
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021 3521710

Machine Learning-Based Network Status Detection
and Fault Localization

Ayşe Rumeysa Mohammed , Shady A. Mohammed , David Côté ,

and Shervin Shirmohammadi , Fellow, IEEE

Abstract— Although the autonomous detection of network
status and localization of network faults can be a valuable
tool for network and service operators, very few works have
investigated this subject. As a result in today’s networks, fault
detection and localization remains a mostly manual process.
In this article, we propose a machine learning (ML) method that
can automatically detect the status of a network and localize
faults. Our method uses the decision tree, gradient boosting
(GB), and extreme GB ML algorithms to detect the network
status as normal, congestion, and network fault. In comparison,
existing related work can at best classify the network status as
faulty or nonfaulty. Experimental results show that our method
yields accuracies of up to 99% on a dataset collected through an
emulated network.

Index Terms— Fault localization, imbalanced dataset, machine
learning (ML), network automation, network measurement.

I. INTRODUCTION

SERVICE reliability is important for network operators and
internet service providers (ISPs), because there may be

significant penalty costs associated with breaches of service
level agreements (SLAs). Traditionally, ISPs have been per-
forming service assurance and maintenance manually; i.e., if
a part of a network or service fails; e.g., an alarm is triggered,
a team of the Network Operation Center (NOC) technicians,
who are typically on call 24/7, are alerted to identify, localize,
and fix the problem [1]. This reactive process is expensive and
takes time, especially if the failure is on a physical device and
involves an in-person service call. Meanwhile, the quality of
service and the customer experience suffer.

It would, therefore, be a significant contribution to create a
system that would autonomously discover and localize poten-
tial network faults as early as possible, minimizing their neg-
ative impact on the customers’ experience. Today’s networks
are massive interconnections of user devices, technologies, and
applications, transporting petabytes of data every millisecond.

Manuscript received March 7, 2021; revised May 28, 2021; accepted
June 19, 2021. Date of publication July 5, 2021; date of current version
July 22, 2021. This work was supported in part by MITACS Accelerate Cluster
under Grant IT12571 and in part by Ciena Corporation. The Associate Editor
coordinating the review process was Dr. Datong Liu. (Corresponding author:
Shady A. Mohammed.)

Ayşe Rumeysa Mohammed, Shady A. Mohammed, and Shervin Shirmo-
hammadi are with the Distributed and Collaborative Virtual Environments
Research Laboratory, University of Ottawa, Ottawa, ON K1N 6N5, Canada
(e-mail: amus037@uottawa.ca; smoha191@uottawa.ca; shervin.s@
uottawa.ca).

David Côté is with Blue Planet Analytics, Ciena Corporation, Ottawa,
ON K2K 0L1, Canada (e-mail: dcote@ciena.com).

Digital Object Identifier 10.1109/TIM.2021.3094223

This vast amount of data creates engineering challenges that
can be addressed with modern big data techniques. At the same
time, the vast amount of data also provides opportunities: if
we could tap into this goldmine of information with the right
tool, we could potentially detect and localize network faults
with good precision.

Today, this tool has arrived in the form of machine learning
(ML). Many of the network state classification and fault
localization challenges are essentially big data problems that
are difficult to solve analytically, especially for large and/or
complex networks, but can be solved more efficiently by ML
algorithms, improving the system performance while main-
taining relative design simplicity [2], [3]. Tools like Ciena’s
Blue Planet Analytics (BPA) [4] are examples of the industry
moving toward this direction. These tools use ML to help
service providers and network operators gain deep insights
into the network so that they can make intelligent data-driven
business decisions, which lead to improved efficiency, lowered
costs, and providing more personalized services. Such tools
typically collect, normalize, and categorize a huge amount of
data in near real-time and store it in big data clusters sitting
in the cloud or on the premises. The data are then fed into
applications that leverage ML to generate valuable insights.
For example, BPA’s network health predictor [5] can analyze
historical and current data and employs predictive analysis
to constantly assess the probability of each network element
going into an abnormal state. If it identifies that a part on an
end-to-end service path is at high risk, policy rules take effect.
For instance, a policy rule would be that if there is greater than
80% risk of failure for a high-value customer and then adjust
the service path. An orchestrator, such as the Blue Planet
Multi-Domain Service Orchestration [6], can then take action
based on this policy and, for example, provision a new service
path or activate a backup system and fill a trouble ticket so the
faulty equipment is automatically decommissioned. In essence,
the network can be programed to self-monitor and self-heal.

In this article,1 we propose an ML-based network status
detection and fault localization system for general core
IP networks with a specific focus on ISPs. The detector
differentiates between three main network states: “normal,”
“congestion,” and “network physical issue.” In the latter

1The technology described in this article is part of the U.S. patent application
number 16892594 titled “Action Recommendation Engine of a closed-loop
ML system for controlling a telecommunications network” filed on June 4,
2020.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-0344-1712
https://orcid.org/0000-0002-3973-4445
https://orcid.org/0000-0002-5395-4292
https://orcid.org/0000-0001-7468-0430

3521710 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

two cases, our system also localizes the fault, in essence
distinguishing among eight classes in our testbed. We employ
GNS3 to emulate a topology close to an ISP’s real network to
collect and build our dataset. We then evaluate the performance
of four ML methods of decision tree (DT), gradient boosting
(GB), extreme GB (XGB), and neural network (NN) as
network state classifier with fault localization. Network
state detection is a new research topic and we found only
three other works [7]–[9] in this topic. To the best of our
knowledge and unlike those three works that provide binary
classification (e.g., normal or fault and congested or not
congested), our work is the first one that provides multiclass
classification. In addition, compared with the 92% accuracy
of the only work out of the three that also localizes faults [9],
we reach accuracies of 97%–99%.

The remainder of this article is organized as follows.
In Section II, we cover the related work. In Section III,
we detail our system design and the rationale behind it.
Section IV introduces the selected ML algorithms and analyzes
their results. Finally, in Section V, we conclude our work and
discuss future research venues.

II. RELATED WORK

Network state detection can be considered a subset of the
more general traffic classification field. To this end, ML-based
traffic classification has been applied extensively against cyber
attacks by diagnosing malicious traffic [10]–[14] and classi-
fying encrypted traffic [15]–[19]. ML algorithms have also
been used for comprehending the traffic flow [20], providing
application-aware traffic classification [21], and classifying the
network traffic via semisupervised learning [15] or supervised
learning [22] methods. It has also been suggested in [23] that
using especially collected network datasets, one could train
supervised ML to identify different root causes for problems
based on different raw performance monitoring patterns.

Despite the above-mentioned research, we could only find
three other works covering ML-based classification of net-
work status for IP networks [7]–[9], indicating that this
topic is understudied despite its tremendous impact potential.
Kumar et al. [7] investigated DT, support vector machine
(SVM), and K-nearest neighbor (KNN) ML algorithms for
classifying software-defined wireless mesh-network status as
congested and noncongested. Their tests on two datasets with
different observation time periods ranging from 5 s to 60 s
shows accuracies of 90%–98%, with KNN achieving the
best performance on both datasets with average accuracies
of 98.5% and 97.5%. In [8], a naïve Bayesian classifier is
used to categorize the network status as faulty or normal,
while Gupta et al. [9] developed a hybrid framework of ML
and DL to classify the network status for network function
visualization (NFV) systems. In addition, it decides if the
problem has already occurred or is predicted to happen with a
certain probability. The framework works in two steps. First,
it identifies if the network is faulty or not. Then, for a faulty
network state, the framework localizes the fault and identifies
the root cause, while for the predicted faults it localizes them
and determines the severity. Their SVM method achieved
95.4% accuracy in the detection of the network status as faulty

or normal, and 89.7% and 95.1% in classifying the faults as
manifested or impending, respectively. Manifested problems
are identified by multiclass classification with SVM. Local-
ization of impending faults and prediction of their severity is
done by stacked sparse autoencoder reaching 92% accuracy.

It is worth mentioning that Abbasi et al. [24] present a
survey of deep learning (DL) methods for network traffic
monitoring and analysis, which addresses, among many things,
fault management. However, most of the presented works
target radio access networks and cyber-physical networks and
are, therefore, not applicable to our IP core network scenario.

In terms of non-ML-based network status classification,
we could also only find two articles [25], [26]. Park and
Kim [25] proposed an analytical approach in which the
deviant RTT values are counted in a late time window to
classify the traffic status into five classes indicating stability
in the network: stable_strong, stable_weak, stable_transient,
stable_biased, and stable_not. In [26], statistical information
regarding present topology connection condition, port statuses,
different types of packet counters, packet drop counters, link
bandwidths, and latency values are acquired by the SDN
controller to diagnose the network status as correct or faulty.

All the previously mentioned works classify the network
status as faulty or nonfaulty. This binary classification com-
bines all the issues that may happen to the network into one
class. Our work aims to detect three high-level states: normal
state; network physical issue, and congestion. The normal state
is when the network is problem free. The network physical
issue state represents any physical problem that can happen to
the network, such as device (e.g., routers) failure and/or link
disconnections. The congestion state represents traffic flood
in any of the network paths that lead to QoE deterioration.
In addition, the congestion and network physical issue states
are further divided into substates so that our system identifies
the exact faulty device or the congested link. This means that
our system is a multiclass classifier, specifically eight classes
for our testbed. Furthermore, we differ from existing works in
terms of performances. We use ensemble algorithms to classify
the network status achieving overall accuracies of 97%–99%.

Finally, in the specific field of instrumentation and measure-
ment (I&M), network state detection is a new topic with no
existing literature. Network measurement has been an I&M
topic of interest for many years and includes, for example,
measuring network delay [27]–[29], detecting faulty sensors
in wireless sensor networks [30], [31], and detecting changes
in the available bandwidth in video delivery networks [32].
But no I&M work has addressed network state detection and
fault localization in general.

III. SYSTEM DESIGN

The design of our system is shown in Fig. 1. The system’s
inputs are QoS and QoE data metrics collected from our
testbed. The QoS metrics consist of per-path and per-device
metrics. For per-path metrics, we collect the end-to-end delay,
jitter, packet losses, out-of-sequence cases, and discarded
samples; i.e., SLA measurements of each of the three paths.
For per-device metrics, we collect the ports’ input and output
packet rates and packet losses for each router in AS-1.

MOHAMMED et al.: ML-BASED NETWORK STATUS DETECTION AND FAULT LOCALIZATION 3521710

Fig. 1. System design.

Fig. 2. Network topology.

Finally, QoE is indicated by the downloading speed in the
file transfer application.

The input data pass by a preprocessing stage, including
concatenation, normalization, and aggregation, before being
split into three subportions for training, validation, and testing.
Then, our ML models get trained via the training dataset and
validated by the validation and test datasets. Finally, the trained
models are able to predict the network state given new inputs.

To train the ML models, we need a sufficient amount of data.
However, we could not find any open-source network dataset
with the inputs our system needs. Therefore, we developed our
own testbed to collect the needed data. We chose our testbed
to be simple enough so that we could extract the ground truth
manually, yet complex enough to not be able to determine
optimal rules trivially. Sections III-A–III-C will explain in
detail the testbed specifications and the data collection method
and scenarios.

A. Testbed

We employ GNS3 [33] to emulate the network in Fig 2.
This network is in a similar setup as the Internet’s back-
bone network since it has multipaths between users and
content servers [34]. In our case, the network contains three
Autonomous systems (AS). AS-1 is the ISP network serving
the users. AS-3 is where content servers such as FTP servers

exist. We can see that AS-1 and AS-3 are connected through
router R2. AS-2 symbolizes a neighboring ISP, where forward-
ing packets to it is considered to cost more compared to routing
the packets internally within AS-1. AS-2 can be used as a
backup in case Router R2 goes down or is congested. Our
interest is in detecting AS-1’s network status.

Cisco’s IOSv images are used to model network devices,
such as routers and switches. Moreover, we utilized containers
running headless Ubuntu 18.04 OS images to model the
traffic generated by users of the network. Containers are used
due to their lightweight property [35]. In order to eliminate
any unknown and external network conditions, the content
servers are built on the same machine that runs the testbed.
Furthermore, we placed nine users directly on AS-1. To ensure
network connectivity, all routers run the open shortest path
first (OSPF) routing protocol. Finally, we created three multi-
protocol label switching (MPLS)/OSPF tunnels and utilized
access control lists to control the paths between users and
content servers.

Each user has three paths to the content servers. PATH1 and
PATH2 are internal routes, whereas PATH3 is an external path
that forwards the traffic from AS-3 to AS-2 and then to AS-1.

Cisco’s IOSv images can support around 2 Mb/s. To mit-
igate this bandwidth restraint, we apply layer-3 policies,
as shown in Table I, to limit MPLS tunnels’ bandwidth to

3521710 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fig. 3. MPLS link utilization. (a) Unique links. (b) Shared links.

TABLE I

LAYER-3 POLICIES SUMMARY

support up to three simultaneous users transferring files up to
20 KB/s each. Wireshark is used to ensure the effectiveness of
the applied policies versus the number of users per path [36],
as shown in Fig. 3. In Fig. 3, there are two types of links:
unique and shared links. Unique links are a member of only
one path. Therefore, a unique links’ maximum bandwidth is
60 KB/s; i.e., the bandwidth of three users, while a shared link
aggregates two or more paths, and its maximum bandwidth is
double the unique link.

The layer-3 policies help in defining the network states.
The normal state is when any link has a maximum of three
users. Congestion state is when there are more than three
users connected to a path. In addition, we define network
physical issues, such as any network device failure or path

disconnectivity, by a composition of delay and jitter ranging
between 80–350 and 5–60 ms, respectively.

B. Data Collection and Preparation

A python script is written to interact with GNS3’s REST
API. The API can turn ON and OFF any network device.
In addition, it can impose delay and/or jitter on any of the
network’s links. The python script defines the scenario of data
collection by adding the ability to do the live configuration of
any network device and control the operation of the nine users.
The script decides randomly the path that each user connects
to, and also collects QoS and QoE metrics every 30 s. The QoS
metric consists of: 1) end-to-end delay, jitter, and packet loss
values; i.e., SLA measurements of the three paths and 2) input
and output rates, and packet loss values of the router ports in
AS-1. File transfer downloading speed is the only QoE metric
we gather. Afterward, QoS and QoE metrics are merged and
aligned with the aid of timestamps. Table II summarizes the
collected features and labels.

We collected over 20 days of data and a dataset
of 56 000 data points. The rules utilized in data collection
are presented in Algorithm 1. It was fairly easy for us to

MOHAMMED et al.: ML-BASED NETWORK STATUS DETECTION AND FAULT LOCALIZATION 3521710

TABLE II

FEATURES AND LABELS SUMMARY

Algorithm 1 Operational Labeling Rules for This
Experiment

while True do
choice = random(add_client, physical_prob)
if choice == physical_prob then

label = NPI
end
else

if client_len(PATH1)>3 then
label = Congest:P1

end
else if client_len(PATH1)>3 then

label = Congest:P2
end
else

label = Normal
end

end
end

define these rules since our testbed network is not complex.
However, in a more realistic network, these rules become
more difficult to define, and this is why NOCs employ expert
technicians. The collected dataset has 66 different features.
The labeled network status distribution is shown in Fig. 4(a).
In Fig. 4(a), it is obvious that the normal state is predominant,
which is the case in the real world, so that our data are
realistic. We achieved this condition by resetting our network
to the normal state before introducing another abnormal state.
For instance, if the current state is to congest PATH1, after
three iterations, one of the PATH1’s clients is moved either
to PATH2 or PATH3 to reset the network to its normal state.

Fig. 4. Actions space distribution. (a) Class distribution. (b) Minority class
breakdown.

Likewise, if the current state is a physical issue realized by
enforcing a delay and jitter filter, after three iterations, the filter
is removed to reset the network to its normal state. As a result,
we encounter the problem of an unbalanced classification
problem; i.e., one class, including more data points than other
classes. Again, this problem is a realistic reflection of what
happens in the real world; therefore, creating an imbalanced
dataset with the Normal state having more instances than the
other classes is intentional. Fig. 4(b) shows the distribution
of the abnormal states labeled by rules that mimic the NOC
technicians’ decisions. The abnormal network states can be
mainly classified into either a network physical issue, denoted
by “NPI”, or a congested path, denoted by “Cong.”

C. Model Selection

As described in Sections III-A and III-B, the dataset con-
sists of classes with uneven distribution of instances. This
phenomenon creates two issues: 1) the AI model acts greedy
and, therefore, becomes more biased toward the majority class
to maximize the overall accuracy and 2) the data points of
the minority classes are not representative enough to describe
the classes. These two issues negatively affect the model

3521710 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

TABLE III

MODELS’ PARAMETERS

TABLE IV

OVERALL MODEL ACCURACIES

performance because the model favors the predominant class.
But, in fact, it is the minority classes that are the points of
interest; i.e., they are the classes that we are keen to classify:
congestion and physical fault.

To overcome this problem, we utilize ensemble methods,
which use the unification of weak learners to advance the
predictive performance. When new data are introduced, weak
learners provide their votes for classes. After that, the class
with the most votes is chosen for that data point. In our
case, we tested a simple DT [37] algorithm and two ensemble
methods: GB [38] and XGB [39] algorithms.

We also use another solution for the unbalanced data
problem: employing a fully connected neural network with
weight balancing. Weight balancing gives more weight to the
more important classes by multiplying the loss of each data
point by a certain factor depending on their class, leading to an
overall balance in the data. The results for all four are reported
in Section IV.

During training, we noticed that the 30-s period was creating
a dataset, where congestion states are not distinguished clearly.
This was overcome by a two-factor aggregation strategy: we
took the average of the SLA and QoE measurements, and we
also set the abnormal network state as the dominant action;
i.e., the abnormal label is always selected if the two aggregated
labels are normal and abnormal.

IV. EVALUATION AND RESULTS

As mentioned earlier, our goal is to not only classify the
network state but also localize a fault if it exists; in fact,
five of our model classes indicate the specific location of the
physical problems in the network. Given the moderate amount
of training data (60% of the dataset) and the complexity of the
problem, we find that XGB provides optimal performance.
DT is too simple and provides the least good performance,
while the NN model is too complex and requires more
training data to perform better. Table III lists the four models’
parameters. Table IV summarizes the overall accuracies for the
four classification models. As can be seen, all of the classifiers
performed well with a minimum accuracy of 97.1% and with
XGB having the highest accuracy at 99.0%.

A similar trend is observed for the precision and recall
values shown in Tables V and VI, which also show the fault

localization performance. Compared with the other models,
XGB performed better for almost every class in the dataset.
Precision values for the Normal class are over 0.97 and for the
NPI classes are either 0.99 or 1. However, model performances
degraded for the congestion classes, where precision varies
between 0.73 and 0.93 for Congest:P1, and between 0.70 and
0.95 for Congest:P2. The recall follows a similar pattern:
recall values for the normal class are over 0.97 and for
the NPI classes are between 0.98 and 1, while performance
degrades again for congestion classes, with recall values being
between 0.76 and 0.90 for Congest:P1 and between 0.78 and
0.91 for Congest:P2. While precision and recall are low
for the Congestion classes, XGB still performed the best in
identifying the congestion in PATH1 and PATH2 with values
over 0.90. In addition, all the models yielded higher scores
for Congest:P2 than Congest:P1, the only exception being the
precision value of the GB model. In addition, for NPI:3→5,
all models have the value 1 except DT in precision, which
is 0.99.

We can, therefore, see that XGB is the best performer,
DT performs poorly and, GB and NN yields similar perfor-
mance. As stated earlier, NN underperforms due to a lack of
sufficient training data. However, these relatively poor classifi-
cation performances in congestion classes did not significantly
affect the overall accuracy of the models since the normal
class had considerably more instances than others combined,
see Fig. 4.

We believe that the confusion between the normal and
congestion states is due to three reasons: 1) the strict labeling
technique presented in Algorithm 1 sets the network state as
congestion immediately if one of the paths has more than
three clients. 2) The fact that congestion needs time to build
up and to be shown in the collected metrics due to the
routers’ buffer. Therefore, the collected metrics start reflecting
congestion after the buffer floods. 3) ML-model sampling
frequency, i.e., how often the model takes a decision. If the
model takes its decision before the metrics reflect congestion,
the model’s decision will be “normal,” while the label is
“congestion”. That is the cause of the confusion. But if the
model takes its decision after the metrics reflect congestion,
the model’s decision will be “congestion” and the label is also
“congestion.”

To further assess the classification models, we opted to
utilize confusion matrices. The normalized confusion matrices
for the classifiers are shown in Fig. 5, again including fault
localization (NPI). We can see that all models are able to
make perfect detection of NPI classes. The confusion happens
between the normal and congestion classes. In fact, it can be
said that this is the only considerable confusion causing the
models to deteriorate. DT and GB fail drastically to distinguish
congestion in PATH1 and PATH2 from the normal state,
while NN is slightly better at separating the two congestion
classes from the normal state. Unlike its counterparts, XGB’s
performance is not weakened by this task. Table VII shows a
comparison of this work with state-of-the-art.

In addition, the ROC curves are shown in Fig. 6. These
graphs summarize the performances of the classifiers over
each probable threshold for every class. As can be seen,

MOHAMMED et al.: ML-BASED NETWORK STATUS DETECTION AND FAULT LOCALIZATION 3521710

Fig. 5. Confusion matrices for DT, GB, XGB, and NN.

TABLE V

PRECISION FOR EACH CLASS

the classifiers have a high predictive ability with the area under
curve (AUC) values ranging between approximately 0.80 and
1.00, and the latter symbolizing a perfect test. Almost all

the classifiers can easily identify the first six classes shown
in Fig. 6. However, some deterioration in AUC values occurs in
identifying Cong:P1 and Cong:P2 classes. DT classifier gives

3521710 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

Fig. 6. ROC curves for DT, GB, XGB, and NN.

MOHAMMED et al.: ML-BASED NETWORK STATUS DETECTION AND FAULT LOCALIZATION 3521710

TABLE VI

RECALL FOR EACH CLASS

TABLE VII

PERFORMANCE AND SUMMARY COMPARISON

the lowest performance, whereas XGB provides the highest,
almost reaching 1.00. GB and NN yield very similar results.

Although NNs, such as DL, have great potential, they come
with a significant drawback: the limited availability of labeled
data decreases the accuracy in classification and limits the
choices of algorithms since DL techniques often require a large
amount of data for training.

V. CONCLUSION

In this work, we proposed an ML-based system that dis-
tinguishes between congestion, network physical issue, and
normal states. Then, we studied the performance of three
ML methods to classify the network status using a dataset
generated in GNS3. We showed the feasibility of the ensemble
models, with the XGB algorithm having the highest overall
accuracy of 99%.

Several research venues from this work remain open.
In future work, first, we will explore the scalability of our
approach and study how the selected ML models perform in
real time in a diverse and complex network with more path
combinations and routers. Our selected ML model is network
specific. Today, the domain of taking an ML method from
the laboratory to an actual environment and ensuring that
it can operate smoothly in the real world is called machine
learning operations (MLOps) [40]. It is well-known that ML
models heavily depend on the quality of data and are tailored
to the targeted applications (in our case, a specific network
configuration). MLOps has proven that trained models can
be migrated to other applications and still function after
fine tuning, transfer learning, or (in the worst case scenario)
retraining. Furthermore, we will investigate the emergence of
new network states. With the discovery of new states, we will
consider more advanced ML algorithms, such as a deep neural
network to find hidden patterns and perfect the classification
performance. We will especially focus on attention models to
study the dataset in a sequential format since every new data
in our dataset depends on the previous data point.

Finding a way to combine unsupervised learning with
supervised learning to teach NNs how to learn with less data
is a promising area of research. Furthermore, teaching NNs
to accumulate their knowledge will make them more effective
and efficient in learning new things, and thus, fewer data will
be required for training.

Although our system is not a human life-critical system, like
a medical or military system or self-driving cars, we would
like to explore the realm of explainable AI to study how the
AI model takes its decisions.

Finally, network state classification paves the path toward
identifying the cause of traffic congestion. Based on such
predictions, potential actions can be suggested to resolve the
problem autonomously.

REFERENCES

[1] M. Benatia, A. Louis, and D. Baudry, “Alarm correlation to improve
industrial fault management,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 10485–10492, 2020.

[2] A. R. Mohammed, S. A. Mohammed, and S. Shirmohammadi, “Machine
learning and deep learning based traffic classification and prediction in
software defined networking,” in Proc. IEEE Int. Symp. Meas. Netw. (M
N), Jul. 2019, pp. 1–6.

[3] B. Ma, H. Zhang, Y. Guo, Z. Liu, and Y. Zeng, “A summary of traffic
identification method depended on machine learning,” in Proc. Int. Conf.
Sensor Netw. Signal Process. (SNSP), Oct. 2018, pp. 469–474.

[4] Blue Planet Unified Assurance and Analytics. Accessed: Feb. 20, 2021.
[Online]. Available: https://www.blueplanet.com/products/uaa.html

[5] Blue Planet Network Health Predictor. Accessed: Feb. 20, 2021.
[Online]. Available: https://www.blueplanet.com/resources/Blue-Planet-
Network-Health-Predictor.html

[6] Blue Planet Multi-Domain Service Orchestration. Accessed: Feb. 20,
2021. [Online]. Available: https://www.blueplanet.com/products/
multi-domain-service-orchestration.html

[7] R. Kumar, U. Venkanna, and V. Tiwari, “A binary classification approach
for time granular traffic in SDWMN based IoT networks,” in Proc. Int.
Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2020, pp. 531–534.

[8] A. Saple and L. Yilmaz, “Agent-based simulation study of behavioral
anticipation: Anticipatory fault management in computer networks,” in
Proc. 44th Annu. Southeast Regional Conf., 2006, pp. 383–388.

[9] L. Gupta, T. Salman, M. Zolanvari, A. Erbad, and R. Jain, “Fault and
performance management in multi-cloud virtual network services using
AI: A tutorial and a case study,” Comput. Netw., vol. 165, Dec. 2019,
Art. no. 106950.

[10] Y. Jin, M. Tomoishi, and S. Matsuura, “Detection of hijacked authorita-
tive dns servers by name resolution traffic classification,” in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2019, pp. 6084–6085.

[11] S. Naseer et al., “Enhanced network anomaly detection based on deep
neural networks,” IEEE Access, vol. 6, pp. 48231–48246, 2018.

[12] T. Ongun, T. Sakharaov, S. Boboila, A. Oprea, and T. Eliassi-Rad,
“On designing machine learning models for malicious network
traffic classification,” 2019, arXiv:1907.04846. [Online]. Available:
http://arxiv.org/abs/1907.04846

[13] Y. Zuo, Y. Wu, G. Min, C. Huang, and K. Pei, “An intelligent anomaly
detection scheme for micro-services architectures with temporal and
spatial data analysis,” IEEE Trans. Cognit. Commun. Netw., vol. 6, no. 2,
pp. 548–561, Jun. 2020.

[14] Z. Tian et al., “Deep learning and Dempster-Shafer theory based insider
threat detection,” Mobile Netw. Appl., pp. 1–10, Oct. 2020. [Online].
Available: https://link.springer.com/article/10.1007/s11036-020-01656-7

3521710 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 70, 2021

[15] A. S. Iliyasu and H. Deng, “Semi-supervised encrypted traffic classifi-
cation with deep convolutional generative adversarial networks,” IEEE
Access, vol. 8, pp. 118–126, 2019.

[16] A. S. Khatouni and N. Zincir-Heywood, “Integrating machine learning
with off-the-shelf traffic flow features for http/https traffic classifica-
tion,” in Proc. IEEE Symp. Comput. Commun. (ISCC), Jun. 2019,
pp. 1–7.

[17] M. Lotfollahi, M. J. Siavoshani, R. S. H. Zade, and M. Saberian, “Deep
packet: A novel approach for encrypted traffic classification using deep
learning,” Soft Comput., vol. 24, no. 3, pp. 1999–2012, 2020.

[18] S. Soleymanpour, H. Sadr, and H. Beheshti, “An efficient deep learning
method for encrypted traffic classification on the web,” in Proc. 6th Int.
Conf. Web Res. (ICWR), 2020, pp. 209–216.

[19] X. Wang, S. Chen, and J. Su, “App-Net: A hybrid neural network for
encrypted mobile traffic classification,” in Proc. IEEE Conf. Comput.
Commun. Workshops (INFOCOM WKSHPS), Jul. 2020, pp. 424–429.

[20] S. Patel et al., “Network traffic classification analysis using machine
learning algorithms,” in Proc. Int. Conf. Adv. Comput., Commun. Control
Netw. (ICACCCN), Oct. 2018, pp. 1182–1187.

[21] M. Amiri, H. Al Osman, and S. Shirmohammadi, “Game-aware
and sdn-assisted bandwidth allocation for data center networks,” in
Proc. IEEE Conf. Multimedia Inf. Process. Retr. (MIPR), Apr. 2018,
pp. 86–91.

[22] I. L. Cherif and A. Kortebi, “On using extreme gradient boosting
(XGBoost) machine learning algorithm for home network traffic classi-
fication,” in Proc. Wireless Days (WD), 2019, pp. 1–6.

[23] D. Côté, “Using machine learning in communication networks,” J. Opt.
Commun. Netw., vol. 10, no. 10, pp. D100–D109, 2018.

[24] M. Abbasi, A. Shahraki, and A. Taherkordi, “Deep learning for network
traffic monitoring and analysis (NTMA): A survey,” Comput. Commun.,
vol. 170, pp. 19–41, Feb. 2021.

[25] J. Park and J. Kim, “A classification of network traffic status for
various scale networks,” in Proc. Int. Conf. Inf. Netw. (ICOIN),
2013, pp. 595–599.

[26] Z. Shu et al., “Traffic engineering in software-defined networking:
Measurement and management,” IEEE Access, vol. 4, pp. 3246–3256,
2016.

[27] S. A. Mohammed et al., “A multimodal deep learning-based distributed
network latency measurement system,” IEEE Trans. Instrum. Meas.,
vol. 69, no. 5, pp. 2487–2494, Jan. 2020.

[28] J. Fabini and M. Abmayer, “Delay measurement methodology revisited:
Time-slotted randomness cancellation,” IEEE Trans. Instrum. Meas.,
vol. 62, no. 10, pp. 2839–2848, Oct. 2013.

[29] T. Eylen and C. F. Bazlamaçci, “One-way active delay measurement
with error bounds,” IEEE Trans. Instrum. Meas., vol. 64, no. 12,
pp. 3476–3489, Dec. 2015.

[30] A. I. Moustapha and R. R. Selmic, “Wireless sensor network
modeling using modified recurrent neural networks: Application
to fault detection,” IEEE Trans. Instrum. Meas., vol. 57, no. 5,
pp. 981–988, May 2008.

[31] S. C. Chan, H. C. Wu, and K. M. Tsui, “Robust recursive eigendecompo-
sition and subspace-based algorithms with application to fault detection
in wireless sensor networks,” IEEE Trans. Instrum. Meas., vol. 61, no. 6,
pp. 1703–1718, Jun. 2012.

[32] A. Javadtalab, M. Semsarzadeh, A. Khanchi, S. Shirmohammadi, and
A. Yassine, “Continuous one-way detection of available bandwidth
changes for video streaming over best-effort networks,” IEEE Trans.
Instrum. Meas., vol. 64, no. 1, pp. 190–203, Feb. 2013.

[33] GNS3. Accessed: Feb. 20, 2021. [Online]. Available:
https://www.gns3.com/

[34] M. Yuksel, K. Ramakrishnan, and R. D. Doverspike, “Cross-layer failure
restoration techniques for a robust IPTV service,” in Proc. 16th IEEE
Workshop Local Metrop. Area Netw., Sep. 2008, pp. 49–54.

[35] D. Merkel, “Docker: Lightweight linux containers for consistent devel-
opment and deployment,” Linux J., vol. 2014, no. 239, p. 2, 2014.

[36] Wireshark, Go Deep. Accessed: Feb. 20, 2021. [Online]. Available:
https://www.wireshark.org/

[37] J. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[38] J. H. Friedman, “Stochastic gradient boosting,” Comput. Statist. Data
Anal., vol. 38, no. 4, pp. 367–378, 2002.

[39] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2016, pp. 785–794.

[40] Y. Zhou, Y. Yu, and B. Ding, “Towards MLOps: A case study of
ml pipeline platform,” in Proc. Int. Conf. Artif. Intell. Comput. Eng.
(ICAICE), 2020, pp. 494–500.

Ayşe Rumeysa Mohammed received the B.Sc.
degree in computational and medical physics from
Bogazici University, Istanbul, Turkey, in 2014, and
the M.Sc. degree in data science from Istanbul
Sehir University, Istanbul, in 2017. She is currently
pursuing the Ph.D. degree in electrical and computer
engineering with the University of Ottawa, Ottawa,
ON, Canada.

She collaborated on applied AI for network traffic
rehabilitation with Ciena Corporation, Ottawa. Her
research interests include computer networks mea-

surement, multimedia systems and communication, and computer vision.

Shady A. Mohammed received the M.Sc. degree in
electronics and computer engineering from Istanbul
Sehir University, Istanbul, Turkey, in 2016. He is
currently pursuing the Ph.D. degree in electrical and
computer engineering with the University of Ottawa,
Ottawa, ON, Canada.

He collaborated on applied AI for network analyt-
ics and automation with Ciena Corporation, Ottawa.
He is currently a Machine Learning Developer with
Transport Canada, Ottawa. His research interests
include machine learning operations, big data, cloud

computing, and multimedia systems and communication.

David Côté received the Ph.D. degree in physics
from the Université de Montréal, Montreal, QC,
Canada, in 2007.

He was a Particle Physicist with the Stan-
ford Linear Accelerator Center, Menlo Park, CA,
USA, and CERN, Meyrin, Switzerland, notably,
for 14 years, where he gained substantial hands-on
experience with big data engineering, data science,
and world-class research. He is currently the Chief
Data Scientist with the Blue Planet Division, Ciena
Corporation, Ottawa, ON, Canada, where he is also

a Co-Founder of the Blue Planet Analytics program. His group has developed
and productized several machine learning applications recognized by industry
innovation awards and commercial success. He also participates in several
research projects with industrial and academic partners and holds numerous
patents and publications in the field.

Shervin Shirmohammadi (Fellow, IEEE) received
the Ph.D. degree in electrical engineering from the
University of Ottawa, Ottawa, ON, Canada, in 2000.

He is currently a Professor with the School of
Electrical Engineering and Computer Science, Uni-
versity of Ottawa. He is also the Director of the
Distributed and Collaborative Virtual Environments
Research Laboratory, doing research in measure-
ment methods and applied AI for multimedia and
networking systems. The results of his research,
funded by more than $26 million from public and

private sectors, have led to 400 publications, three best paper awards,
over 70 researchers trained at the post-doctoral, Ph.D., and master’s levels,
30 patents and technology transfers to the private sector, and a number of
awards.

Dr. Shirmohammadi served as the Vice President of the Membership
Development Committee, IEEE Instrumentation and Measurement Society,
from 2014 to 2017. He was a member of the IEEE I2MTC Board of Directors
from 2014 to 2016. He is an IEEE Fellow for contributions to multimedia
systems and network measurements. He has been an IEEE Instrumentation
and Measurement Society AdCom member since 2014. He is currently on
the Editorial Board of the IEEE Instrumentation and Measurement Magazine.
He received the 2019 George S. Glinski Award for Excellence in Research,
a Senior Member of the ACM. He received the University of Ottawa Gold
Medalist. He was the Associate Editor-in-Chief of the IEEE Instrumentation
and Measurement Magazine from 2014 to 2015. He is the Editor-in-Chief
of the IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT.
He is a licensed Professional Engineer in Ontario.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

