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Abstract— Methods to recover high-quality computed tomog-
raphy (CT) images in low-dose cases will be of great benefit.
To reach this goal, sparse-data subsampling is one of the common
strategies to reduce radiation dose, which is attracting interest
among the researchers in the CT community. Since analytic image
reconstruction algorithms may lead to severe image artifacts,
the iterative algorithms have been developed for reconstructing
images from sparsely sampled projection data. In this study,
we first develop a tensor gradient L0-norm minimization (TGLM)
for low-dose CT imaging. Then, the TGLM model is optimized
by using the split-Bregman method. The Coronavirus Disease
2019 (COVID-19) has been sweeping the globe, and CT imaging
has been deployed for detection and assessing the severity of
the disease. Finally, we first apply our proposed TGLM method
for COVID-19 to achieve low-dose scan by incorporating the 3-D
spatial information. Two COVID-19 patients (64 years old female
and 56 years old man) were scanned by the µCT 528 system, and
the acquired projections were retrieved to validate and evaluate
the performance of the TGLM.

Index Terms— Chest CT, Coronavirus Disease 2019
(COVID-19), low-dose computed tomography (CT), tensor
gradient L0-norm.

I. INTRODUCTION

FOR X-ray computed tomography (CT), how to reduce
the radiation dose has been attracting great attention as

lower radiation dose means lower risks of radiation-related
effects [1]. Sparse-view CT is one of the low-dose CT recon-
structions by collecting the number of projections. As only
the insufficient projection views are collected, it results in
sparse-view CT producing severe streaking artifacts in fil-
tered backprojection (FBP) reconstruction. To overcome this
challenge, the compressed sensing approaches that minimize
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the total variation (TV) or other deep learning-based methods
were developed [2], [3]. However, most of the approaches
were proposed for fan-beam or cone-beam geometry, which
are difficult to be implemented in clinical practice.

In order to satisfy Tuy’s condition [4], modern commercial
chest CT systems usually adopt helical geometry to reconstruct
the scanned object exactly [5]. To reconstruct images from
measurements, general analytic algorithms may be a good
choice to implement image reconstruction for complete projec-
tions [6], [7]. However, due to the radiation dose reduction (for
example, sparse-view case), the image reconstruction would
be a typical ill-posed inverse problem [8], [9], which can
introduce artifacts in the reconstructed images if we employ
the analytic methods. Until now, many efforts have been
contributed to low-dose CT imaging [10], [11], including dic-
tionary learning reconstruction [12], [13], edge-preserving TV
[14], artificial neural network [15], discriminative feature rep-
resentation [16], domain progressive 3-D residual convolution
network [17], deep iterative reconstruction estimation [18], and
residual encoder–decoder convolutional neural network [19].
Unfortunately, most of these methods are developed for 2-D
scanning geometry rather than for helical geometry. When
these methods are extended to helical imaging, they would
confront a series of problems, including parameters selection,
sparsity transform, and spatial domain mapping.

As for the helical CT reconstruction, previous approaches
mainly concentrate on analytic reconstruction, such as FBP.
With recent advances in computing performance, a tradi-
tionally computationally intensive method, such as iterative
reconstruction, can now be reconsidered. Indeed, there were
some efforts to develop advanced iteration methods, includ-
ing model-based iterative reconstruction [20], [21], modified
ordered subsets [22], and adaptive statistical iterative recon-
struction technique [23]. By incorporating prior knowledge
into a reconstruction model, higher order variation [24] meth-
ods were proposed. To further improve the image quality in
low-dose case, the tensor framelet-based method was extended
from dynamic CT to helical CT [25]. However, all of these
methods ignore two important features for helical CT imaging.
One is that the adjacent slices share similar image structures
and features. The other is that the materials usually maintain
continuous along the z-axis from material tissue view. Accord-
ing to the correlation between energy magnitude and material
attenuation, the intensity on the z-axis direction can also be
similar.
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The image gradient L0-norm minimization within the 2-D
spatial domain was proposed for image smoothing [26] by
calculating a nonzero number of gradient images. Then,
it was widely used in image deblurring, image segmentation,
sparse linear hyperspectral unmixing [27], and so on. Besides,
image gradient L0-norm minimization-based reconstruction
techniques gained significant interest in low-dose CT recon-
struction [28]–[30]. This type of image gradient L0-norm
minimization is constrained with the 2-D spatial domain. How-
ever, we usually encounter such cases, including hyperspectral
image recovery [31], hyperspectral image denoising [32], and
dynamic spectral CT reconstruction [29], [33], [34]. In such
cases, because the measurements are higher order tensors
rather than 2-D signals, the referred image gradient L0-norm
may fail. Again, we need to renew the image gradient L0-norm
as a general tensor format, which is a focus in this work.
Because it is proposed for higher order tensor, it can be called
a tensor gradient L0-norm naturally.

The Coronavirus Disease 2019 (COVID-19) was discovered
in December 2019 and then rapidly spread around the world
with severe health and economic consequences [35]. Ways
to curb this disease development and protect the health of
infected people has become a common issue for all mankind.
COVID-19 has some imaging features for CT image [7], which
is helpful for the radiologist early detection and diagnosis.
These features mainly include involvement of more than two
lobes, ground-glass opacities, opacities with rounded mor-
phology, a peripheral distribution of disease, consolidation
with ground-glass opacities, and crazy-paving pattern [36].
CT has proved useful for early detection even in asymptomatic
patients, as well as for assessing disease severity. Therefore,
it is not uncommon that patients may require several scans
during the same hospital episodes, particularly if the symptoms
are worsening. In this case, the radiation dose becomes a major
concern, especially for young patients and pregnant women.
As for COVID-19 patient, imaging features are detectable,
which are good for diagnosis in clinics. However, at very
low dose, artifacts may occur, which will mask these imaging
features. To guarantee the accuracy of diagnosis, it is important
to retain those COVID-19 unique image features with artifacts
suppression. To demonstrate the feasibility of the TGLM
method, it is employed to COVID-19 patients in low-dose
cases.

The contributions can be summarized in the following three
points. First, we propose and establish the tensor gradient
L0-norm tensor recovery model and validate the advantages
over 2-D image gradient L0-norm. Second, we establish a
tensor gradient L0-norm minimization (TGLM)-based low-
dose CT imaging model to characterize the sparsity of chest
CT images. Finally, the split-Bregman method is employed
to optimize the proposed TGLM model. Specifically, closed-
form equations of separate variables are deduced so that the
implementation is much clearer. Finally, it is employed to
realize the goal of low-dose reconstruction for COVID-19
patients.

The rest of this study is organized as follows. In Section II,
we will briefly introduce the basic theories of helical CT,
analyze the unique imaging features of COVID-19 patients,

Fig. 1. Imaging system. (a) Photograph of a μCT 528 system. (b) Illustration
of helical scanning geometry.

and establish the TGLM-based tensor recovery model. We will
also establish the TGLM model and optimization procedures.
In Section III, the clinical data set from COVID-19 patients
is employed to evaluate the TGLM and other comparisons.
In Section IV, we will discuss the related issues and the
conclusion for this study.

II. CT IMAGING AND TGLM

A. Imaging Scheme

Fig. 1(a) shows a μCT 528 system manufactured by Shangai
United Imaging Healthcare Company Ltd., which is employed
to collect clinical experimental data sets. This system is a
multislice X-ray CT scanner featuring a continuously rotating
tube–detector pair. The scanning mode is set as helical [see
Fig. 1(b)].

Assuming that the imaging object center is the origin, the
helical locus can be expressed as

(m) =
(

s1× cos
2πm

M
, s1× sin

2πm

M
, s2{×} m

M

)
(1)

where s1 is the distance starting from X-ray source to transaxis
passing through the origin, s2 is the pitch that is the distance
of patient table moving per rotation, M represents the total
views per rotation, and m is the view index.

B. Tensor Gradient L0-Norm

1) 2D Image Gradient L0-Norm Minimization: For a given
2-D image X ∈ R

I1×I2 , where I1 and I2 represent the height
and width of the image, a general form of its TV can be given
as

�∇X�1 =
I1∑

i1=1

I2∑
i2=1

(|∂x1 X|+|∂x2 X|) (2)

where X(i1, i2)represent the (i1,i2)
thelement, ∂x1 X =

X(i1, i2)−X(i1 − 1, i2), and ∂x2 X = X(i1, i2)−X(i1, i2 − 1).
From (1), we can see that TV considers the summation
of the magnitude of the image gradient. To enhance high-
contrast edges by counting the number of nonzero gradients,
the gradient L0-norm was proposed and it can be defined
as [26]

�∇X�0 =
I1∑

i1=1

I2∑
i2=1

g
(
(i1, i2)�|∂x1 X|+|∂x2 X|�= 0�) (3)
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where g(i1, i2) is the counting operation on X. When
(i1, i2)

th location of X satisfy |X(i1, i2)−X(i1 −
1, i2)|+|X(i1, i2)−X(i1, i2 − 1)| �= 0, the value of g(i1, i2)
would add one. From (2), one can see that the small
amplitudes can be retained by image gradient L0-norm.
It is good for image edge preservation and details recovery.
Thus, 2-D image gradient L0-norm was widely used in
image recovery, image reconstruction, image enhance, image
inpaiting [37], and so on.

2) Tensor Gradient L0-Norm Model: The referred L0-norm
minimization has obtained great success, and it can provide
high efficiency for 2-D images. However, if it is employed
to color image smoothing, the correlations among different
channels would be ignored. In fact, it is usually to address such
problems, including spectral CT reconstruction, hyperspectral
remote sensing, video recovery/smoothing/denoising/blurring,
and volumetric image recovery. In this case, there are strong
correlations among different channels. For example, the image
structures and details from different channels are very similar
for hyperspectral and spectral CT images. The image structures
and details from the video are also continuous. To address
these problems, a tensor form of gradient L0-norm is of
great significance. In general, given an N− order tensor
X ∈ R

I1×I2×...×IN , tensor gradient L0-norm can be defined as

�∇X�0 =
IN∑

iN=1

. . .

I1∑
i1=1

g
(
(i1, i2, . . . ,iN )�|∂x1X

| + . . .+ |∂xN X| �= 0�) (4)

where ∂xn X = X(i1, . . . , in, . . . , iN ) − X(i1, . . . , in −
1, . . . , iN ), (n = 1, . . . , N). From (3), the tensor gradient
L0−norm can count nonzero number from different directions.
This means that the recovery tensor should satisfy this strong
constraint, which is good for pursuing a more stable and
optimized solution. In order to clarify this point, we can
discuss a general tensor recovery problem

min
x
�∇X�0, st .,Y = X+ E (5)

where Y ∈ R
I1×I2×...×IN is the measured tensor and

E ∈ R
I1×I2×...×IN is the system noise. Equation (4) is a

constraint optimization problem, which can be converted into
the following unconstrained problem:

min
x

1

2
�Y−X�

2

F
+ λ�∇X�0 (6)

where λ > 0 is the regularization factor. Actually, (6) can be
written as

min
x

1

2

IN∑
iN=1

. . .

I1∑
i1=1

{
(Y(i1,i2, . . . ,iN )−X(i1,i2, . . . ,iN ))2

+λg
(
(i1,i2, . . . ,iN )�|∂x1X| + . . .+ |∂xN X|�= 0�)} (7)

where Y(i1, i2, . . . , iN ) and X(i1, i2, . . . , iN ) representthe
(i1, i2, . . . , iN )th entry of Y and X. From (3), one can observe
that ∂xn X(n = 1, . . . , N) corresponds the gradient tensor along
the x th

n dimension. Therefore, we can use N auxiliary tensors

Fig. 2. (a) and (b) Two representative slices from healthy CT human (c)–(f)
Representative image features from four different COVID-19 patients within
appropriate display widows. Note that these COVID-19 patients are obtained
from the People’s Hospital of China Three Gorges University (Yichang),
Hubei, China.

{Gn}Nn=1 to replace {∂xn X}Nn=1. Equation (7) can be converted
into the following constraint optimization problem:

min
x,{G}Nn=1

1

2

IN∑
iN=1

. . .

I1∑
i1=1

{(Y(i1,i2, . . . ,iN )

−X(i1,i2, . . . ,iN ))2 +λg((i1,i2, . . . ,iN )�|G1|
+ . . .+|GN | �= 0�)}

st.,Gn = ∂xn X, n = 1, . . . ,N. (8)

Equation (8) can be further converted into the following
unconstrainted problem under some fixed conditions. We have

min
x,{Gn}Nn=1

1

2

IN∑
iN=1

. . .

I1∑
i1=1

{
(Y(i1,i2, . . . ,iN )−X(i1,i2, . . . ,iN ))2

+λg((i1,i2, . . . ,iN )�|G1|+ . . .+|GN | �= 0�)}

+1

2

N∑
n=1

βn�Gn−∂xn X�2
F (9)

where βn(n = 1, . . . , N) represents the coupling factor from
nth gradient tensor, which can be considered a parameter to
balance the proportion of all gradient tensors. More details of
the solution can refer to Appendix A.

C. COVID-19 CT Image Features

The imaging features from COVID-2019 are typically of
bilateral parenchymal ground-glass opacities of peripheral
locations [see Fig. 2(a)–(d)]. From Fig. 2, one can observe that
those COVID-2019 image features may occupy small areas
compared with larger normal areas on CT images, especially
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Fig. 3. Recovering results of three representative CT slices (40th, 100th,
and 140th slices) of patient #1 using TGLM method. (a)–(c) and (a1)–(c1)
represent the SIRT and TGLM results from an undersampling factor 12.

in mild COVID-19 patient. In such cases, advanced helical CT
reconstruction methods will be necessary to reconstruct high-
quality images without missing these features. In addition, the
unique COVID-19 features may be very similar to artifacts
from the image analysis aspect, especially in the low-dose
case. To this end, it is important to maintain image quality so
that appearance of ground-glass opacity can be differentiated
from artifacts, even at low dose. Once ground-glass opacity
can be confidently diagnosed by physicians, then further
accurate interpretation can be made, but it is acknowledged
that ground-glass opacity appearance in itself is not specific
to COVID-19. Combination with typical clinical symptoms,
location of opacities, and further quantitative analysis may
improve specificity for the diagnosis, and more details refer
to our recent work [38].

D. Tensor Gradient L0-Norm Application

COVID-2019 CT images can be treated as a third-order
tensor. Thus, in theory, it can be recovered by the TGLM
method with reduced artifacts from low-dose measurements.
Note that the original images are reconstructed by simulta-
neous iterative reconstruction technique (SIRT) [39]. Then,
the images are recovered by minimizing (5). Here, assuming
that the undersampling factor is 12 (it will be discussed in
Section IV-A), three representative slices by using the TGLM
are given in Fig. 3. From Fig. 3, we can observe that the
TGLM can remove the artifacts by incorporating 3-D prior.
However, some finer details are also missing in the TGLM
results.

The TGLM mainly focuses on image sparsity within tensor
space because the TGLM can not only characterize the image
sparsity within 2-D space but also explore the sparsity along
the z-axis. This is consistent with piecewise constant property
of CT images [40]. When there are sparse-view artifacts
within CT image, such piecewise constant property would
be corrupted with poor image quality. Again, the TGLM
characterizes the 3-D image structure prior by considering the
sparsity within 3-D space. To further obtain better results for
imaging, such 3-D image structure prior is incorporated into an
image reconstruction model. Hence, we introduce the TGLM

into reconstruction to establish a unified image reconstruction
model.

III. TGLM-BASED IMAGE RECONSTRUCTION

The modern helical CT scanner can collect data from the
whole X-ray emitting energy spectrum, and the goal of image
reconstruction is to recover high-quality CT images from the
measurements. The ideal forward model for helical cone-beam
geometry can be expressed as

Mz = P+ E1. (10)

Here, M ∈ R
C×J (C = C1 × C2 × C3) is the system

forward transform, C1 and C2 are the number of row and
column of the used detector, and C3 and J represent the
number of projections and reconstruction pixels. z ∈ R

J is
the vectorization of reconstructed image tensor Z ∈ R

J1×J2×J3

(J = J1× J2× J3), where J1, J2, and J3 represent the height,
width, and depth of the 3-D image, respectively. P ∈ R

C

and E1 ∈ R
C represent measurements and noise. Because

M usually is too huge, (10) cannot be solved using a direct
inversion transform. The iterative methods are usually used to
minimize the following problem:

min
z

1

2
�Mz− P�2

F (11)

where � · �F represents the Frobenius norm of the tensor.
There are some classic methods to solve (11), including
algebraic reconstruction technique (ART) [41] and SIRT [39].
Equation (11) is a typical ill-posed inverse problem, especially
in low-dose case. Incorporating prior knowledge into this
model can be a good strategy. Here, the proposed tensor
gradient L0-norm is considered and its mathematical model
can be established as

min
z

1

2
�Mz−P�

2

F
+ η�∇Z�0 (12)

where (1/2)�Mz− P�2F and �∇Z�0 represent data fidelity
and regularization prior term, respectively, and η is a regu-
larization parameter. To further optimize the object function
of (12), the split-Bregman method is employed here. First,
we introduce an auxiliary variable W to replace Z, and (12)
can be converted into the following constraint optimization
problem:

min
z,w

1

2
�M−P�

2

F
+ η�∇W�0, st.W = Z. (13)

Equation (13) is a constraint problem, which can be further
converted into an unconstrainted optimization problem with
the concerned condition. Again, we have

min
z,w,v

1

2
�Mz−P�

2

F
+ η�∇W�0 + η1

2
�Z−W−V�2

F
. (14)

More description about the solution of (14) is given in
Appendix B.
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TABLE I

USED PARAMETERS FOR PATIENT STUDY

IV. EXPERIMENTS AND RESULTS

A. Experiment Preparation

Clinical applications are performed to evaluate the proposed
method. As aforementioned, the μCT 528 system is used
to collect measurements. For this scanner, the used energy
integrated detector consists of 864× 40 units, where 864 and
40 are the numbers of column and row, respectively. The tube
voltage and tube current are set as 120 kVp and 123 mA,
respectively. The exposure time is 0.75 s per rotation. The
length of the detector unit along the z-axis is 0.55 mm. The
distances starting from the X-ray source to the transaxis and
detector are 570 and 962.7 mm, respectively. For one rotation,
1080 projections are collected and the translation distance is
12.5 mm. For low-dose imaging, we define an undersampling
factor t . For a specified t , only 1080/t projections per rotation
are extracted to realize low-dose imaging. In such cases, the
radiation dose can be reduced to 1/t of normal radiation. Here,
t = 12 is employed to implement our experiments, which
means that the radiation dose will be reduced to 1/12.

A 64-year-old female (case 1) and a 56-year-old man
(case 2), both confirmed COVID-19 cases, were scanned with
the above parameters. Regarding the image reconstruction, the
spatial pixel size and the thickness of each slice are set as
0.59 and 1.5 mm, respectively. The reconstructed image tensor
has 512× 512× 144 pixels covering 300× 300× 216 mm3.
The SIRT and TV-based optimization method (TVM) [42]
methods are chosen to make a fair comparison. The ground
truth used in experiments is obtained by general FBP from
full projections. All reconstruction methods are stopped
after 500 iterations. The root-mean-square error (RMSE),
structural similarity (SSIM), and feature similarity (FSIM) are
employed to make qualitative comparisons. All related regu-
larized parameters from reconstruction methods are optimized
by comparing the quantitative results, i.e., RMSE, SSIM, and
FSIM. All parameters in the proposed method are summarized
in Table I.

B. Patient #1

1) Experiment Results: Fig. 4 shows three representative
axial slices reconstructed by all the methods with t = 12. From
these results, one can see that the SIRT results (second row in
Fig. 4) always are tarnished by severe sparse undersampling
artifacts, and most of the unique image features are difficult
to be observed in these results. TVM (third rows in Fig. 4)
can improve the reconstructed image quality with artifact
reduction to some extent. However, the COVID-19 unique
image features are still blurred. Compared with SIRT and
TVM, the proposed TGLM method (fourth row in Fig. 4)
improves image quality with clear image edges and details
by fully exploring the sparsity of volumetric COVID-19
images.

Fig. 4. Reconstructed results for three representative axial slices. First–third
columns represent 70th, 105th, and 135th slice, and first–fourth row represent
the ground truth, SIRT, TVM, and TGLM results and the window is [−1000,
200] HU.

To demonstrate the advantages of the proposed TGLM
algorithm, different regions of interests (ROIs) “A,” “B,”
“C ,” “D,” and “E” are extracted and magnified in Fig. 5.
As for the ROI “A” results, the image structure marked with
the arrows “1” is fully masked by artifacts in SIRT results.
Although TVM can preserve some clear image edges to some
extent, the blocky artifacts make it difficult to discriminate
image edges. In comparison, TGLM can provide clear edges.

Regarding the ROI “B” results, as shown in Fig. 6, the
unique image features are masked by artifacts in SIRT results.
Although TVM can recover partial image features to some
extent, the blocky artifacts still make it difficult to discriminate
image details and features of COVID-19. In comparison, the
image structure provided by TGLM can retain the unique
features of COVID-19 well with many details.

Related to the ROI “C” results, SIRT results (especially
in the abdominal area indicated by arrow “3” pertaining to
vascular structure) contain obvious artifacts and some details
are disappeared in Fig. 7. TVM can improve the image quality
by removing these artifacts, but small edge lung details as
shown here by the outlining for the secondary pulmonary
lobule are blurred. The proposed TGLM can provide a clear
image structure. This conclusion can be further confirmed
by image structure with extracted ROI “D,” especially in
image structure by arrow “4.” Regarding the extracted ROI
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Fig. 5. Magnified ROI A in Fig. 4. First–fourth columns represent ground
truth, SIRT, TVM, and TGLM and their windows are [−900, 200] HU.

Fig. 6. Similar to Fig. 5 but from Magnified ROI B of Fig. 4. The windows
are [−900, 200] HU.

Fig. 7. First and second rows represent the magnified ROIs C and D. First–
fourth columns represent reference, SIRT, TVM, and TGLM and the window
is [−1000, 0] HU.

Fig. 8. Similar to Fig. 5 but from magnified ROI E of Fig. 4. The windows
is [−1000, 0] HU.

“E” in Fig. 8, the proposed TGLM can also obtain the best
reconstruction.

To highlight the advantages of the proposed TGLM algo-
rithm, one representative coronal 370th slice is shown in
Fig. 9. From Fig. 9, it can be seen that the TVM and COVID-
TGLM can improve the image quality with reduced artifacts.
To further compare the performance of TVM and COVID–
TGLM, three ROIs “F,” “G,” and “H” are extracted and
magnified in the right of Fig. 6. From the ROI “F” results,
the image quality is degraded by sparse-view artifacts and
the image edges are also corrupted. Compared with SIRT
results, TVM can improve the image quality a lot; however,
the image edges are still corrupted to some extent, especially
in image structure indicated by arrow “6.” However, these dis-
advantages can be overcome by the proposed TGLM method.
To compare the ability of unique image features recovery
with COVID-19 CT imaging, the ROI “G” is magnified in
Fig. 9. One can observe that the image edges of lung details
by TGLM are much clearer than that those obtained by SIRT

Fig. 9. Reconstructed results from the 370th coronal slice. The first–fourth
rows represent the ground truth, SIRT, TVM, and TGLM results. The first
column represents reconstructed results and the second–third columns are
three ROIs, i.e., ROIs “F” and “H” and their display windows are [−1000,
0], [−200, 200], [−1000, 0], and [−200, 200] HU.

Fig. 10. Reconstructed results from 170th sagittal slice. The first–fourth
rows represent the ground truth, SIRT, TVM, and TGLM results. The second
column is magnified ROI “I.” The windows of the first–second columns are
[−900, 100] HU.

and TVM, which can be confirmed by image structure with
arrow “7.” Especially, the ground-glass opacities in the upper
lobes indicated by red oval “8” can be observed by our TGLM
results, which can further provide an exact clinical diagnosis.
From the magnification version of the extracted ROI “H,”
it can be observed that SIRT contains severe artifacts and
they can mask the image edge and details. Compared with
TVM and SIRT results, our proposed TGLM can provide
better results, which can be confirmed by image structure with
arrow “9.”

To further highlight the advantages of the proposed TGLM
algorithm, the 170th sagittal slice results are shown in Fig. 10
and the ROI “I” is further magnified in the second column.
From Fig. 10, we can see that the image structure indicated by
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Fig. 11. Quantitative results of all axial slices using different reconstruction
methods in terms of RMSE, SSIM, and FSIM.

arrow “10” is corrupted in SIRT results and blurred in TVM
to some extent. TGLM can improve the resolution with much
clearer image edges. The image structure by arrows “11” and
“12” in the ROI “I” confirms this conclusion.

To quantitatively compare the performance of all algorithms
for COVID-19 imaging, their reconstruction results of all
slices from the support lung region are computed with three
indexes, i.e., RMSE, SSIM, and FSIM, and they are further
given in Fig. 11. Here, the ground truths of all slices are
reconstructed by a general FBP algorithm using complete
projections. From Fig. 11, one can observe that the proposed
TGLM method can achieve the smallest RMSEs for all slices.
Due to that no prior knowledge is considered within the
SIRT reconstruction model, it has maximum RMSEs value
for all slices. Moreover, the results reconstructed by the TVM
technique can obtain slightly smaller RMSEs than the SIRT by
incorporating prior information into the reconstruction model.
Compared with the SIRT and TVM methods, the TGLM has
the lowest RMSEs by counting the nonzeros number of third-
order tensor gradient rather than penalizing the magnitude of
gradient amplitudes in TVM. The SSIM mainly focuses on
the similarity between the reconstructed image and ground
truth, and it is a common index to compare the performance of
different methods [43]. Here, the function of SSIM function is
used, where the dynamic range of all channel images is scaled
to [0 255], and the constants and window are set as 0.02 and
fault value, respectively. FSIM is another metric to evaluate
CT image quality [44]. The closer to 1.0 the SSIM and FSIM
values are, the better the reconstructed image quality is. It can
be seen from Fig. 11 that the proposed TGLM technique can
always obtain the greatest SSIM and FSIM values for all slices.

2) Parameters Analysis: There are mainly three parameters
η1, β and γ . To investigate the influence of each parameter on
the results, the TGLM results of all slices with one changing
parameter and other fixed from the RMSE and SSIM of ROI
are computed for analysis. Fig. 12 shows the results of RMSE
and SSIM values.

It can be observed from Fig. 12 that the parameters η1, β
and γ play an important role in controlling the reconstructed
image quality. Specifically, a better η1 can reduce RMSE value
with greater SSIM value, whereas one smaller or greater η1

can increase the RMSE and reduce the SSIM. From Fig. 12(a)
and (b), we can see that greater RMSEs and smaller SSIMs
can be obtained from η1 = 0.08 or η1 = 0.03 than those that
are obtained by η1 = 0.05. The quantitative results of different
settings of β are given in Fig. 12(c) and (d). According to (11),
we can infer that while β is set as a greater value, the gradient
proposition would be greater in the reconstruction results.

Fig. 12. Parameters comparison in terms of RMSE and SSIM. (a) and (b),
(c) and (d), (e) and (f) RMSEs and SSIMs with different sets of the parameter
η1, β, and γ, respectively.

Fig. 13. Convergence curves in terms of RMSEs versus iterations.

This means that the prior proposition would be larger,
which may result in image oversmoothing and further cause
COVID-19 image features missing. In addition, a smaller β
cannot remove the sparse sampling artifacts, which can also
lead to poor image quality in this case. According to Fig. 12(e)
and (f), it can be observed that the parameter γ has a huge
impact on the RMSE and SSIM values. Specifically, although
a great γ can reduce the errors in some cases to some extent,
it can also cause a large jump in terms of SSIM, especially at
the end of axial slices. A small γ can result in large RMSE
with small SSIM values. It is important to balance in practice.

3) Convergence and Computational Cost: The mathemati-
cal model of TGLM contains the data fidelity and regulariza-
tion terms. In this study, the tensor gradient L0-norm enhances
the sparsity within the 3-D spatial domain. In addition, the
tensor L0-norm minimization is a nonconvex optimization
problem, which also makes it difficult to analyze the con-
vergence of the algorithm. Here, we only numerically study
the convergence of the proposed method by using the average
RMSE index versus iteration number in Fig. 13. Since the
projection is not complete and the result in the exactness of
solution is corrupted by artifacts, the RMSE values of SIRT
drop off rapidly and then increase slowly [45]. The RMSEs
of TVM and our proposed method are strictly decreasing with
respect to the iteration number and finally converge to a stable
level. In particular, the TGLM can obtain a good solution with
the smallest RMSE.

In this study, all the source codes are programmed by
MATLAB (2017b) on a PC (16 CPUs at 3.70 GHz, 16.0 GB
RAM, and GPU-NVIDIA TITAN Xp, 8.0 GB VRAM) with
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Fig. 14. Reconstructed results for two representative axial slices of case
2. The first–second columns represent 100th and 115th slices, and the first–
fourth rows represent the ground truth, SIRT, TVM, and TGLM results and
the window is [−1000, 200] HU.

Windows 10. Regarding the computational cost, one iteration
for SIRT, TVM, and TGLM methods consumes 26.09, 28.95,
and 54.26 s, respectively. The TGLM needs more time than
SIRT and TVM methods.

C. Patient #2

Figs. 14 and 15 show some axial slices of patient 2. From
these results, one can see that the SIRT results are also
corrupted by artifacts. As a result, unique image features are
difficult to be discriminated from artifacts. TVM (third rows in
Figs. 14 and 15) can improve the reconstructed image quality
with artifact reduction to some extent. However, the image
edges, image details, and COVID-19 image features are still
blurred. Compared with the SIRT and TVM, the proposed
TGLM method (fourth row in Figs. 14 and 15) improves
image quality with clear image edges and details with visible
COVID-19 features. To demonstrate the advantages of the
proposed TGLM algorithm, eight ROIs are extracted and
magnified in Figs. 14 and 15 to validate these conclusions.

Besides, the 360th coronal slice and 360th sagittal slice
are shown in Fig. 16. From Fig. 16, it can be seen that
the TVM and TGLM can improve the image quality with

Fig. 15. Reconstructed results for two representative axial slices of case 2.
The first–third columns represent 80th, 90, and 135th slices, and the first–
fourth rows represent the ground truth, SIRT, TVM, and TGLM results and
the window is [−1000, 200] HU.

Fig. 16. First and second columns represent reconstructed results from 360th
coronal and 360th sagittal slice and their windows are [−1000, 200] and
[−1000, 0] HU. The first–fourth rows represent the ground truth, SIRT, TVM,
and TGLM results.

reduced artifacts. To further compare the performance of TVM
and TGLM, two ROIs are extracted and magnified. From
the magnification ROIs results, we can be able to make a
conclusion that the TGLM can provide higher image quality
than those obtained by the SIRT and TVM.

To further evaluate the developed TGLM method in practice,
three radiologists with rich experience in COVID-19 diagnosis
are invited to appraise all reconstruct results from worst (0) to
best (10) in terms of artifact reduction, resolution, and unique
COVID-19 image features preservation. Here, their scores are
listed in Table II. It can be observed that the proposed TGLM
can obtain the highest scores than competitors. These results
can further demonstrate that the proposed TGLM outperforms
other methods in practice.
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TABLE II

SCORES FROM DIFFERENT RADIOLOGISTS WITH DIFFERENT METHODS

V. DISCUSSION AND CONCLUSION

To reduce radiation dose while maintaining high-quality
image reconstruction, we developed a TGLM reconstruction
method. At first, we propose a tensor gradient L0-norm
regularizer for tensor recovery and smoothing, which can
incorporate the multiple dimensions information by counting
the nonzeros number of summation of all gradient directions.
For CT imaging, it can count the nonzero number within
a 3-D volumetric domain rather than a 2-D image. This
can benefit to narrow the feasible domain so that a better
solution can be obtained. Then, the proposed tensor gradient
L0-norm was incorporated into iteration-type reconstruction to
characterize the sparsity of the 3-D domain. The advantages
of TGLM can be mainly summarized as the following two
aspects. First, the unique image features of patients can be
recovered well by exploring volumetric sparsity rather than
spatial sparsity by TVM. Therefore, the TGLM can provide
accurate detection results even in low-dose case. Second,
it has a good ability to preserve image edges with sparse
undersamplig artifacts reduction.

Although the TGLM technique can obtain distinguish per-
formance than other comparisons, there are still some limi-
tations that should be addressed in the future. First, TGLM
contains three parameters (i.e., η1, β and γ ) and they are
optimized manually in this study. The theoretical analyses and
optimization are still open problems. In our following work,
we will explore the automatic strategies to select different
parameters [46], [47]. The L-curve-based adaptive parameter
selection methods have demonstrated the great potential of
determining regularized parameters for CT imaging [48]. It is
feasible to optimize L-curve in our future work.

In summary, we first formulate a tensor gradient L0-norm
for tensor image smoothing and recovery. Then, consider-
ing COVID-19 CT imaging features, our proposed TGLM
reconstruction method is employed to low-dose CT imaging
for COVID-19 patients. Finally, the optimization procedure is
designed to recover higher quality of CT images. The exper-
iments on COVID-19 patients demonstrate the advantages of
the proposed TGLM method, which will be significant for
low-dose CT testing.

APPENDIX A

Since each element is independent of the object function (9),
we can further separate it into I1× I2 × . . .× IN subproblem.

For an arbitrary subproblem, it equals to optimize

min
x(i1,i2,...,iN ),{Gn(i1,i2,...,iN )}Nn=1

1

2

{
(Y(i1,i2, . . . ,iN )

−X(i1,i2, . . . ,iN ))2 + λg((i1,i2, . . . ,iN )�|G1|

+ . . .+|GN |�= 0�)+
N∑

n=1

βn(Gn(i1,i2, . . . ,iN )

−∂xn X(i1,i2, . . . ,iN )
)2

}
. (A1)

Furthermore, the object function (A1) can be solved iteratively
by updating one variable with other variables fixed.

Updating X : From (A1), X can be updated by optimizing
all X(i1, i2, . . . ,iN ). Again, it can be updated by

min
x

1

2

{
(Y−X)2 +

N∑
n=1

βn�(Gn)
(k)−∂xn X�2

F

}
(A2)

where k represents the current iteration number. Equation (A2)
is a quadratic function, which can reach a global minimum.
Here, the Fourier transform-based method is employed and its
solution can be given as

X(k+1) = F−1

(
F

(
X(k)

)+∑N
n=1 βnF

(
∂xn

)∗
F(Gn)

F(1)+∑N
n=1 βnF

(
∂xn

)∗
F

(
∂xn

)
)

(A3)

where F, F−1, and F∗ represent the Fourier, inverse Fourier,
and complex conjugate Fourier transforms and F(1) is the
Fourier transform of the delta function.

Updating {Gn}Nn=1: From (A1), we can update
Gn(i1, i2, . . . ,iN ) individually. Again, (i1, i2, . . . ,iN )th

entry of Gn(i1, i2, . . . ,iN ) can be optimized as

J(i1, i2, . . . ,iN )

= min
{Gn(i1,i2,...,iN )}Nn=1

1

2

{
λg((i1,i2, . . . ,iN )�|G1|+ . . .+|GN | �= 0�)

+
N∑

n=1

βn
(
Gn(i1,i2, . . . ,iN )−∂xn X(i1,i2, . . . ,iN )(k+1)

)2

}
.

(A4)

In fact, g(·) is a binary function when
|G1(i1, i2, . . . , iN )|+ . . .+ |GN (i1, i2, . . . , iN )| �= 0, g(·)
will add 1 and 0 otherwise. The object function of (A4) can
reach a minimum under the condition as (A5), shown at the
bottom of the page.

The proof of this part can be divided into two cases.

(G1(i1,i2, . . . ,iN ), . . . ,GN (i1,i2, . . . ,iN ))

=
{

(0, . . . , 0),
(∑N

n=1 βn
(
∂xn X(i1,i2, . . . ,iN )

)2
)
≤ λ(

∂x1 X(i1,i2, . . . ,iN ), . . . ,∂xN X(i1,i2, . . . ,iN )
)
, otherwise

(A5)
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1) When (
∑N

n=1 βn(∂xn X(i1, i2, . . . , iN ))2) ≤ λ, nonzero
(G1(i1, i2, . . . , iN ), . . . ,GN (i1, i2, . . . , iN )) can generate

J(i1,i2, . . . , iN )

= λ+
N∑

n=1

βn
(
Gn(i1,i2, . . . , iN )−∂xn X(i1,i2, . . . , iN )(k+1)

)2

≥ λ ≥
N∑

n=1

βn
(
∂xn X(i1,i2, . . . , iN )

)2
. (A6)

When (G1(i1, i2, . . . , iN ), . . . ,GN (i1, i2, . . . , iN ))=(0, . . . , 0),
(A6) can be calculated as

J (i1, i2, . . . ,iN ) =
N∑

n=1

βn
(
∂xn X(i1, i2, . . . ,iN )

)2
(A7)

Compared with (A6) and (A7), one can see
that minimum of energy can be reached at
(G1(i1, i2, . . . , iN ), . . . ,GN (i1, i2, . . . , iN ))=(0, . . . , 0).

Algorithm 1
Input: Tensor Y, smoothing factors β1, ρ0, ρmax , w and γ
1:Initialization: X← Y , ρ ← ρ0, k = 1;
2: While(ρ < ρmax )
3: do
4: Updating X(k+1) using Eq. (A3);
5: Updating all pixels of {Gn}Nn=1 using Eq. (A5);
6: ρ ← γρ, k = k + 1;
7: end while
Output: X

1) When (
∑N

n=1 βn(∂xn X(i1,i2, . . . , iN ))2)>λ and
(G1(i1, i2, . . . , iN ), . . . ,GN (i1, i2, . . . , iN )) =
(0, . . . , 0), (A7) is true. For
(G1(i1, i2, . . . , iN ), . . . ,GN (i1, i2, . . . , iN )) �=
(0, . . . , 0), its minimum of energy can
reach λ. Thus, the minimum energy of the
object function of (A5) J (i1,i2, . . . , iN )=λ at
(∂x1X(i1,i2, . . . , iN ), . . . ,∂xN X(i1,i2, . . . , iN )). �

Similar to the 2-D image gradient L0-norm minimization
[26], the iteration process of tensor gradient L0-norm-based
tensor recovery algorithm is listed in Algorithm I. ρ is an
automatical updation parameter during the iteration process
with a small initial ρ0 = 2 ∗ (

∑N
n=1 βn)/N by a multi-

plier γ . The maximum of ρ is set as ρmax and here, it is
105. βn(n = 1, . . . , N) are coupling factors to control the
proposition components from the nth dimension. To unify
βn(n = 1, . . . , N) parameters, each βn can be written as wβ
and w = [w1, . . . , wN ]T β. This means that we can adjust wn

to change βn.

APPENDIX B

Regarding the optimization of (14), it can be alternatively
updated with one variable one time. In fact, we can separate
it into three subproblems

min
z

1

2
�Mz−P�2

F +
η1

2
�Z−W(k1) −V(k1)�2

F
(B1)

min
w

η�∇W�0 + η1

2
�Z(k1+1)−W−V(k1)�2

F (B2)

V̂
(k1+1) = V(k1)−Z(k1+1)+W(k1+1) (B3)

where k1 represent the current iteration. Z(k1+1), W(k1+1), and
V(k1+1) can be iteratively updated so that we can obtain an
optimized solution. Equation (B1) can be solved as

Ẑ
(k1+1)

j1 j2 j3

= Z
(k1)
j1 j2 j3

−
[
fold

(
MT (Mz−P)

)]
j1 j2 j3
+η1

[
Ẑ

(k1)−W(k1)−V(k1)
]

j1 j2 j3[
fold

(
MT M

)]
j1 j2 j3
+η1

(B4)

where fold(·) represents fold the vector into a tensor, and the
symbol [·] j1 j2 j3 indicates the ( j1, j2, j 3)

th element of a third-
order tensor. MT indicates the transpose of M. Regarding the
object function of (B2), it has been discussed in Appendix A.

The overall flowchart of the proposed approach is summa-
rized in Algorithm II. In this study, β1, β2, and β3 are set as
the same value. For different applications, it is not easy to find
the most suitable parameters, the input of tensor gradient L-
norm is normalized to [0,1], and the denormalization operator
should be used for output results.

Algorithm 2 TGLM Algorithm
Input: P, the parameters of η1, β and γ ;
1: Initialization: {Z(0),W(0),V(0)}← 0, k1 = 0;
2: Whilenot convergence
3: do
4: Updating Ẑ

(k1+1)
using Eq. (B4);

5: Normalizing Z(k1+1)−V(k1);
6: Updating Ŵ

(k1+1)
using Algorithm I;

7: Denormalizing Ŵ
(k1+1)

;
8: Updating V̂

(k1+1)
utilizing Eq. (B3);

9: k = k+1;
10: End while
Output: Z
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