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Abstract— Wearable electronics are often used for estimating
the energy expenditure of the user based on heart rate measure-
ment. While heart rate is a good predictor of calorie consumption
at high intensities, it is less precise at low intensity levels,
which translates into inaccurate results when estimating daily net
energy expenditure. In this study, heart rate measurement was
augmented with heat flux (HF) measurement, a form of direct
calorimetry. A physical exercise test on a group of 15 people
showed that HF measurement can improve the accuracy of calorie
consumption estimates especially during rest and low-intensity
activity when used in conjunction with heart rate information
and vital background parameters of the user.

Index Terms— Biomedical instrumentations, sensors, tempera-
ture and thermal.

I. INTRODUCTION

THE advent of wearable electronics has enabled consumers
to measure their vital signs during their everyday life.

Devices, such as activity trackers, smart watches, and rings, are
gaining ground in the measurement of biometric signals from
the user. Typically, these devices contain one or more sensors
for measuring signals, such as heart rate, skin temperature,
humidity, and movement [1]. Optical heart rate (HR) tracking,
or photoplethysmography (PPG), is one of the most common
biometric measurements, found in up to 98% of modern smart
watches [2]. PPG, among other biometric measurements, gives
the wearer the ability to track the level of their physical activ-
ity, which may be beneficial for applications such as sports
performance monitoring. Nonsports-related applications, such
as weight loss [3], sleep tracking [4], and health monitoring
[5], have also seen an increase in popularity.

A common application for wearable technology is to esti-
mate the user’s energy expenditure (EE), often by utilizing
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heart rate measurements [6]. However, several studies have
reported that the EE estimate provided by commercial wear-
ables during common physical activities is often relatively
inaccurate. Scherbina et al. [7] evaluated the accuracy of EE
and HR estimates on seven different wearables during walking
and cycling activities, reporting net EE errors between 25%
and 50%. Pope et al. [8] tested the EE and HR estimation
accuracy of four wearables during exergaming (playing a
boxing game on a Nintendo Wii gaming console), with errors
in the mean EE ranging from 10% to 40%. In another study,
Pope et al. [9] reported mean EE errors between 25% and
50% during walking, jogging, and running, and errors of over
50% when the subjects were at rest. While the aforementioned
studies [7], [8] reported reasonably good accuracies for the
heart rate estimates provided by wearables, the error in the
energy expenditure estimates may limit the usability of appli-
cations that rely on calorie consumption information, such as
sports performance metering. In particular, the high error rates
for rest energy expenditure can negatively affect applications
for diet control and weight loss because the resting metabolic
rate (RMR) typically accounts for 60%–80% of the total daily
energy expenditure [10].

Some of the key reasons for the inaccurate EE estimates
can be found in the placement and form factor of wearable
devices, which impose limitations on the sensor technology.
For example, PPG-based heart rate measurements are easily
hampered by motion artifacts, especially when the wearable
device is worn loosely for comfort. Moreover, the biosig-
nals being measured may not provide enough information
to accurately determine the EE in various situations. While
heart rate has been observed to be a good indicator of EE at
moderate-to-high intensity activities, the error increases during
low-intensity activity [11]. This is especially problematic for
smart watches and activity trackers intended for monitoring
everyday activities, most of which are of low intensity. There-
fore, in order to achieve a higher EE estimation accuracy in
the setting of everyday activity monitoring, heart rate tracking
should be complemented with other biometric measurements.

A. Measuring the Human Metabolic Heat

The human body generates metabolic heat as a sum of
basal metabolism and physical activity. Under most condi-
tions, the ambient temperature is lower than the human body
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temperature, i.e., heat is dissipated to the environment. As the
amount of heat generated depends on the level of physical
activity, the measurement of heat exchange between a person
and the environment can be used to provide information about
energy expenditure. Under light physical activity, the primary
modes of heat transfer from skin to the environment are
convection (air currents), conduction (through objects in con-
tact with the human body), and radiation [12]. As the level
of physical activity increases, the role of evaporative heat
transfer (perspiration) increases [13].

The aim of this study was to find out whether direct
measurement of heat transfer from a human to the environment
could be used to improve the accuracy of energy expenditure
estimation over heart-rate-based methods. To this end, local
heat transfer measurements were performed using a thermo-
electric heat flux (HF) sensor, in conjunction with a humidity
sensor to consider evaporative heat transfer.

While HF sensors have existed for decades [14], their use
in the field of wearable technology has remained limited to
only a few commercial products, such as devices with a form
factor of an armband [15]. However, wrist-worn wearables,
such as activity trackers and smart watches, are the most
common type of wearable device. Thus, if HF measurement
was to be employed in the form factor of a smart watch,
the most likely measurement location would be either the
dorsal or medial side of the user’s wrist. Therefore, this work
focuses on the use of a single, wrist-worn HF sensor. The
location of the HF sensor is likely to affect the relationship
between the measurement and the user’s energy expenditure
because excess heat produced at the site of muscular activity
will take some time to propagate to the measurement location.
Therefore, the suitability of HF measurement for assessing the
user’s energy expenditure was evaluated for physical activities
performed at different intensities: sitting, standing, walking,
cycling, and using an arm crank ergometer.

Physiological trials were conducted on 15 persons, and the
subjects’ EE was estimated by a linear model using combi-
nations of HF, humidity, and heart rate measurements. The
results show that HF measurement with heart rate information
can improve the accuracy of the EE estimate over a heart-rate-
based model, especially during rest or low-intensity activity.
The accuracy is increased even further if a measurement of
the evaporation rate is included in the model.

This work is an extended version of a previously pub-
lished conference article, originally presented at the IEEE
International Instrumentation and Measurement Technology
Conference (I 2MTC 2020) [16].

II. METHODS

A. Heat Flux Measurement

In this study, HF measurement was used to provide infor-
mation about the test subjects’ metabolic activity and, thus,
energy expenditure. According to Fourier’s law [17], heat
flows from a higher temperature to a lower. The HF q describes
the transfer of thermal energy, i.e., heat flow

�q = −k∇T (1)

Fig. 1. Schematic of the prototype bracelet equipped with sensors for
HF, humidity, and skin temperature measurements. The arrows indicate heat
transfer from the user to the environment. When being worn, the HF sensor
measures the conduction of bioheat from the radial zone of the user’s wrist
to the bracelet. From there, the heat is then transferred to the environment by
means of convection and radiation. To consider the evaporative heat transfer,
the bracelet is equipped with a humidity sensor. The skin temperature sensor
was only used for control purposes, and the data were not considered in this
study.

which in a 1-D, steady-state case, can be expressed as

q = −k
Thot − Tcold

h
(2)

where k is the thermal conductivity of an object and h is the
distance between the hot and cold points. While HF could be
estimated according to (2), this would require knowing the
values for k and h. Moreover, the thermal mass associated
with the object will restrict the rate of change for Thot and
Tcold during transients in the HF. Instead, HF can be measured,
e.g., using a thermoelectric HF sensor, which generates voltage
proportional to the heat flow through the sensor structure [18].
Besides few exceptions, HF sensors have not been used in
wearable electronics, in part due to the lack of low-cost,
mass-produced sensors. However, in recent years, HF sensor
designs suitable for mass production have emerged [19],
[20], thus facilitating direct HF measurement in wearable
electronics. A commercially available HF sensor was used in
this study to measure the transfer of metabolic heat to the
environment. The purpose of this measurement was to provide
information about the metabolic state and activity of a person
because metabolism and physical activity produce heat that is
transferred to the environment.

B. Experimental Setting

In order to experimentally verify whether a single-site HF
measurement could provide useful information for energy
expenditure estimation, low-to-medium intensity randomized
physical exercise routines were performed in laboratory condi-
tions. During the physical activity, the subjects were equipped
with a respiratory calorimeter, which provided the ground-truth
data on the subjects’ energy expenditure. In addition to the
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Fig. 2. Experimental setup: the subject is wearing a custom-made bracelet
equipped with HF and temperature sensors on his left hand. A reference EE
value was obtained using a spirometry calorimeter; furthermore, the subject’s
heart rate was monitored using an ECG chest strap.

respiratory calorimeter, the subjects were equipped with a
custom-made bracelet, with a design similar to modern smart
watches (see Fig. 1). The bracelet was wirelessly connected
to a separate data acquisition device and equipped with the
following sensor hardware:

1) HF sensor (greenTEG gSKIN-XM) [21] on the medial
side of the wrist;

2) temperature sensors (Texas Instruments LMT70) on the
medial side of the wrist (one for skin temperature and
other for heat sink/ambient);

3) humidity sensors (Texas Instruments HDC2080) on the
dorsal side of the wrist (one 2–3 mm from skin and
other for ambient humidity).

The HF sensor was positioned on the medial side of the
user’s wrist, above the radial artery. This location was chosen
over the dorsal side, which has little soft tissue and blood
circulation, resulting in a lower HF density. The sensor was
attached to a small heat sink, which would then dissipate the
heat into the environment. Instead of equipping the bracelet
with an optical heart rate sensor, the subjects’ heart rate
was recorded using an ECG chest strap, as this method can
be considered more accurate and reliable than PPG-based
methods found in typical wearables. Fig. 2 shows a test subject
wearing the sensor bracelet and a spirometer during an exercise
protocol.

C. Exercise Protocol

The experiments for this study were conducted on
15 healthy persons (nine male and six female) between 23 and
45 of age (mean±S.D. 34.7 ± 7.0 years). Each subject’s exer-
cise protocol included 2–5 different types of activities from
five categories: sitting, standing, treadmill walking, cycling,
and arm crank ergometry. The order of the activities was

Fig. 3. Example of raw data collected from a subject during a 2.5-h
exercise protocol. The subject (male, 29, 165 cm, 72 kg, and overall level of
physical activity 6/10) performed a randomized protocol of various activities
with different intensities. The ground-truth EE values were obtained using
spirometry. HF, humidity, and skin temperature values were measured using a
prototype bracelet; the skin temperature values were used for control purposes
only and were not included in the further analysis. The heart rate of the subject
was measured using an ECG chest strap.

randomized for each person, with the durations of individual
activities ranging from 5 to 45 min. For walking activities,
the speed and climb angle of the treadmill were randomized.
Furthermore, speed and intensity were randomized for each set
of cycling and arm ergometry activities. The total duration of
the exercise protocols ranged from 96 to 163 min per subject,
with a total of 33.5 h of physical activity data recorded.

D. Data Acquisition and Preprocessing

The task of estimating the subject’s energy expenditure was
approached as a regression problem. To this end, the time
series data collected from the subjects were composed into
a single data set containing heart rate (HR), HF, and percent
relative humidity (%RH) as predictor variables and spirometry
data (EE) as the response variable, i.e., ground-truth values.

During the experiments, the predictor (HR/HF/%RH) and
response (EE) variables were sampled at different rates.
To construct an equally spaced time series data set, preprocess-
ing and resampling were performed on the measurement data.
The ECG equipment registered each R-R interval, while the
respiratory calorimeter analyzed each exhaled breath. These
values were composed into 30 s intervals, from which the
mean values of each signal were extracted. On the other
hand, the HF and temperature measurements onboard the
bracelet were sampled at 20 Hz. Following the convention
with the ECG and calorimeter equipment, these values were
downsampled into corresponding 30 s intervals using nearest
neighbor interpolation.

An example of measurement data collected from a test
subject in Fig. 3 shows that heart rate and HF measurements
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Fig. 4. Experimentally determined lag between the measured biosignals
and energy expenditure. Each box contains the mean lag values for each
of the 15 subjects. The magnitude of the lag values was determined by
applying a cross correlation between the biosignals and energy expenditure.
The delay associated with the signals is mainly of physiological origin: heart
rate produces a near-instantaneous response to changes in EE, whereas HF
responds with a slight delay because of thermal masses. Perspiration often
follows physical activity with a longer delay.

react to changes in energy expenditure in different ways.
HF has a slightly delayed response, while heart rate changes
more immediately. Moreover, HF shows a more pronounced
response in particular to walking and arm crank ergometry.

The longer rise and fall times present in HF data possibly
result from the thermal mass of the sensor bracelet, as well as
heat accumulation under the measurement location. This lag
effect caused by the thermal mass was estimated by calculating
cross correlation between HF and EE for all subjects and
finding the lag value at the maximum of the cross correlation.
The results in Fig. 4 show that the maximum cross correlation
between HF and EE is reached within 2 min for 75% of
the subjects. Furthermore, because of the effect of thermal
accumulation seen in Fig. 3, the HF signal may contain
useful information about physical activity outside momentary
measurement values, as the past heat output affects the current
value. To consider these effects, three predictor variables were
derived from the HF data:

1) current HF value (at 30 s intervals);
2) mean HF from the past 30 s–2 min;
3) mean HF from the past 2.5 min–15 min.

Similar lag terms were introduced into the humidity measure-
ments, with longer intervals to accommodate for the longer
rise and fall times:

1) mean %RH value from the past 0–5 min;
2) mean %RH value from the past 5–10 min;
3) mean %RH value from the past 10–15 min.
While the lag terms provide information about the past

physical activity, they do not remove the effect of longer rise
and fall times associated with HF and humidity measurements.
However, the future values of predictor variables (i.e., by intro-
ducing lag into the EE estimate) were not considered to keep
the estimated EE values real time in nature.

In addition to the measured signals, the physical parameters
of the test subjects were also considered as background
variables for EE estimation. These included each person’s age,
gender, height, weight, and overall level of physical activity
on the scale from 1 to 10.

The effect and importance of the biosignals were evalu-
ated using different combinations of the predictor variables.
A heart-rate-based linear model was used as the baseline EE

TABLE I

PREDICTOR VARIABLES USED FOR EE ESTIMATION
IN THE TEST SCENARIOS

estimator, against which different combinations of HF and
humidity measurement were compared. In each test scenario,
the output from the respiratory calorimeter was used as the
ground-truth value for the EE. A summary of variable combi-
nations is shown in Table I.

E. Energy Expenditure Estimation

Because of the preliminary nature of this study and the
limited amount of data available, the energy expenditure y
was modeled as an ordinary least squares (OLS) problem

y = Hθ + v (3)

with the goal of estimating θ by minimizing the objective
function

θ̂ = arg min
θ

�y − Hθ�2 (4)

where H is the observation matrix, θ is a vector of model
parameters, and v is an error vector for which �v� = 0. For
each test subject, the observation matrix H was constructed
by horizontally concatenating the predictor variables xi of T
time steps in Table I with repeated values of the subject’s
background parameters and a vector of ones as

H =

⎛
⎜⎜⎜⎝

x t=1
1 · · · x t=1

n Height · · · Act. 1
x t=2

1 · · · x t=2
n Height · · · Act. 1

...
...

...
... · · · ...

...
x t=T

1 · · · x t=T
n Height · · · Act. 1

⎞
⎟⎟⎟⎠. (5)

For the OLS model in (3), the estimates for the parameters
in θ were found by vertically concatenating all observation
matrices (5) and minimizing the least squares criterion (4)
using the pseudoinverse

θ̂ = �
HT H

	−1
HT y (6)

from which the EE estimates were obtained as ŷ = Hθ̂ . To pre-
vent data leakage between adjacent concatenated observation
matrices, the time-lagged features in Table I were extracted
before the concatenation process. The order of the observation
matrices themselves has no effect on the resulting model, as (4)
minimizes the total sum of squared errors between the model
outputs ŷ and all the EE data points y.

Finally, a moving average filter of five time steps (2.5 min)
was applied to the estimates, as it was empirically observed to
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reduce noise in the output signal while maintaining the ability
to follow the rising and falling edges within the calorimeter
data.

In order to consider the generalizability of the model (3),
all testing was performed using leave-one-out cross validation:
the model was fitted into the data from all but one subject,
and the performance of the model was tested with the left-out
subject, repeating the process for all subjects. For evaluating
the overall performance of the model using different sets of
predictor variables, the coefficient of determination, R2, was
chosen as the performance metric

R2 = 1 − mean(y − ŷ)2

mean(y − ȳ)2 . (7)

The reason for choosing R2 over other commonly used
metrics, such as the root-mean-square error (RMSE), mean
absolute error (MAE), or net EE error, was that the duration
and composition of the exercise protocol were randomized
for each subject. Because R2 sets the mean squared error of
ȳ as the baseline at R2 = 0, the resulting value considers
the variance in energy expenditure within each individual
exercise protocol. However, for evaluating the model accuracy
at individual types of activity, mean absolute percentage error
was used

MAPE = mean






y − ŷ

y





 · 100. (8)

III. RESULTS

In order to verify whether direct HF measurement has
a positive effect on the accuracy of the EE estimate,
the OLS model (3) was tested using different combinations
of input variables: HR only, HF only, HR and HF combined,
HR and %RH combined, and, finally, by combining HR, HF,
and %RH. All activity types were used for both fitting and
evaluating the OLS model, and all results were obtained using
leave-one-out cross validation on a per-subject basis. An exam-
ple of the output of the OLS model using different predictors is
shown in Fig. 5, where the model with HR+HF+%RH inputs
gives the best results, except for the last 30 min.

The cross-validation results in Fig. 6 show that the median
R2 values show no significant difference between different
sets of predictors, with the exception of using only HF, which
yields significantly lower R2 scores. In terms of median R2

values, using only heart rate as a predictor yields nearly
as good results as heart rate complemented with HF and/or
humidity measurements. Instead, the key differences are seen
in the distribution of the R2 scores; complementing the heart
rate measurements with either HF or relative humidity mea-
surements yields a notable decrease in variance of the R2

scores, with the best results obtained by combining HR, HF,
and %RH. Adding either HF or %RH measurements also
significantly increases the R2 scores of the lower 50 % of the
subjects, for outliers in particular. This, in turn, increases the
mean R2 values by a significant amount.

The overall effect of each predictor on the R2 score was
examined by calculating the permutation importances [22] of
the variables. This was done by concatenating the measure-
ments (5) of all the test subjects and randomly partitioning the

Fig. 5. Example results of EE estimates from linear models using different
sets of predictor variables. The gray line indicates the ground-truth EE values,
measured using the respiratory calorimeter. The input data and exercise
protocol are shown in Fig. 3.

rows of the resulting observation matrix into training (80%)
and testing (20%) sets. First, a baseline score was obtained
by fitting the model into the data in the training set and
testing the R2 score on the testing set. Then, the data in
the test set (column vectors in (5), with the exception of
the last column), were randomly shuffled one predictor at a
time, and the decrease in the R2 score with respect to the
baseline was evaluated for each corrupted predictor. Because
the range of numerical values was different for each predictor,
the data were normalized to zero mean and unit variance
before conducting the analysis.

The results from the feature importance analysis in Fig. 7
agree with the cross-validation results in Fig. 6: out of
all predictors, heart rate is the single most important fea-
ture. However, the current and lagged HF values have a
greater impact on R2 of the outcome than the subject’s
weight, height, or age. The importance of the HF values is
also significantly pronounced over the humidity values, even
though the cross-validation results show that both signals are
approximately equally important. A likely explanation for this
disparity is that the humidity values change more slowly over
time than the HF values; thus, the lagged values of %RH are
largely redundant, i.e., permuting one of them has little effect
on the outcome. Conversely, HF shows a more immediate
response for changes in EE, as also suggested by the highest
importance of the nonlagged HF value in Fig. 7.

Finally, the performance of the OLS model was evaluated
separately over each category of activity (sitting, standing,
walking, cycling, and arm ergometry). As the data were
partitioned into mutually similar activities, MAPE (8) was
chosen as the performance metric. The results in Fig. 8 clearly
show that the addition of HF and %RH values to HR yields a
notable decrease in error when the subject is sitting, standing,
or walking. For the first two categories, appending both HF
and humidity measurements results in a reduced error, whereas
during walking, adding the %RH data has little effect on the
error. During cycling, neither of the added biosignals has a
considerable effect on the accuracy, whereas for arm crank
ergometry, the addition of HF measurement actually results
in a slightly increased error. This decrease in accuracy is
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Fig. 6. Cross-validation results for the EE estimation model using different predictor combinations, represented as box plots. Each vertical box represents the
distribution of the R2 scores for the 15 test subjects. The median of each distribution is indicated by a red line, and the blue box around the median represents
the interquartile range (IQR), i.e., 50% of the samples. The whiskers outside the blue boxes represent the remaining 25% of the samples each. The samples
more than 1.5 IQR away from the blue box are marked as outliers (red “+” sign). The mean of each distribution is indicated by a black circle. (a) R2 values
between −0.2 and 1, zoomed-in view from (b). Values below −0.2 have been compressed between the gray lines. (b) Full range of the R2 values, showing
the impact of the outliers (indicated by red crosses) on the mean R2 values.

Fig. 7. Visualization of the relative importance of each variable for the
EE estimation model. The importances were calculated using the permutation
method: the OLS model was fitted into randomly selected 80% of the full data
set, and baseline accuracy was obtained from the remaining 20% of data. Each
predictor variable in the test set was then randomly shuffled one by one, and
the decrease in the R2 score with the corrupted data was calculated. The
higher the decrease in R2 is, the more important the feature is considered for
the model. The results were obtained by repeating the process 1000 times and
calculating the mean decrease in R2 for each predictor.

probably due to the positioning of the HF sensor, which results
in motion artifacts and possibly intermittent thermal contact
during extreme wrist movement. Overall, the results in Fig. 8
suggest that the inclusion of HR and %RH data has the greatest
effect at low energy expenditure levels. To verify this, the mean
absolute error of each model was inspected at different levels
of EE. The results in Fig. 9 show that the addition of HF and
%RH data has indeed a pronounced effect on the MAPE scores
below 4000 kcal/day, although they also show a moderate
positive effect on levels above 14 000 kcal/day.

The reasons for the effects of added HF and
%RH measurements across different levels and types of
activity are probably due to several factors. For instance,
heart rate variability (HRV) is known to be greater at lower
heart rates because of the cycle length dependence [23],

Fig. 8. Effect of added HF and RH measurements on the error of EE estimates
at different types of activity. The results were obtained by cross-validating
the OLS model across different types of physical activity using various
combinations of predictor variables. Adding HF and humidity data to heart rate
information yields a notable decrease in error during low-intensity activities,
i.e., sitting, standing, and walking.

decreasing the precision of HR-based EE estimates. However,
in this study, the mean HR value is calculated over a period
of 30 s, which mitigates the effect of HRV. A more significant
factor is the change in the stroke volume of the heart between
low and moderate intensity, i.e., a change in heart rate does
not fully reflect the total change in the cardiac output [24].

On the other hand, HF measurement can provide a more
stable predictor for EE estimation at low intensities, as a result
of factors such as more stable skin contact and reduced air
currents. As the intensity of physical activity is increased,
the correlation between heart rate and energy expenditure
increases. In contrast, the HF signal may suffer from changes
in skin contact during physical activity, and the magnitude
of HF response depends on the type of activity, as shown
in Fig. 3. The relationship between the type of physical
activity and the resulting HF response can be considered to be
governed by the location of muscular activity and the resulting
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Fig. 9. MAPE for the linear models across all test subjects at different
levels of energy expenditure. Top: absolute MAPE values using different
combinations of predictors. Bottom: change in the MAPE relative to the
baseline (HR-based) model. The inclusion of HF and %RH data results in
a significant decrease in the MAPE at EE levels below 4000 kcal/day. The
results were obtained by binning the EE estimates according to the true energy
expenditure level, as measured using the respiratory calorimeter. Each bin
(group of bars) is 2000 kcal/day wide, and the x-axis labels represent the
endpoint of each bin (the data for the bin 2000 kcal/day range from 0 to
2000 kcal/day and so on).

increase in blood perfusion, with respect to the location of the
HF measurement.

Based on the results in Figs. 6, 8, and 9, the addition of
humidity data also has a positive impact on the accuracy of the
EE estimates. This is an expected result because the HF sensor
alone does not register the amount of heat transfer caused
by perspiration. However, the humidity signal experiences a
significant lag with respect to the EE values, which has to be
considered when processing the measurements.

IV. DISCUSSION

Based on the results, the combination of HF and heart rate
data yields more accurate estimates of energy expenditure than
using heart rate only. The improvements are mainly seen as
increased mean R2 scores because of the reduced effect of
outliers, even though the variance of the scores is also reduced.
Both of these effects are more pronounced when humidity
values, i.e., the level of perspiration, are included in the model.
These findings suggest that HF measurement (including the
measurement of evaporative heat) can be applied to construct
more robust models for the estimation of energy expenditure.
Further inspection revealed that the greatest impact of the
addition of HF data is seen during rest and low-intensity
activity, i.e., sitting, standing, and walking.

In terms of overall predictive power, heart rate measurement
surpasses HF data by a considerable amount, at least when
using the current linear model. However, the results indicate
that HF measurement could be used to improve the accuracy
and reliability of EE models, especially during low-activity
conditions and rest. The advances of HF over HR likely
stem from the changes within heat rate variability and stroke
volume under these conditions, while the variance within HF
data is decreased, due to a more stable contact between the

HF sensor and skin. These properties could be advantageous
in situations where the quality of long-term, low-level EE
estimates is crucial, such as applications for weight loss and
diet control. The impact of better low-level EE estimates
could be significant for persons with a sedentary activity level
because the contribution of physical activity to the total energy
expenditure is diminished. In particular, HF measurement
could be used in determining the resting metabolic rate of a
subject more accurately than current methods, which are often
based on the person’s physiological parameters. In addition to
weight control, improved RMR information could be useful
in preventing malnutrition among elderly people because the
resting metabolic rate changes with age [10].

The authors would like to stress that the results presented
are preliminary in nature and obtained using a simple linear
model, which may not utilize the added HF measurements to
their full extent. Using a nonlinear model for EE estimation
would probably result in higher accuracy in terms of R2, even
more so if the model took into account the temporal nature
of the measurement data. To this end, the use of models,
such as recurrent neural networks, should be investigated.
Furthermore, the use of HF measurements should be evaluated
over a longer period of time to observe the effect on the daily
net energy expenditure.

V. CONCLUSION

Estimation of low-to-moderate intensity energy expenditure
was performed on 15 subjects based on combinations of heart
rate, HF, and humidity measurements. The results showed
that the best accuracy in terms of R2 values was achieved
by augmenting heart rate measurement with both HF and
humidity data. Moreover, the addition of HF appears to be
particularly effective at low intensities or when the subject is
at rest. The results suggest that HF measurement could be an
advantageous feature for wearable devices.
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