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Online Yarn Breakage Detection:
A Reflection-Based Anomaly

Detection Method
Ning Yan ( ) , Linlin Zhu ( ) , Hongmai Yang ( ) ,

Nana Li ( ) , and Xiaodong Zhang ( )

Abstract— This article discusses an optical reflection-based
method for equipment anomaly detection that enhances weak
signals and has high sensitivity to abnormalities. Automatic warp
knitting machine yarn breakage detection, which has become an
acknowledged difficulty in the textile field, is achieved. To the
best of our knowledge, this is the first time that visual inspec-
tion has been applied to yarn breakage detection in weaving.
Furthermore, based on the periodicity of the yarn distribution
and the periodic motion law of the machine, the combined
wavelet and Seasonal and Trend decomposition using locally
weighted regression (LOESS) (STL) decomposition method is
proposed for yarn breakage detection. Finally, the efficiency and
accuracy of the proposed method are verified experimentally. Our
research is a successful application of reflection characteristics
to the anomaly detection of non-Lambertian objects, which has
implications for the high-precision anomaly detection of precision
equipment.

Index Terms— Anomaly detection, reflection method, warp
knitting, yarn breakage detection.

I. INTRODUCTION

IN THE macroscopic field, ray propagation strictly con-
forms to the laws of geometrical optics; therefore, taking

light as the standard has always been regarded as a high-
precision measurement method. For example, methods, such as
theodolite [1], linear structured light [2], and fringe projection
measurement [3], achieve high-precision measurements based
on the concept that light travels in straight lines. Optical
reflection can magnify small features, and it has been verified
that measurement based on reflection can achieve higher
accuracy [4], [5]. In addition, based on the sensitivity to the
pose, the optical reflection-based optical lever is widely used in
precision equipment such as atomic force microscopy [6] and
gravitational wave detection equipment [7]. Optical detection
is an important branch of optical applications, and the use
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of optical reflection also provides an idea for high-precision
detection [8]; however, the traditional structures to be tested do
not have mirror features, which make them difficult to detect
using the traditional reflection method [9], [10]. In fact, most
of the structures are non-Lambert objects, which have certain
reflective properties; however, this kind of reflection is very
different from the reflection of mirrors and is difficult to use.
In this article, we conducted our research on automatic warp
knitting machine yarn breakage detection; our motivation is to
solve the acknowledged problem of automatic warp knitting
machine yarn breakage detection and propose an optical-
reflection-based method for high-precision non-Lambert object
anomaly detection.

Warp knitted fabric is an important source of high-end
clothing, home textile fabrics, and basic materials of high
technology [11]–[13]. However, yarn breakage is inevitable
in the weaving process and is considered to be the cause of
nearly 70% of fabric defects according to research. When
yarn breakage occurs, it is necessary to stop the machine
immediately for yarn repair to avoid quality degradation
of the final finished fabric. However, the detection of yarn
breakage has always been a difficult problem in the warp
knitting industry. First, yarns are thin and dense. One example
is the RD7-2/12 warp knitting machine produced by Karl
Mayer Company (see Fig. 1). In the machine that is approx-
imately 4-m long, the distance between adjacent yarns is
only 1.1545 mm [see Fig. 1(b)]. Therefore, physical sensors
for yarn detection cannot be used in warp knitting machines
considering the costs and equipment structure [14]–[17].
Furthermore, yarns can be as thin as tens of microns, creating
difficulties to visual inspection. For a typical case, the yarn
diameter is 100 μm, and the camera lateral resolution is 1000.
If a single column of pixels corresponds to a single yarn,
a single camera can only cover 0.1 m (100 μm × 1000),
meaning that nearly 40 cameras are required to cover the
whole area, which is obviously unrealistic. Second, the yarns
of different guide bars are always interweaved together. When
the yarn of a certain layer breaks, the image of all other
layers of yarns is an interference signal at this time. Due
to the interference of each yarn, which introduces consider-
able noise, the information of yarn breakage is very weak
[see Fig. 1(c)].

As a high-precision detection method, optical detection is
a mainstream research direction of yarn breakage detection.
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Fig. 1. RD7-2/12 double needle bar raschel machine produced by Karl
Mayer. (a) is an external view of the warp knitting machine, and the length
of which is approximately 4 m. Area 1 shows that the fabric is obscured by the
mechanical structure, and area 2 is the weaving area. At different weaving
times, (b) and (c) can be obtained separately by enlarging area 2 of (a).
(b) shows the needles in the first layer, and the density of the needles
determines the maximum density of the yarns. (c) shows the yarns, where
it can be seen that multiple layers are interweaved.

Fig. 2. Yarns highlighted with a line laser, in which (a) is the detec-
tion system, and (b) is the captured result. This method is inspired by
Musa [18] and [19].

Musa [18] and [19] used a line laser to project characteristic
points on yarns and then used a camera to capture the
highlighted yarns to detect yarn breakages. Although this
method can be used to enhance yarn characteristics, it cannot
solve the problem of multiple yarns interweaved. As shown
in Fig. 2, we have tested this yarn enhancement method in a
warp knitting machine. All yarns are highlighted at the same
time, and the signal and noise are enhanced synchronously,
causing yarn breakage detection to be difficult. Therefore, most
of the existing yarn breakage detection methods aim at the
features caused by broken yarn to achieve indirect detection.
A relatively mature yarn breakage automatic detection method
is based on fabric defect detection because the broken yarn will
produce marks on the fabric [20]–[24]. However, this method
has large limitations because it is effective only when the
fabric surface is completely exposed. For the double needle bar
raschel machine [see Fig. 1(a)], due to the complexity of the
mechanical structure, the fabric is obscured for up to 1 m after
weaving. If yarn breakage is not detected in a timely manner,
many defective fabrics will be produced, and the broken yarn
may cause other yarns to break, which will seriously affect
the normal operations of a machine. The German enterprise
Protechna developed a product in which a set of lasers and

photoelectric sensors are installed in the neighborhood of
each layer of yarns. When a yarn breaks, it will float out
under the action of the blower and obscure the light of the
laser. Then, the photoelectric sensor detects the change in
light and judges the existence of yarn breakage. However, this
method is essentially an indirect method. Because sometimes
yarn will be entangled after the yarn breaks and will not
float, the opportunity for inspection may be missed, and the
timeliness of this method also needs to be improved.

In our opinion, the most direct method is the most effective,
so we focus on studying how to detect yarn breakage by
directly capturing the yarns in the weaving area where yarn
breakage occurs. The key to solving this problem is to extract
the weak broken yarn signal from the strong noise. Our method
in this article is based on the non-Lambert body reflection
characteristics. When the incident light hits the yarn, a con-
siderable amount of the reflected light will travel along the
reflection direction. By arranging the camera in the outgoing
direction of the light, a large amount of information will be
captured by the camera so that the camera can obtain super-
resolution information, allowing the camera to shoot with a
large field of view. Furthermore, based on the characteristic
that the law of reflection is very sensitive to the posture of
yarns, the yarns of different guide bars can be distinguished
and detected separately so as to avoid the interference of yarns
of different guide bars.

Through the above hardware optimization methods, the sig-
nal quality is greatly improved. However, regarding the algo-
rithm, how to achieve stable and reliable detection is still a
great challenge. Taking a 4-m-long machine as an example,
if the yarn density is 50%, the machine has five layers, and the
distance between adjacent yarns is 1.1545 mm. It can be cal-
culated that the machine has 4000/1.1545/2×5 = 8662 yarns.
If five images are taken per second, 0.7 billion yarns will be
captured every day. If the number of false positives should
be controlled within five times, it can be calculated that the
false positive rate (FPR) should be less than 7e−07%, and
the high stability requirement will bring great challenges to
the algorithm. In order to meet the high stability requirements
for the algorithm, considering the periodic motion of the warp
knitting machine in the weaving process, time domain anomaly
detection and spatial domain anomaly detection are combined
to achieve high robustness.

Existing methods for anomaly detection in the spatial
domain can be divided into two categories. The first is based
on deep learning. In recent years, with excellent fault toler-
ance and adaptability to new data, deep learning has shown
excellent performance on many complex nonlinear processes,
which are very difficult to solve using traditional methods [25].
In the field of textile defect detection, methods related to
deep learning can be divided into unsupervised learning and
supervised learning; method based on unsupervised learning
does not need to mark defects in advance, which is much more
convenient than supervised learning in use, and can also solve
the problem of defect data scarcity. Hu et al. [26] present
an unsupervised method for automatically detecting defects in
fabrics based on a deep convolutional generative adversarial
network (DCGAN). By subtracting the original image from
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the image generated by DCGAN, defects are highlighted
while removing the texture. However, although unsupervised
learning is an important direction of future development, its
accuracy and efficiency are still inferior to supervised learning
at present [27], and method based on unsupervised method is
difficult to detect weak defects. The methods based on super-
vised learning can be mainly divided into three categories;
the first is based on classification network [28], [29], and
this method divides the image into defect image and defect-
free image based on classification network; however, when the
proportion of defects in the image is very small, the detection
accuracy will be significantly reduced. The second method is
based on object detection; faster R-CNN [30] and Yolo [31],
[32] are two of the typical model and have been used in fabric
defect detection and achieved good detection accuracy. The
third method is based on semantic segmentation [33], and this
method can realize the pixel level segmentation of defects;
however, it is generally inefficient and the process of data
set annotation is very complicated. In all, at present, object
detection is the most common method in defect detection in
textile field, and unsupervised learning is an important direc-
tion of future development. However, although methods based
on deep learning are potential, when a process is easily defined
by a comprehensible mathematical model, traditional computer
vision techniques are always able to solve the problem much
more efficiently in fewer lines of code than deep learning
[34]. Due to the strict periodic distribution of yarns and the
decreased reflection effect caused by yarn breakage, the yarn
breakage detection problem is not difficult to characterize by
a simple mathematical formula. In addition, the generalization
ability of deep learning is restricted by the data set, which will
also restrict the universality of the system. Therefore, in our
opinion, traditional computer vision techniques may be better
for yarn breakage detection than deep learning. Therefore,
we choose to use traditional algorithm to ensure the stability
and traceability of the algorithm. Deep learning, as a very
popular method at present, is used for algorithm comparison
in this article.

The yarn breakage detection problem can be abstracted
as the detection of anomalies in periodic features. Xie [35]
discusses texture feature extraction and analysis in four cate-
gories. The first category is macrostatistics approaches, such as
histogram properties [36], co-occurrence matrices [37], auto-
correlation [38], and local binary patterns [39]. The first three
methods mainly focus on macro characteristics; therefore,
their sensitivity to yarn breakage defect is poor. Local binary
patterns are relatively sensitive to small defects; however,
they are easily disturbed by texture information. The second
category is structural approaches, which detect defects by
modeling texture features, which is relatively complex and
inflexible [40]. The third category is called model-based
approaches, which represent a broad concept and mainly refer
to some texture analysis models proposed by scholars, such
as fractal models, autoregressive models, and so on. These
models can adapt to some complex situations, but the algo-
rithm complexity is always high [41]. The fourth category is
filter-based approaches, which highlight defects by removing
the interference of texture structure by filtering. Among the

filter-based approaches, the wavelet, a time–frequency joint
analysis method, is a typical representative method that can
locate defects while removing periodic noise [42]. Wavelets
are used for anomaly detection in the spatial domain in this
article. The key for anomaly detection in the time domain is
similar to that in the spatial domain, and it is very important to
remove the periodic signal caused by the periodic movement
of the machine. The difference is that compared with the
signal period in the spatial domain, the signal period in
the time domain is strictly fixed; in the time domain, the
abnormal signal is at the end of the whole signal. Therefore,
for signals in the time domain, signal prediction methods
based on statistics are more suitable. For signal forecasting,
the classical statistical methods are based on the moving
average method, which is easily disturbed by noise [43].
Methods developed on the basis of classical methods, such
as X11, Signal extraction in ARIMA time series (SEATS)
[44], and Seasonal and Trend decomposition using locally
weighted regression (LOESS) (STL) [45], can achieve more
robust results. Among these methods, STL is a time series
decomposition method that can satisfy different periods, and
this method is used for time domain anomaly detection in
this article. According to the characteristics of yarn breakage,
we also simplified the STL algorithm to improve the detection
speed.

Finally, a detection system is built based on the reflection-
based shooting method, and the algorithm combines time
domain and spatial domain detection. It has been verified
by several sets of experiments that the detection system can
achieve long-term and stable yarn breakage detection for a
warp knitting machine.

Our specific contributions are as follows: 1) the warp knit-
ting machine yarn breakage detection problem is solved, which
is a recognized problem in the field of textiles; 2) through the
time domain and spatial domain composite method, the robust-
ness of the algorithm is greatly improved; in addition, the STL
algorithm is simplified according to the specific characteristics
of yarn breakage detection; and 3) the anomaly detection
method based on reflection can assist the anomaly detection
of other precision equipment that has a non-Lambert surface
and periodic motion law, such as defect detection of ceramic
tile, glass plate and plastic board, abnormal detection of blade
rotation, radial runout detection of shaft, and so on

II. REFLECTION-BASED WEAVING AREA

YARN BREAKAGE DETECTION

In this article, the reflection method for weak signal
enhancement is used for yarn breakage detection, as shown
in Fig. 3. First, because yarns are thin and dense, it is
impossible to shoot each yarn clearly; therefore, yarns should
be shoot in a fuzzy state, meaning that the yarn breakage
will be reflected through the change of local gray level of
the image because we cannot distinguish each yarn. Second,
because different layers of yarns interweave, the signals of
different layers of yarns will interfere with each other; it is
a big challenge to avoid mutual interference; we introduced
the reflection method, based on the fact that only the yarn
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Fig. 3. Sketch map introducing the challenges of yarn breakage detection
and the technological process of our method to overcome the challenges.

with a certain angle can be highlighted because of the law of
reflection and the fact that inclination angles of different layers
of yarns are different; different layers of yarns are highlighted
layer by layer, which makes it possible to detect different
layers of yarns separately to avoid interference between mul-
tiple layers of yarns. At the same time, because a lot of light
will be captured by the camera when the law of reflection is
satisfied, the camera will get a lot of information of yarns,
so as to achieve super resolution. Another big challenge is
to meet the needs of high stability. We solved this problem
by combining the time domain algorithm and space domain
algorithm because the final result is obtained by combining the
two methods, and the stability is greatly improved. In the space
domain, yarns are distributed periodically; therefore, wavelet
is used to extract the periodic signal of yarns and locate the
defect. In the time domain, in the weaving process, the light
signal of the same pixel has strict periodicity corresponding to
the periodicity of the machine. When yarn breaks, the periodic-
ity of the signal is destroyed, and the light intensity decreases.
Therefore, we propose a method based on STL decomposition
to achieve yarn breakage detection by analyzing whether there
is a downtrend in the signal in the time domain.

A. Macro Detection Via Long-Distance Capturing

Yarns are very thin and dense, although they can be clearly
captured by pulling the camera closer, as shown in Fig. 4(a).
The detection costs will increase significantly because the
small field of the camera limits the reduction in the number
of cameras, and it is also difficult to obtain yarn breakage
information because of the interweaving of multilayer yarns.
Therefore, many scholars tend to detect yarn breakage through
fabric photography, as shown in Fig. 4(b). In the final finished
fabric, although it is difficult to see all yarns, yarn breakage
information can still be obtained. Therefore, it is considered
that yarn breakage information can be obtained even if the yarn
breakages are not photographed clearly. Based on this idea,
this article obtains macro information on yarns through long-
distance capturing, and yarn breakage is detected via means
similar to fabric defect detection.

Fig. 5 shows the schematic of long-distance capturing.
Fig. 5(a) is the schematic of single-layer yarns in the case of

Fig. 4. Yarn breakage capturing result: (a) is an image captured at a short
distance where we can see that the broken yarns are difficult to distinguish;
and (b) shows the influence of yarn breakage on fabric, where we can see
that the feature is very clear.

Fig. 5. Schematic of long-distance capturing for (a) a single layer of yarns
and (b) double layers of yarns. After a comparison of the upper and lower
images, the conclusion can be drawn that blurred shooting may be better for
defect extraction.

long-distance capturing, and Fig. 5(b) shows the schematic of
double-layer yarns in the case of long-distance capturing. The
figure shows that the yarn breakage information is manifested
by the absence of yarn at the corresponding position in the
case of close capturing. However, in the case of long-distance
capturing, yarn breakage information is represented by an
abnormal gray level. The most intuitive information of the
image is the gray level. Therefore, it is easier to detect defects
through image processing by using long-distance photography.

B. Improve the Signal-To-Noise Ratio (SNR)
Based on Reflection

By comparing Fig. 5(a) with Fig. 5(b), it can be found that
the yarn breakage information obviously weakens as the num-
ber of yarn layers increases; however, in the actual weaving
process, there may be many layers of yarns in different guide
bars. The yarn breakage signal of a certain layer is submerged
in the interference signal generated by the multilayer yarns,
which makes the signal difficult to extract. Therefore, it is
necessary to improve the SNR for yarn breakage detection by
considering the distribution and movement of different layers
of yarns. In this article, each layer of yarns is individually
highlighted based on the reflection characteristics of the yarns.
The specific principle is shown in Fig. 6. P is the location
of the light source, C is the location of the camera, M is
the weaving area, l3 is the yarns to detect, α is the angle
between the line PM and the horizontal direction, β is the
angle between the line CM and the horizontal direction, and
γ is the angle between the normal direction of yarns and the
horizontal direction. Since the textile area is very small, it can
be regarded that P , C , and M are three fixed points, which
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Fig. 6. Sketch map of yarn highlighted based on the law of reflection,
where the light produced by light source P is reflected by yarn l3 and shot
by camera C .

Fig. 7. Sketch map of yarn highlighted by layer. Only the yarn whose angle
meets the law of reflection can be highlighted. For example, the No. 2 yarns
are highlighted in (a) and the No. 5 yarns are highlighted in (b).

means that α and β are fixed. When the law of reflection is
satisfied,

γ − β = 1

2
(α − β) (1)

is satisfied, and the corresponding layer of yarns is highlighted.
Because yarns are highlighted based on the law of reflec-

tion, a large amount of light is reflected into the camera,
and the yarn information is easily captured by the camera.
In addition, it can be seen that yarns can only be highlighted
when formula (1) is satisfied, meaning that only one layer
of yarns can be highlighted at one time so that interference
between different layers of yarns can be avoided. During the
weaving process, yarns constantly swing back and forth with
the movement of the machine, and each layer of yarns can be
highlighted separately. As shown in Fig. 7, when the angle of a
certain layer of yarns just meets the law of reflection, the layer
of yarns is highlighted, and the defects can be identified easily,
as shown in Fig. 8.

In the actual weaving process, the amplitude of yarn swing-
ing is often limited. In order to achieve clear capture of
all layers of yarns, the adjustable position of cameras and
light sources is limited. In addition, it is better to choose
the moment when the layer of yarns is not covered by too
many other layers of yarns, as shown in Fig. 7, which further
limits the position of cameras and light sources. Therefore,
it is necessary to comprehensively consider the motion law
of the machine tool and the specific weaving process and

Fig. 8. Image of yarn breakage captured through the method proposed in
this article. The left is the whole image captured by the industrial camera.
After enlarging the image, we get the image on the right in which the yarn
breakage is noticeable.

Fig. 9. Sketch maps of yarns highlighted with double light sources and
double cameras. (a) and (b) use different light sources to highlight the different
layers of yarns. In this method, additional light sources have little impact on
hardware costs, but two layers should not be highlighted at the same time
in order to avoid mutual interference. (c) and (d) use different cameras to
capture the different layers of yarns. In this method, the additional cameras
will have a big impact on the hardware costs; however, two layers can be
highlighted at the same time because the images of different cameras will not
cause interference.

adjust the camera and the light source in the best capturing
position using optimizing methods so as to ensure that the yarn
breakage of each layer can be photographed clearly. However,
because of the restrictions, sometimes there is no solution to
the optimization problem. At this time, additional cameras
and light sources are needed to add more freedom to the
optimization problem. Fig. 9(a) and (b) shows the cases of
multiple light sources in which two light sources are set in
different positions, providing two incident ray angles α, and
different layers of yarns can be highlighted with different light
sources. Fig. 9(c) and (d) shows the cases of multiple cameras
in which two cameras are set in two positions to shoot different
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Fig. 10. Yarn breakage in the time domain and spatial domain. The area in
red outline represents an anomaly. Yarns are periodic in both domains, and
yarn breakage will destroy the periodicity.

layers of yarns. The figures show that by using the method of
multiple light sources or multiple cameras, the optimization
problem is easier to solve.

C. Identification of Yarn Breakage Based on
Anomaly Detection

Yarn breakage can be extracted from two perspectives.
Regarding the spatial distribution, yarn is periodically dis-
tributed in the weaving area. When yarn breakage occurs,
the original periodicity is broken, as shown in lines a and b
in Fig. 10. Regarding the time distribution, the yarn bright-
ness changes periodically during the weaving process, and
yarn breakage will also affect the periodicity in the time
distribution, as shown in line c in Fig. 10. Detection based
on the spatial distribution has strong timeliness. However,
the periodicity in the spatial domain is affected by the map-
ping relations between the camera and weaving area, causing
period uncertainty. In addition, a certain extraction method
is difficult to apply to different weaving processes. The time
domain method detects yarn breakage by analyzing signal
anomalies. Because the signal period strictly corresponds to
the weaving period of the warp knitting machine, the period
of the time domain can be directly obtained through weaving
parameters, and the method in the time domain is more stable
and pervasive. In this article, a two-step defect extraction
algorithm is proposed. First, the periodicity noise is removed
via wavelet transformation in the spatial domain. Second, STL
decomposition is used to separate the periodic signal and
trend signal in the time domain because yarn breakage will
decrease the brightness, and the defect can be easily extracted
from the trend signal. In addition, to speed up the algorithm,
a simplified STL is proposed.

In the time domain, the weaving area of yarns can be divided
into three parts. First, the brightness of the weaving area
is uneven, which is considered low-frequency noise. Second,
some vertical lines can be seen in the weaving area, which can

Fig. 11. Wavelet transform used to enhance the feature of the defect. (a) is
the original image of the weaving area captured using the method introduced
in this article. We obtain the gray value of the red line in (a) and show the
result in (b). The defect can be seen, but it is not obvious. (c) shows the
results of the wavelet transform in different scales. From the second order,
the feature of the defect is very obvious, as shown in (d).

be defined as high-frequency noise. Third, yarn breakage has
obvious characteristics in the time domain, which is reflected
by local gray abnormalities. Wavelets are a time–frequency
method based on which we can obtain the time domain
information and frequency domain information of the original
signal at the same time. Therefore, in this article, defects
are extracted based on wavelets. The Marr wavelet is used
because of its similarity to the abnormal area of yarns in an
image. The support of the filter is set to [−7, 7]. Suppose
the number of pixels of an image in the horizontal direction is
N . Approximately 15N multiplication and addition operations
need to be calculated in the wavelet transformation process.
The result is shown in Fig. 11. Fig. 11(a) shows the original
image to be detected, Fig. 11(b) shows the gray value in the
red line position of Fig. 11(a), Fig. 11(c) shows the result of
the wavelet transform of Fig. 11(b), and the ordinate represents
different scale factors. Fig. 11(d) corresponds to the data in
the red box of Fig. 11(c). The defect is highlighted, as shown
in Fig. 11(d).

Based on the result of the wavelet transform, a simplified
STL decomposition is used to achieve final defect detection
[38]. The details are as follows: first, to improve the detection
speed, the time of the outer loops is set to 1, and the inner
loops of the STL consist of six steps. The first step and the last
step are meaningless because the time of the outer loops is set
to 1. Second, for each calculation, only a new line of data is
added on the basis of the previous data, and most of the data do
not need to be recalculated. We use this characteristic to avoid
repeated calculations. In the second step, the cycle subseries
is smoothed based on LOESS (we set q = 8 and d = 1).
In order to avoid the influence of yarn breakage data on normal
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TABLE I

ALGORITHM COMPLEXITY ANALYSIS

data, only the newly added data are calculated. The main
process of this step is local least squares, and approximately
2 × 2 × 8 × N multiplication and addition operations need
to be calculated. In the third step, moving average filtering
is the main process, and we still only calculate the newly
added data. Suppose the data period is M . Approximately
(M + M + 3) ×N addition operations need to be calculated.
In the fourth step and the fifth step, only N addition operations
need to be calculated. To provide a clear picture, the number
of calculations required for each step is listed in Table I. The
complexity of the algorithm is low enough for online detection.

The results of STL are shown in Fig. 12. Fig. 12(a) shows
the wavelet-processed signal at different capturing times, and
yarn breakage occurs in the middle of detection. The gray
values in the same pixel at different times are extracted
to obtain the signal in Fig. 12(b), and the results of STL
decomposition are shown in Fig. 12(b). The trend signal shows
that yarn breakage will cause an obvious decrease in the gray
level and is easy to extract by the threshold.

III. RESULTS AND DISCUSSION

A. Construction of the Detection System

The detection system is built, as shown in Fig. 13. The
LED fluorescent lamp is selected as the light source, and the
image is captured by lens and cameras produced by Hikvision.
The specifications and parameters of the detection equipment
are shown in Table I. The positions of the cameras and
light sources are optimized according to the specific weaving
process. The detection system is approximately 1 m away from
the weaving area so that the system will not interfere with the
textile workers repairing the broken yarn.

B. Feasibility Experiments

To verify the feasibility of the method, six sets of exper-
iments are conducted on three warp knitting machines with
three different weaving processes, as shown in Table II. The
yarn breakage image obtained in the detection process is
shown in Fig. 14, where the images of yarns in the six sets
of experiments are very different, and the defects are marked
by red boxes. The final results are shown in Figs. 15–20.
(a) shows the original signal in the time domain and spatial
domain. Only data in the last part of the time domain have yarn
breakage. (b) shows the results of the wavelet transform. To a
certain extent, the defect is highlighted. (c) shows the results

Fig. 12. Defect detection based on STL decomposition: (a) shows the
signal extraction process, and (b) shows the defect extraction process by STL
decomposition.

TABLE II

HARDWARE DESIGN OF THE DETECTION SYSTEM

of STL decomposition, where the defect is very obvious.
(d) shows the final defect detection results. From the six sets
of experiments, the conclusion can be drawn that the proposed
method can achieve good detection results for warp knitting
machines with different processes.

C. Comparative Experiments

In order to illustrate the superiority of our algorithm,
we conducted two groups of comparative experiments, and the
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Fig. 13. Yarn breakage detection system including lights and cameras. 1 is the
light, which is a common fluorescent lamp. 2 is the industrial camera equipped
with a proper lens. To cover the entire field of view, about ten cameras are
used. 3 is the detection area, which is also called the weaving area.

Fig. 14. Yarn breakage images obtained in the detection process of the six
sets of experiments, where three different machines are used.

TABLE III

PROCESSING PARAMETERS OF WARP KNITTING MACHINE

data in No.4 experiment of Table III are used for comparison of
different algorithms, because the texture is relatively complex
in this set of data.

First, in order to verify the stability of our algorithm,
we compare our algorithm with the time domain algorithm and

Fig. 15. Detection results of experiment 1. (a) is the original signal in the
time and spatial domains. (b) is the results of the wavelet transform. (c) is
the results of STL decomposition. (d) is the final detection result.

Fig. 16. Detection results of experiment 2. The explanations of (a)–(d) are
the same as those in Fig. 15.

spatial domain algorithm separately; two indexes are proposed
to evaluate the algorithm; for clarity, we take 1-D signal,
as shown in Fig. 21, to illustrate the two indexes, where f (x)
is the signal after processed by the corresponding algorithm,
the signal of defect starts from x1 to x2, and the first index is
defect to interference rate (DIR), which can be calculated by

DIR = |K2|
|K1| . (2)

DIR reflects the stability of the algorithm under current
data; if DIR is less than 1, the algorithm would be invalid,
because the interference is larger than the signal of the defect.
The second index is defect to signal rate (DSR), which can be
calculated by

DSR =
∫ x2

x1
f (x)2dx

∫
f (x)2dx

. (3)
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Fig. 17. Detection results of experiment 3. The explanations of (a)–(d) are
the same as those in Fig. 15.

Fig. 18. Detection results of experiment 4. The explanations of (a)–(d) are
the same as those in Fig. 15.

DSR reflects the ratio of effective signal and invalid noise,
although this parameter cannot directly reflect whether the
algorithm is effective, it has more statistical value than DSR
because more signals are used. Fig. 22(a) shows the result
of the spatial domain algorithm, although it can be seen
that the gray level of defect is decreasing; however, there is
also a grayscale decline in the normal area because of the
textile technology of this machine, causing the method to fail.
Fig. 22(b) shows the result of the time domain algorithm, and
it can be seen that the noise is not removed effectively. The
parametric result is shown in Table IV. It can be seen from
the result that DIR and DSR of wavelet and STL decompose
are less than 1, meaning that only using wavelet or STL
decompose cannot remove noise effectively, and the DIR of the
proposed method is 1.6. However, if the noise is not removed
by reflection in the process of camera shooting, the noise will
be about several times as much, because the signal of different

Fig. 19. Detection results of experiment 5. The explanations of (a)–(d) are
the same as those in Fig. 15.

Fig. 20. Detection results of experiment 6. The explanations of (a)–(d) are
the same as those in Fig. 15.

Fig. 21. Simulation of a signal after proposed by algorithm.

layers will superimpose together; at this time, our method will
also face the high risk of being invalid.

At the same time, we also use a deep learning model named
yolov4 [46] for further comparison, and the model is proposed
in 2020, which has more excellent performance than the earlier
models. And it has already been used for defect detection [47].
The early version of yolov4 named yolov3 has already
been used for fabric defect detection and achieved good
results [31], [32].
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Fig. 22. (a) Signal proposed by wavelet only. (b) Signal proposed by
STL only.

TABLE IV

COMPARISON OF TRADITIONAL ALGORITHM AND PROPOSED ALGORITHM

Fig. 23. (a) Image data for training and label box of yarn breakage.

In the process of data collection, we randomly select ten
different positions within the field of view of one camera, and
manually break the yarn. We collected 300 images at each
location, and select the yarn breakage visible to the human
eyes to label; finally, we obtained 880 defect image. Then,
we cut out the yarn area of each picture for training, and the
final image resolution is 1280∗32, because the yarn periodic
texture is very similar to broken yarn characteristics. In the
process of labeling, we control the width of the labeling box
equal to yarn texture period, as shown in Fig. 23. Some key
training parameters in the specific training process are shown
in Table V, and the training result is shown in Table VI.
After training, the trained model is used to detect two sets
of data, the first data have 300 images all of which have
defect, the second data are 500 normal images, and the result
is shown in Fig. 24. And the data processed by the algorithm
proposed in this article are shown in Fig. 25, where the
gray value less than 200 is considered as defects, and the
final result is shown in Fig. 26, where Fig. 26(a) shows
data with defect and Fig. 26(b) shows data with no defect.
By comparing Figs. 24 and 26, it can be seen that though the
method based on deep learning can identify defects, the false
negative cannot be avoided; although the false negative rate is
not high, it will cause frequent alarms and cannot be used in
industrial scene. In contrast, the proposed algorithm is more
stable.

TABLE V

TRAINING PARAMETERS

TABLE VI

TRAINING RESULT

Fig. 24. (a) Detecting result of yolov4 for data with defect. (b) Detecting
result of yolov4 for data with no defect.

Fig. 25. Data processed by the algorithm proposed in this article.

In order to analyze the reasons for the false negative of
deep learning, two of the images of false negative are shown
in Fig. 27, where we can see characteristics similar to defects;
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Fig. 26. (a) Detecting result of the proposed method for data with defect.
(b) Detecting result of the proposed method for data with no defect.

Fig. 27. Images of false negative.

TABLE VII

PROCESSING PARAMETERS OF THE WARP KNITTING MACHINE

it is not easy to distinguish even for the human eyes, which
explains that the decline of the stability of deep learning
is caused by the random noise similar to defect; however,
because the proposed method in this article introduces the
time domain signal processing method, even if there is noise
at a certain moment, it will be filtered out by STL smooth-
ing; therefore, it has better ability of anti-noise. However,
in essence, method based on deep learning is still a kind of
space domain method; if we combine this method with time
domain method, the stability will be further improved, which
can be used as a direction of future research.

D. Stability Experiments

In order to verify the stability of this method, the detection
system is turned on for 120 h for the stability experiment,
and the manual yarn breaking experiment is conducted. The
machine processes are shown in Table VII. It can be calculated

Fig. 28. 120-h continuous experiment is conducted to verify the stability of
the method. The number of alarms, the number of yarn breakages, the wrong
detections, and the missed detections are recorded in (a), and the summary
of the results is shown in (b).

TABLE VIII

QUANTITATIVE ASSESSMENT OF THE EXPERIMENT

that the machine has approximately 13 900 yarns in total,
and five images are taken per second. It can be calculated
that images of six billion yarns are taken per day. The final
experimental results are shown in Fig. 28. Fig. 28(a) shows
the detection result over time, where the red line is the
number of alarms, and the blue line is the number of yarn
breaks. Because of incorrect detections (gray line) and missed
detections (yellow line), the number of alarms and the number
of yarn breakages do not coincide. Fig. 28(b) shows the
statistical results of Fig. 28(a), where the blue area is the
number of alarms, the green area is the actual number of
yarn breakages, and the intersection of the two is the number
of positive checks. As the results show, during the 120-h
experiment, the system had only two incorrect detections; and
in the 20 yarn breaking experiments, 19 yarn breakages were
detected, and the detection rate was up to 95%. The quantita-
tive assessment of the experiment is shown in Table VIII. The
table shows that the system can meet very demanding false
negative rate requirements and FPR requirements at the same
time. The detection error is caused because of the unstable
factors in the weaving process, such as the abnormal vibration
of the machine and changes in light environment, which
can be further improved by stabilizing the factory lighting
environment and regular maintenance of machine tools. The
results prove that this method can achieve the long-term and
stable detection of yarn breakage.

IV. CONCLUSION

This article proposes an optical reflection-based online yarn
breakage detection method. Yarn breakages can be detected
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by directly shooting the weaving area, and the feasibility of
the method has been proven through several experiments.

1) A stable and reliable detection method is proposed,
macrocapturing is applied to solve the problem that
yarns are thin and dense, and a detection method based
on the law of reflection is proposed to improve the
SNR. Moreover, image processing based on wavelet and
STL decomposition is proposed to achieve the accurate
extraction of defects.

2) A detection system that can detect different layers of
yarns is constructed. The detection rate of the method
is proven to be as high as 95% after a 120-h continuous
experiment, and the FPR is controlled at 1.39e−9%. The
method is also proven to be suitable for different textile
processes.

3) The proposed method is a successful application of
the reflection method to the high-precision detection
of non-Lambert objects, which has great enlightening
significance for the high-precision anomaly detection of
precision equipment. Here, we list two types of problems
as an extension of this article. The first type is defect
detection of flat parts such as ceramic tile, glass plate,
and plastic board; first, reflection method is a high-
precision way to highlight the defect in this kind of
structures; second, during the transportation of these
structures with the conveyor belt, the defects characteris-
tics can also be characterized by anomalies of periodic
signals. Another type is abnormal detection of rotary
structure such as abnormal of blade rotation and radial
runout detection of shaft, because the working processes
of these structures are strictly periodic; through the
change law of the reflected light, it is very suitable for
troubleshooting through abnormal analysis of periodic
signal; at the same time, because the reflected signal is
very sensitive to the angle, this method can also achieve
high precision.
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