ECT device is constructed and made
openly available. We name the dataset as metal defects of
different depths by ECT (MDDECT) and aim to initiate a
data-sharing campaign. It can serve as a testbed and would
encourage advancing the research of ECT in light of modern
DL techniques. Finally, the state-of-the-art residual CNNs are
applied for the first time, to our knowledge, in the research of
ECT. An accuracy rate of 93.58% is achieved using a 38-layer
1-D ResNeXt for defects with a depth resolution of 0.1 mm
for a stainless steel sheet.

The remainder of this article is organized as follows.
Section II presents the hardware design of the integrated
ECT device. The architectures of the 1-D residual CNNs are
explained in detail in Section III. Section IV introduces the
procedures of data collection and the details of the MDDECT
dataset. The configurations of hyperparameters and training
process are demonstrated, along with the results of different
CNNs and discussions in Section V. Section VI concludes the
work and suggests further research directions.

II. HARDWARE DESIGN OF ECT DEVICE

The architecture of the ECT device is shown in Fig. 2.
The system mainly consists of four components, which are
a replaceable coil probe sensor, an SoC composed of an
FPGA and ARM processer, front-end circuits, and a host PC.
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Fig. 2. Block diagram of the architecture of the ECT device. The system is mainly composed of four modules, including a replaceable coil probe sensor,
a system on chip (SoC) of an FPGA and ARM processor, front-end circuits, and a host PC running Windows 10 system.

Zynq-7020 SoC is the cornerstone of the system, which
integrates an ARM dual Cortex-A9 processor and a Xilinx
7-series FPGA. This module is responsible for generating
excitation signals, implementing in-phase and quadrature (I/Q)
demodulation and transferring data between the module and
the host PC. The system is capable of providing a multi-
frequency excitation signal, and the received signal can be
demodulated at each frequency simultaneously. The front-end
circuits consist of analog-to-digital (ADC)/digital-to-analog
(DAC), signal amplification, and gain control modules. During
the measurement process, the host PC displays the received
signals from the coil probe sensor and allows users to operate
the instrument and save data through a LabVIEW-based GUI.

A parallel digital interface is exploited to connect the
front-end hardware and the SoC via an FPGA Mezzanine
Card (FMC) connector. The Zynq-7020 SoC is connected to
the host PC via Ethernet, and user datagram protocol (UDP)
is used as the transport protocol. Universal asynchronous
receiver–transmitter (UART) serial communication is available
for debugging purpose. The system takes advantage of the
Ethernet communication, which provides a fast and robust
data transmission. The data transmission speed can reach up
to 10 000 samples/s. With respect to the coil probe sensor,
a receiving coil is connected to the signal amplification circuit,
and a transmitting coil is connected to the excitation circuit.
A LabVIEW-based data acquisition and signal processing
application runs on the host PC. Such configurations as ampli-
fication gain, frequency, and sampling rate are easily adjustable
from the PC interface, which provides good compatibility with
a variety of sensor designs and applications.

Fig. 3 shows a scene of a human operator holding a probe
sensor and scanning a stainless steel sheet. The received
signals and statistic information are displayed on the screen
of the ECT device in real time. The geometry dimensions of
the steel sheet, which is used to collect data from, are shown
in Fig. 4. The schematic of the probe sensor and the geometry
dimensions are shown in Fig. 5

δ = 1√
σπ f μ

. (1)

The penetration depth δ of the electromagnetic field is
limited by the skin effect, which is shown in (1), where f
is the frequency of the excitation current and μ and σ are the
permeability and conductivity of the specimen, respectively.
Therefore, the operating frequency of the device depends on
the electromagnetic properties of the specimen and the depth
of the defect. Generally, low- and high-frequency excitations

Fig. 3. Scene of a human operator scanning a steel sheet using a hand-hold
probe sensor with the ECT device.

Fig. 4. Illustration of the geometry dimensions of a stainless steel sheet that
is used as a specimen to collect data from.

would be applied for detecting subsurface and on-surface
defects, respectively. The typical excitation frequency of our
device ranges from 10 to 100 kHz. In the experiment, the
relative permeability of the stainless steel plate is 1 and the
conductivity is 1.46×106 S/m. Therefore, the electromagnetic
field generated by the device can penetrate up to 4.17 mm
beneath the surface of the specimen. During the experiments,
we set the excitation frequency to 20 kHz, which gives
2.94 mm of penetration depth that covers the depth of defects
on the specimen. The excitation current amplitude is 200 mA.
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Fig. 5. Schematic of a probe sensor, which consists of two cylindrical ferrite-
cored coils.

Fig. 6. Signals of ten scans using a stepper motor for the 2.0-mm-deep defect
under the same scanning conditions. (a) and (b) I/Q signals, respectively.

The performance of the device is evaluated by its repeata-
bility of signal and signal-to-noise ratio (SNR). In terms of
repeatability, the 2.0-mm-deep defect was scanned ten times
using a stepper motor under the same scanning conditions
(angle, speed, liftoff, starting point and endpoint, and so on).
The resultant signals are plotted in Fig. 6. It can be seen that
the signals almost coincide with each other. Furthermore, the
correlation value is larger than 0.99 between the signals of
any two of the ten scans, which indicates a high repeatability
of the device. In addition, the SNR of the received signal is
above 80 dB on average.

III. ARCHITECTURE OF 1-D RESIDUAL CNN

A residual CNN, e.g., ResNet, is constructed by stacking
“residual units,” which learns a residual function R(x) :=
F(x)−x where F(x) is the original underlying mapping [32].
Formally, a residual unit conducts calculations as expressed
in (2), in which xl and yl are the input and output of the lth
residual unit, respectively, and � is an activation function. The
block R takes xl as input and performs transformations with
weights Wl . In the original version of ResNet, the activation
function � is a rectified linear unit (ReLU) function. The block

R is chosen from either a stack of two convolution units
or a “bottleneck” unit. A convolution unit is a convolution
layer followed by a batch normalization (BN) layer and a
ReLU layer. A bottleneck unit comprises three convolution
units, with the first and last convolution layers being 1 × 1
convolutions, which are used to reduce dimensionality hence
computational complexity

yl = �(xl + R(xl, Wl)) (2)

yl = xl + R(xl, Wl) (3)

yl = xl +
C∑

i=1

Ti (xl, Wli). (4)

In the second version of ResNet, the residual unit performs
calculations as shown in (3), where the activation is an identity
function [33]. However, the convolution unit in the block R
is preactivated, i.e., the BN and ReLU layers precede the
convolution layer. It was verified in [33] that (3) enabled
gradients to propagate to any layers more easily than (2).
In ResNeXt [34], the residual unit performs calculations as
shown in (4), where the block R is an aggregation of a number
of transformations Ti , and the number C is the cardinality.
In practice, the split-transform-merge block R is usually
implemented using an equivalent grouped convolution, where
the number of groups equals the cardinality C . It is noted that
here, we assume that ResNeXt inherits from the second version
of ResNet. In addition, the input xl and output yl share the
same dimension in (2)–(4) so as to illustrate the idea. When
the dimensions are different, a convolution layer will replace
the identity connection to match the dimensions.

The convention of naming a network is followed in this
article by appending the version and depth to the type of
network. However, because the convolution layers used are
1-D instead of 2-D, we append “1-D” to the name in order to
differentiate the networks from the original 2-D ones. Usually,
residual CNNs comprise multiple stages, each one of which
has one or a stack of multiple residual units. In this article,
we unify the number of stages to four. The first residual unit
of each stage doubles the channel dimension while halving
the temporal dimension. In order to clarify details, Fig. 7
shows the architectures of ResNet1Dv1-14, ResNet1Dv2-14,
and ResNeXt1D-14, which serve as the baseline networks for
the defect depth classification task. They all have the same
depth of 14 essential layers.

IV. MDDECT DATASET

The success of DL in an application relies heavily on the
effort of constructing large and well-labeled datasets. For
instance, ImageNet contains 14 million high-quality images
in 22 000 visual categories [27]. However, it is difficult in
principle to develop a universal dataset like ImageNet for
defect depth estimation by ECT because the impedance signal
captured by an ECT sensor is determined by a plurality of
factors.

First of all, a variety of ECT device designs exist, where
different excitation strategies are applied and different types
of sensors are exploited. In addition, as per applications,
the geometry and electromagnetic properties of specimens are
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Fig. 7. Detailed architectures of three 1-D residual networks. Four stages
in each network are marked in different colors. The input tensor has
224 sampling points and two channels. In terms of the convolution layer,
the numbers in the block represent the kernel size, strides, number of groups,
and number of filters. In terms of the max-pooling layer, the numbers
represent the kernel size and strides. The output tensor has 20 labels.
(a), (b) and (c) ResNet1Dv1-14, ResNet1Dv2-14, and ResNeXt1D-14,
respectively.

usually distinctive. A widely accepted standard specimen with
standard defects is lacking in the ECT research community.
An ECT defect depth estimation dataset often corresponds to
a specific device and specimen. A large open dataset would
help facilitate advancing the ECT techniques.

In this article, the MDDECT dataset was constructed using
the integrated ECT device described in Section II, which
installed a probe sensor as shown in Fig. 5. The filtering
factor and signal data rate were configured as 4000 and
2500 samples/s, respectively. A stainless steel sheet with
20 machine-fabricated slots on the surface was used as the
specimen to scan, whose detailed geometry dimensions are
shown in Fig. 4. The defects were surface opening cracks
and shared the same length and width of 10 and 0.2 mm,
respectively. The depth of the defects started from 0.1 mm
and incremented by 0.1 mm to the largest 2.0 mm. The defect
of 2.0 mm in depth was a through crack, as the thickness of
the sheet was 2.0 mm.

Although the MDDECT dataset was specialized to the ECT
device and the specimen, many other practical variances,
which would nontrivially affect the performance of an ECT
system, were considered. First, 30 volunteers, who had no
experience operating an ECT device, were invited to scan
the defects, hence introducing a great variety of uncertainties,
as composed to some research, e.g., [20]–[23], where an
automatically controlled movement was harnessed to scan
defects. Second, liftoff signals were deliberately collected and
labeled so that the classifier should be able to differentiate
liftoffs and defects. As shown in Fig. 8(c), liftoff signals were
generated by randomly tapping the probe to a defect-free area
on the surface of the specimen. The liftoff distances were
controlled to be under 3 mm above the surface. In addition,
normal signals of defect-free areas were also captured and
labeled, and the capturing process is shown in Fig. 8(d). Third,
eight different scanning angles between the long-edge line of
a defect and the line crossing the axial centers of the two
coils were determined, as shown in Fig. 8(a) and (b). Also,
the volunteers scanned across a defect along an angle in two
directions, back and forth. Finally, when scanning a defect,
the volunteers were asked to try to maintain a constant liftoff
distance of 0.5 mm, a constant moving speed of 60 mm/s, and
vertical to the surface. However, variances were inevitable and
represented more practical testing scenarios, hence making the
MDDECT challenging.

After a preliminary test, it was found that the signals of
the defects of 0.1 and 0.2 mm were under the noise floor,
and hence, the data from these two defects were excluded
from the dataset. As a result, the total number of classes was
20, including 18 classes of defects, liftoff class, and normal
signal class. Each volunteer repeated the same scanning five
times. All scans were divided into scan segments, each of
time window 0.5 s, which gave rise to the temporal dimension
of 1250. Ultimately, the dataset tensor had dimensions of (30,
8, 2, 5, 20, 1250, and 2), each one of which represented the
number of volunteers, scanning angles, directions, repeats of
each scanning, classes, temporal points, and channels, respec-
tively. The last dimension corresponded to the I/Q channels.
In total, the MDDECT comprehended 48 000 scan segments



2515413 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fig. 8. Illustrations of data collecting processes. (a) and (b) Probe scanning across a defect in eight different angles and two directions (back and forth).
Notice that the line passing the axial centers of the two coils is either tangential or normal to the scanning direction. (c) Probe tapping on the surface of a
defect-free area in order to generate liftoff signals. (d) Probe moving in a random trajectory on the surface of a defect-free area in order to generate normal
signals.

(or scans for simplicity) in 20 classes. In terms of the split
of training and test sets, volunteers and the data scanned by
them were randomly selected. As a result, the dimensions for
training and test sets are (43 200, 1250, and 2) and (4800,
1250, and 2), respectively,1 constituting 90% and 10% of the
total samples. Hence, the test set consists of three randomly
selected volunteers. The MDDECT dataset is available on
Kaggle.2

V. EXPERIMENT DETAILS AND RESULTS

Before training a network, we needed to extract and set
aside a validation set from the training set to determine
hyperparameters and select DL models. The test set must not
be used in the training phase and should only serve to produce
the final claim on accuracy. As the training set contains
data from 27 volunteers, we randomly selected 3 from the
27 volunteers and used their corresponding data as a validation
set. In addition, the temporal dimension was decimated from
1250 to 250 by a factor of 5, in order to enable faster training.
As a result, the dimensions of the training, validation, and test
sets were (38 400, 250, and 2), (4800, 250, 2), and (4800, 250,
2), respectively. The ratio of the number of samples among
them was 8:1:1.

A. Normalize and Augment Data

The final training data were applied with a channelwise
normalization according to (5), where xi is the flattened
tensor when the channel dimension equals i and μi and
σi are the mean and standard deviation of xi , respectively.
This normalization is termed as z-normalization [35], which
nullifies the mean and standardizes the variance of the data in
terms of each channel. The resultant training data were then
used to train a network. In addition, the calculated μi and σi

from the training data were used to normalize the validation
and test data too. In order to appreciate the data in general
before training, the z-normalized validation data are plotted all
together in a complex plane in Fig. 9, from which it can be
seen that the liftoff signals are larger in magnitude and also
different in phase compared to the defect signals. However,
most signals overlap severely with each other, indicating the
difficulties to classify these signals. To be more clear, some
typical signals for the defects are plotted in Fig. 10

xi − μi

σi
, i = 1, 2. (5)

1The numbers 43 200 and 4 800 are calculated from 27 × 8×2 × 5×20 and
3 × 8×2 × 5×20, respectively.

2https://www.kaggle.com/mchikyt3/mddect

Fig. 9. Plots of the z-normalized validation data all together in a complex
plane. The mean and standard deviation used in the normalization were
calculated from the training data. The x- and y-axes represent the I/Q
channels, respectively.

Fig. 10. Plots of typical signals for the defects in a complex plane. The
signals correspond to the 90◦ scanning angle in Fig. 8(a).

After normalization, the data were then configured for
train- and test-time augmentations. In terms of train-time
augmentation, every training sample was cropped randomly
for every epoch in order to introduce certain variances to the
training data on the fly. Concretely, a segment of dimensions
(224, 2) was cropped randomly under a uniform distribution
from the original training sample of dimensions (250, 2). As a
result, the input dimensions to a network were (224, 2), where
the batch dimension was not shown. In terms of test-time
augmentation, ten-crop test was conducted to the validation
and test samples, i.e., the final classification result of a sample
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TABLE I

ARCHITECTURE DETAILS OF RESIDUAL CNNs

Fig. 11. Plots of loss versus learning rate. The best initial learning rate
appears to be the same for all the evaluated networks, which is about
4.0 × 10−5 and marked by a dotted vertical line in the figure.

was determined by averaging the outputs of a network for ten
random crops from the sample.

B. Determine Network Architectures and Hyperparameters

As discussed in Section III, the networks exploited in this
article were 1-D variants of the residual CNNs. In addition,
the CNNs were fixed to have four stages, and hence, the min-
imal depth was 14 for each network, where only one residual
module existed in each stage. Fig. 7 shows the architectures of
ResNet1Dv1-14, ResNet1Dv2-14, and ResNeXt1D-14, which
served as the baseline networks. The width of them, i.e., the
number of filters in the first convolution layer, was set to
6. They all had a similar level of trainable parameters and
floating-point operations (FLOPs).

Based on the three baseline networks, we experimented
on the depth dimension and doubled the number of residual
modules in each stage of the networks, which gave rise to
three deeper networks: ResNet1Dv1-26, ResNet1Dv2-26, and
ResNeXt1D-26. In addition, we also attempted to expand the
width dimension from the baseline networks while maintaining
the number of trainable parameters and FLOPs similar to the
26-layer ones, which gave rise to four wider networks. The
details of the architectures of these seven new networks are
listed in Table I. As they had a similar computation complexity,

we would be able to compare their performances and see
whether depth or width was more effective under the scope
of this article. Finally, we evaluated our deepest network
ResNeXt1D-38, where in each stage, there were three residual
modules. The details of the architecture of ResNeXt1D-38 are
listed in the last column in Table I.

Learning rate is an important hyperparameter affecting the
training and performance of a network. In order to find the
best initial learning rate, we performed the strategy from [36],
where the training started with a small learning rate and
increased it epoch by epoch in a geometric progression. After a
few epochs, the loss versus learning rate plot could be drawn,
and the best initial learning rate located at the point where
the loss decreased most rapidly. This strategy was applied to
all the networks we evaluated, and the resultant plots of loss
versus learning rate are shown in Fig. 11. It can be seen that
all the networks appear to share the same best learning rate
4.0 × 10−5, at which the losses descend rapidly. It is noted
that this way of finding the best initial learning rate may not
an exact solution. Notice that the x-axis in the figure is in a
logarithmic scale.

All the networks were applied with the same following train-
ing configurations and hyperparameters. The Adam optimizer
was exploited with default values of parameters recommended
in [37], and the mini-batch size was set to 128. The weight
decay was set to 0.01. The training data were shuffled for
every epoch, and each network was trained for 10 000 epochs.
The learning rate was initialized to 4.0 × 10−5 and decreased
to 4.0×10−6 at epoch 5000 and finally to 4.0×10−7 at epoch
7500.

C. Train Networks and Analysis Results

The training was coded using the Tensorflow library and
conducted on an Nvidia RTX 2080Ti GPU. In total, the train-
ing of the networks took about five days to finish. The
training and validation accuracies and losses are shown
in Fig. 12 for three baseline networks: ResNet1Dv1-14,
ResNet1Dv2-14, and ResNeXt1D-14, four deeper net-
works: ResNet1Dv1-26, ResNet1Dv2-26, ResNeXt1D-26, and
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Fig. 12. Training processes of eleven networks. (a), (c) and (e) Training and validation accuracies for three baseline networks, four deeper networks, and four
wider networks, respectively. (b), (d) and (f) Corresponding losses. Solid and dashed lines represent the training and validation accuracies/losses, respectively.
Results of the same network use similar colors.

TABLE II

CLASSIFICATION RESULTS

ResNeXt1D-38, and three wider networks: ResNet1Dv1-14,
ResNet1Dv2-14, and ResNeXt1D-14 with respect to training
epoch, which are also available as a TensorBoard experiment.3

Three main observations can be taken from the train-
ing processes. First, the three baseline networks all suf-
fer the underfitting problem as per Fig. 12(a), that is,
they converge to large training errors between 15% and
10%, which implies that their representation powers are

3https://tensorboard.dev/experiment/hNURDaEzRr2GQCZeDyqBHw/

Fig. 13. Confusion matrix of the trained ResNeXt1D-38 for the training
set. Every entry in the matrices represents the number of samples that are
classified to a specific class.

insufficient for the MDDECT dataset. Such suggestion is
verified by the results of larger networks in Fig. 12(c) and (e),
where the training errors of ResNet1Dv1-26, ResNet1Dv2-26,
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Fig. 14. Confusion matrix of the trained ResNeXt1D-38 for the validation
set. Every entry in the matrices represents the number of samples that are
classified to a specific class.

and ResNeXt1D-26 are well below 5%, and the training
errors of the wider ResNet1Dv1-14, ResNet1Dv2-14, and
ResNeXt1D-14 are slightly higher than 5%. On the other
hand, the validation errors of the larger networks are around
10%. However, it is difficult to conclude that the larger
networks are overfitted to the training data, only based on
the about 5% difference between the training and validation
errors. Second, the deeper networks, in general, have achieved
higher accuracies than the wider ones that share a similar
level of trainable parameters and FLOPs, as can be seen by
comparing Fig. 12(c) and (e). Third, different versions and
types of network lead to marginal differences in terms of
both the training and validation accuracies. In Fig. 12(c),
the discrepancies of the training and validation accuracies
of ResNet1Dv1-26, ResNet1Dv2-26, and ResNeXt1D-26 are
within 3%. The discrepancies in Fig. 12(e) are even smaller.
However, ResNeXt1D-26 has achieved the best performance
among the larger networks of similar levels of complexity. As a
consequence, we further trained a ResNeXt1D-38, the deepest
network we evaluated, so as to test the limit of performance.
Its training and validation accuracies are plotted in Fig. 12(c).

In order to claim the final accuracies, the best trained model
of a network was selected as the one that achieved the highest
validation accuracy during training for that network. Next,
the test set data were fed to the chosen model to produce
the final claimed accuracy of the network. The final top-1
accuracies of each network are listed in Table II. It can be
seen that ResNeXt1D-38 has achieved the highest accuracy
of 93.58%, while the second best accuracy is 93.15%, achieved
by ResNeXt1D-26. The fact that the additional 12 layers give
rise to an improvement of only 0.43% implies that simply
increasing the depth may not be able to push the boundary
of performance, and overfitting may occur. Moreover, if the
accuracy metric is relaxed to tolerate an error of ±0.1 mm,
the “±0.1-mm accuracies” are also listed in the same table,

Fig. 15. Confusion matrix of the trained ResNeXt1D-38 for the test set. Every
entry in the matrices represents the number of samples that are classified to
a specific class.

where ResNeXt1D-38 also wins with 97.20%. If we exam-
ine closer on the results of ResNeXt1D-38, its confusion
matrices for the training, validation, and test sets are shown
in Figs. 13–15, respectively. It can be seen from Fig. 13 that
misclassified training samples are sparse, and the training
error is nearly zero. Moreover, according to Figs. 14 and 15,
mistaken samples of the validation and test set tend to be
classified into the adjacent classes of their ground-truth classes,
which explains the much improved 97.20% accuracy with
±0.1-mm tolerances. In addition, it appears that shallower
defects are not more difficult to classify than deeper ones.
In fact, the defects in the middle range, i.e., from 0.7 to
1.7 mm, have larger errors than those of the remaining defects.
Finally, the liftoff samples are all correctly detected. Being
immune to liftoff signals is an important and desirable feature
for an ECT defect depth estimation method.

In order to further understand the misclassified samples,
the test set data labeled by the trained ResNeXt1D-38 are
plotted in Fig. 16, from which it can be seen that, in general,
the wrongly labeled samples overlap in great deal with the
correct samples. We argue that it is almost impossible to
estimate by human the depth of a defect in the resolution
of 0.1 mm, while ResNeXt1D-38 has achieved a 93.58%
accuracy.

Furthermore, the misclassified samples can be divided into
two categories. The first type is due to the noisy label in the
test set. For instance, a normal sample is predicted as liftoff,
whose signal is plotted in Fig. 17 together with those of true
normal and liftoff samples. The green trace, a normal signal,
clearly exhibits a pattern similar to those of the blue and
amber traces, which are liftoff signals. This pattern is very
different from those of the red and purple traces, which are
normal signals. Therefore, we suspect that the volunteer had
a liftoff movement when a normal sample was supposed to be
captured. However, this sample has been labeled as normal
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Fig. 16. Plots of the samples in the test set that are grouped into 20 subplots based on the ground-truth labels. The data are z-normalized with the means
and standard deviations of the training set data. Blue and yellow traces represent the correctly and wrongly classified samples of the corresponding class,
respectively. The predicted labels of samples are from the trained ResNeXt1D-38 model.

Fig. 17. Signals of true liftoff, true normal, and false liftoff (true “normal”) samples in the test set. (a) Signals in a complex plane. (b) and (c) I/Q signals,
respectively.

in the dataset, which is a noisy label. Some other noisily
labeled samples are circled in the confusion matrix of test set
in Fig. 15. Some surprising ones include a 1.6-mm defect that

is misclassified as normal, a 1.9-mm defect as 1.0 mm, and
a 0.9-mm defect as 1.9 mm. However, compared to the total
number of samples, such noisily labeled samples are sparse.
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Fig. 18. Plots of the samples of the 2.0-mm defects in the test set with class activation mappings calculated based on the trained ResNeXt1D-38. The color
represents the activation level of a sampling point with respect to the class of the 2.0-mm defect. (a) Sample signals in a complex plane. (b) and (c) I/Q signals
with sampling point, respectively. In (b) and (c), the time series are aligned according to their first peak points in order to clarify the activation regions.

TABLE III

REGRESSION ERRORS FOR DEFECTS OF DIFFERENT DEPTHS

Apart from the noisily labeled samples, the majority of mis-
classifications are due to the high overlaps between the signals
of two defects of similar depths. As shown in Fig. 15, most
misclassified samples are predicted as the adjacent classes of
their true classes. Without a strictly regularized scanning setup
(e.g., with a stepper motor) and when scanning by human
operators, the variance of signals of a defect is large, which
compromises the distinction between the signals of defects
of two similar depths. It is not a trivial task to nullify this
type of classification error, even equipped with advanced DL
algorithms

� =
√∑

(dpredicted − dtrue)2

n
. (6)

The depth measurement accuracy can be evaluated based
on the regression error � for each depth, which is calculated
using (6) where n is the number of samples for a depth
and dpredicted and dtrue are the predicted and true depths,
respectively. The regression errors for different depths are
summarized in Table III. It can be seen that the maximum
regression error is 0.108 mm occurred in the 1.9-mm defect
class. The average regression error is 0.065 mm.

A class activation mapping (CAM) can be calculated as
per [38] to examine the contributions of every sampling points
to the classification of a time series. As an illustration, CAMs
for the samples of the 2.0-mm defect in the test set were
calculated based on the trained ResNeXt1D-38 and are shown
in Fig. 18. It can be seen that only some regions of the
time series are activated and other regions are masked out.
This can help explain why ResNeXt1D-38 is able to correctly

differentiate samples of different classes that have overlapping
parts because they have different activation regions for their
own classes. Moreover, it is worth pointing out that the times
series of the same class share similar activation regions, as can
be clearly seen in Fig. 18.

VI. CONCLUSION

The evaluation of the depth of a surface defect of metal-
lic materials is a major application of ECT, where recent
DL-motivated methods commence to surpass the conventional
ones. However, many existing approaches have not taken
full advantage of the state-of-the-art DL techniques proposed
in computer vision. In this article, we aim at addressing
the problem of ECT-based surface defect depth estimation
by using 1-D deep residual convolutional networks. First,
a highly integrated and multifunctional portable ECT device is
developed based on Zynq-7020 SoC, which provides fast data
acquisition and I/Q demodulation. Second, a dataset, termed
MDDECT, is constructed by 30 volunteer operators using the
ECT device and consists of 48 000 samples of 20 classes in
total. The MDDECT dataset is openly available and can be
exploited as a testbed in order to promote new ECT algorithms.
Third, 11 1-D residual networks of three different types are
evaluated, and a 38-layer network ResNeXt1D-38 has achieved
an accuracy of 93.58% in terms of estimating the depth
of the surface defects from 0.3 to 2.0 mm with a depth
resolution of 0.1 mm. In addition, the DL algorithms can
reject liftoff signal and hence immune to liftoff noise. Future
research directions would be to evaluate a different family of
deep networks, such as recurrent networks and other learning
strategies. Moreover, a continued effort should be made to
enrich the MDDECT dataset with more diversities, scans, and
specimens.
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