
8744 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 11, NOVEMBER 2020

A Hybrid Estimation-Based Technique for
Partial Discharge Localization

Mohammad Avzayesh , Mamoun F. Abdel-Hafez , Senior Member, IEEE, Wasim M. F. Al-Masri ,

Mohammad AlShabi , Senior Member, IEEE, and Ayman H. El-Hag , Senior Member, IEEE

Abstract— This article demonstrates the use of five different
methods to estimate partial discharge (PD) location in an oil
insulation system from noisy measurements. The measurements
are obtained from three ultrasonic sensors located in three
different places. The sensors map the PD location utilizing a
nonlinear model. The estimation techniques used in this article
are the extended Kalman filter (EKF), the unscented Kalman
filter (UKF), the smooth variable structure filter (SVSF), the EK-
SVSF, and the UK-SVSF. The last two filters use the combination
of EKF or UKF with SVSF, respectively, to consider possible
PD model uncertainty. The proposed integrated UK-SVSF algo-
rithm achieves the following objectives. First, the use of the
Kaman-based filter enhances the optimality of the filter to system
dynamics and measurements noise. Second, the use of the UKF
reduces the calculation complexity and errors by replacing the
Jacobian calculation with statistical linearization. Finally, the
use of the SVSF enhances the estimate’s robustness to model
uncertainty. The experimental results verify the claim that the
PD location estimate with minimum error is achieved by the
UK-SVSF.

Index Terms— Acoustic emission sensors, extended Kalman
filter (EKF), localization, partial discharge (PD), smooth variable,
unscented Kalman filter (UKF).

I. INTRODUCTION

POWER transformers are one of the most critical devices
in any power industry and one of the most important

components in both distribution and transmission grid. Power
transformers’ lifetime is greatly related to the health condition
of their oil/paper insulation system. Although the aging of their
insulation is a natural phenomenon [1], abnormal mechanical,
electrical, and thermal stresses cause the aging to be accel-
erated. This initiates a localized breakdown of the insulation,
known as partial discharge (PD) [2], which can lead to the
complete failure of the transformer. Therefore, monitoring the
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PD activities inside power transformers and knowing precisely
their locations can increase the life span of these devices.

One of the best approaches to measure the PD is to utilize
online measurement techniques. This type of measurement
is considered to be a nondestructive monitoring tool for the
transformer insulation system. The energy of PD initiation
can be transformed into different forms of energy, such as
electrical, mechanical, and chemical [2]. Different techniques
and sensors can be used to detect the PD activities, such as
radio frequency (RF) antenna, high-frequency current trans-
formers (HFCTs), and acoustic emission (AE) sensors [2].
HFCT has a low signal-to-noise ratio. Besides, the ability to
use HFCT is influenced by the ability to access the ground
wire. Moreover, since only one HFCT is usually used, it cannot
be used to localize the PD source unless the winding structure
is known. On the other hand, an RF antenna can be used
to measure the PD location if multiple antennas are used.
However, the use of multiple antennas is intrusive unless
they have been preinstalled inside the transformer tank during
the manufacturing stage. Moreover, RF antenna has a high
sensitivity to electromagnetic pulses, including PD activities.
Also, it requires an expensive measuring system as it has a
huge bandwidth from hundreds of megahertz to gigahertz.

Conversely, AE measurement systems are relatively cheap
as they measure a relatively low-frequency bandwidth (tens
to hundreds of kHz). Also, they are nonintrusive as they
can be easily installed on the transformer tank using a
magnetic holder. However, their performance is affected by
the sensor aging, which causes errors in the measurements.
Moreover, they are sensitive to external noises, which leads to
measurements’ errors.

Based on the PD measurement sensor, PD localization
methods can be generally divided into two different categories:
transfer function and time-of-arrival-based methods. HFCT is
used to localize the PD inside a transformer winding precisely,
but prior knowledge about the winding transfer function is
needed [3]. Such information may not necessarily be available
for the field engineer, which limits the application of this
approach.

On the other hand, employing either RF antenna [4] or AE
sensors [5] does not require any knowledge about the internal
structure of the transformer. It is commonly done by estimating
the time difference of arrival (TDOA) between the signals
captured at multiple sensors attached to the transformer tank.
This approach suffers from attenuation due to the different
parts of the transformer’s internal structure and distortion of
the measured signal due to noise.
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Ghosh et al. [6] utilized the source-filter model to estimate
the excitation source and isolate it from the acoustic response
of the physical system. Such estimation of the PD pulse
can help in determining precisely the TDOA and, hence,
the PD location. This approach eliminates the need to use
PD denoising techniques. However, the deformation of PD
shape could be initiated from sources other than noise, among
which are the oil temperature and the obstacles between
the PD source and sensor location. Alternatively, a pattern
recognition-based method for PD localization in an oil-filled
transformer by acoustic measurements was proposed in [7].
The technique is based on splitting the transformer tank into
small zones. By comparing the spatial distance between every
zone’s standard pattern vector and its undetermined pattern
vector, the zone with the minimum spatial distance between
the two patterns vectors determines the PD location. The
accuracy of this model depends on how small are the selected
zones. On the other hand, selecting smaller zones will increase
the computational complexity.

In this article, the AEs are used to localize the PD inside
a transformer insulation system. To obtain an optimal PD
estimate that accounts for both the measurement and dynamics
noise uncertainty as well as the PD model uncertainty, several
estimation techniques are used. The used estimators include
the extended Kalman filter (EKF) [8], unscented Kalman filter
(UKF) [9], smooth variable structure filter (SVSF) [10]–[12],
EK-SVSF [13]–[15], and UK-SVSF [13]–[15]. To the best
of the authors’ knowledge, UK-SVSF has never been used
for nonlinear measurement matrix; previous works defined the
system as a nonlinear function and the measurement function
as linear or linearized function. The proposed UK-SVSF solves
the nonlinearity problem in measurement and system functions
without using the Jacobian calculation. The proposed filter
achieves the following objectives. First, it produces a solution
that targets optimality to measurement and dynamics noise.
Second, the filter reduces the calculation and magnitude of the
errors by replacing the Jacobian calculations with statistical
approximation. Finally, the solution addresses the robustness
to model uncertainty through the use of the SVSF.

The rest of this article is organized as follows. Section II
is dedicated to the experimental setup, while Section III is
dedicated to the methodologies used in this article. Results
are discussed in Section IV, and the work is concluded in
Section V.

II. EXPERIMENTAL SETUP

A high-voltage electrode has been immersed in an oil-filled
tank to generate the PD. The electrode is connected to a
40-kV 10-mA 50-/60-Hz ac supply. AE (VS30-SIC-46dB)
piezoelectric sensors with a bandwidth range of 20–85 kHz
and a resonance frequency of 45 kHz and integrated with
46-dB preamplifier have been used. They are attached to a
tank’s wall with a magnetic holder. To reduce the reflections
on the contact interface, a silicon grease is applied. A digital
oscilloscope (TBS 1000) with bandwidth is 60 MHz, and
four input channels incorporated with MATLAB is used. The
oscilloscope’s sampling frequency is set to be 10 million

Fig. 1. System setup.

Fig. 2. PD initialization at position 2 without paper insulation barrier.

Fig. 3. PD initialization at position 2 with paper insulation barrier.

sample/s within a window of 2500 samples. The overall system
setup is shown in Figs. 1–3.
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Fig. 4. Schematic drawing of PD initialization to the sensors.

The proposed PD measurement system uses an RF antenna
and three AE sensors to measure the distance from each
sensor to the PD location, as in (1). As the travel time for an
electromagnetic wave is much faster than an acoustic wave,
the RF antenna PD measurement is used as a reference for
the three AE measurements conducted by the AE sensors.
This is shown in Fig. 4, where Ts1, Ts2, and Ts3 are
the time difference between the acoustic waves and the RF
signal. As in any measurement system, there are two types of
propagation errors: systematic and random errors. Our system
is mainly concerned with the measurement of the arrival
time of different acoustic signals. Bias in the acoustic sensor
due to aging and external acoustic noise are two examples
of systematic and random errors, respectively, which might
influence our time measurement. The tank cover is provided
with a different opening to facilitate the application of PD at
different locations, as shown in Fig. 2.

To verify the performance of the proposed algorithms to
the realistic transformer model, paper insulation barriers were
added in front of sensors 2 and 3. The modified transformer’s
model configuration is shown in Fig. 3. The proposed algo-
rithms’ performance with the existence of these barriers will
be shown in Section IV. RF antenna has been used to localize
the PD in reference to the AE sensors, and the captured signal
is shown in Fig. 4.

Knowing the signal transmission time (Tsa), the sound
velocity (Vs), and the Cartesian sensor i coordinates (xsi , ysi),
the two unknown PD coordinates in space (x, y) can be
estimated as in (1); this constitutes a circle’s equation

(x − xsi)
2 + (y − ysi)

2 = (Vs Tsi)
2. (1)

The arrangement behind the placement of AE sensors
in Fig. 2 has been described in [16] and [17]. The location of
PD can be initiated in any area inside one of the nine locations
shown in Fig. 2. The measurement equation can be written as
in the following equation:

z = h
(
x p, xs

) + v + μ (2)

h
(
x p, xs

) =
⎡
⎢⎣

√
(x − xs1)

2+(y − ys1)
2√

(x − xs2)
2+(y − ys2)

2√
(x − xs3)

2+(y − ys3)
2

⎤
⎥⎦. (3)

In this equation, z is the sensor measurement, h
(
x p, xs

)
is the

nonlinear relation between PD position and sensors position

as described in (3), x p is the PD’s position with the coordinate
of (x, y), and xs is the sensor’s position with the coordinate
of (xs, ys), v is the vector measurements’ noise, and μ is the
vector of possible sensors measurements’ bias. The model of
h
(
x p, xs

)
is linearized to H around the estimate of the PD

position x̄ p, as written in (4) and (5). This leads to an error
in the measurement �z, as defined in (6)

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂h
(
x̄ p, xs1

)
∂x

∂h
(
x̄ p, xs1

)
∂y

∂h
(
x̄ p, xs2

)
∂x

∂h
(
x̄ p, xs2

)
∂y

∂h
(
x̄ p, xs3

)
∂x

∂h
(
x̄ p, xs3

)
∂y

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

H =

∣∣∣∣∣∣∣∣∣∣∣∣

(x̄ −xs1)√
(x̄ − xs1)

2 + (ȳ − ys1)
2

(ȳ − ys1)√
(x̄ − xs1)

2 + (ȳ − ys1)
2

(x̄ − xs2)√
(x̄ − xs3)

2 + (ȳ − ys2)
2

(ȳ − ys2)√
(x̄ − xs2)

2 + (ȳ − ys2)
2

(x̄(k + 1)− xs3)√
(x̄ − xs3)

2 + (ȳ − ys3)
2

(ȳ − ys3)√
(x̄ − xs3)

2 + (ȳ − ys3)
2

∣∣∣∣∣∣∣∣∣∣∣∣
(5)

�z = z − h
(
x̄ p, xs

) = H�x p + v + μ. (6)

III. METHODOLOGY

This section describes the filtering techniques used to
estimate the PD location from the acquired AE nonlinear
measurements.

A. Extended Kalman Filter

The EKF is known as a recursive predictor–corrector filter
that fuses the nonlinear measurements to obtain the optimal
estimator out of the class of linear estimators [18]. The
EKF linearizes the system about the most recent estimates
of the state. In doing so, the system’s model is linearized
to F , which is performed around the most recent a posteriori
estimate, x̂k|k . In addition, the measurement model is linearized
to H , which is done around the a priori state estimate, x̂k+1|k .
For the application of Section II, the discretized system and
measurement equations are written as follows:

xk+1 = Fxk +wk (7)

zk+1 = h
(
x pk+1 , xs

) + vk+1 (8)

where F = I2×2 and z is the measurement after removing
the bias term. The EKF formulation is shown in Fig. 5. The
dynamic and measurement noise vectors are assumed Gaussian
with covariance matrices of Q and R, respectively.

B. Smooth Variable Structure Filter

The variable structure filter (VSF) is another corrector–
predictor estimator that was established in 2003. This method
uses variable structure theory and sliding mode concept, which
steers the gain of the estimator to allow the estimate to
converge to the boundary of the true state. This method is
not applicable to nonlinear systems [19]. In 2007, the SVSF,
a variant of the VSF, was introduced [12]. This method has
been established to enhance the robustness of the estimator
against model uncertainty and reduce its chattering [11].



AVZAYESH et al.: HYBRID ESTIMATION-BASED TECHNIQUE FOR PD LOCALIZATION 8747

Fig. 5. EXF process.

Fig. 6. Chattering effect (ψ < β) [20].

This is accomplished by using a smoothing boundary layer
(SBL) referred to as ψ , forcing a smooth desired trajectory.
The existence subspace β denotes the uncertainties in the
system. Its width is not known, and it can be assigned based
on the design criteria (prior knowledge). If the existence
subspace β is greater than the SBL ψ , the chattering occurs,
as shown in Fig. 6. The chattering makes the estimator robust.
However, the accuracy of the estimate is affected, with a higher
estimate’s sensitivity to the noise. If the SBL is larger than
the existence subspace, the correction gain, as well as the
estimator’s sensitivity, will be reduced, as shown in Fig. 7.
However, the filter’s stability will be affected. Therefore,
choosing the SBL should be done carefully.

The process of the SVSF is similar to the EKF. However,
the gain is calculated as

KK+1= H+diag[
( ∣∣z̃(k+1|k)

∣∣
+γ ∣∣z̃(k|k)

∣∣
)

◦ sat
(
ψ̄−1, z̃(k+1|k)

)
diag(z̃(k+1|k))−1] (9)

Fig. 7. Smoothed estimation (ψ > β) [20].

where H + is the pseudoinverse of the linearized measurement
matrix, ψ̄ is the diagonalized SBL, z̃(k+1|k) and z̃(k|k) are the
innovation error at time k and k + 1, respectively, and sat is
the saturation function, which are represented as

z̃(k+1|k) = z(k+1) − ẑ(k+1|k) (10)

z̃(k|k) = z(k) − ẑ(k|k) (11)

sat
(
ψ̄−1, z̃(k+1|k)

)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if
z̃(k+1|k)
�ik+1

> 1

z̃(k+1|k)
�ik+1

if − 1 <
z̃(k+1|k)
�ik+1

< 1

−1 if
z̃(k+1|k)
�ik+1

≤ −1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
. (12)

C. Smoothing Boundary Layer

SBL can be a constant or time-varying vector. In case of a
constant SBL, ψconstant, it can be assumed as n × n diagonal
matrix with off-diagonal elements equal to zero and constant
diagonal elements found by trial and error as in (12)

ψ =
⎡
⎢⎣
ψ1 · · · 0
...

. . .
...

0 · · · ψm

⎤
⎥⎦. (13)

For time-varying SBL ψvarying, SBL is the function of the
memory or convergence rate γ , the a priori and the a
posteriori errors z̃(k+1|k) and z̃(k|k) , the linearized measurement
matrix H , the a priori covariance matrix P(k+1 | k), and the
innovation covariance matrix S(k+1) as follows [11], [20]

ψ−1 = diag(A)−1 H P(k+1||k)H T S−1
(k+1) (14)

ψ =
⎡
⎢⎣
ψ11 · · · ψ1m
...
. . .

...
ψm1 · · · ψmm

⎤
⎥⎦ (15)

where A =(∣∣z̃(k+1|k)
∣∣ + γ

∣∣z̃(k|k)
∣∣).
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Fig. 8. UKF process [21].

D. Unscented Kalman Filter

The UKF is another extension of KF for nonlinear systems.
It replaces the Jacobian calculations by statistical linearization
using the unscented transformation [21]. Fig. 8 shows the UKF
algorithm. In terms of reliability and accuracy, UKF performs
better than EKF. However, it is more complicated in terms of
computational cost since it uses 2n + 1 sigma points to avoid
the linearization step of the EKF.

In the prediction stage, x̂k|k−1 is the state a priori estimate
and X̂ i is the sigma point. Wi is the weight factor correspond-
ing to the i th sigma point and can be found as

Wi = 1

2(L + λ)
(16)

where λ is the design value (usually less than 1) and L is the
number of sample points. Then, the priori covariance Pk|k−1

is calculated.
In the update stage, the measurement prediction ẑk+1|k is cal-

culated based on nonlinear propagated measurement Ẑi,k+1|k
and the weight corresponds to the i th sample point. The covari-
ance corresponds to measurement prediction Pzz,k+1|k , and
the cross covariance between state estimate and measurement
Pxz,k+1|k is calculated. In the final step, the posteriori state
estimate x̂k+1|k+1 and its corresponding covariance Pk+1|k+1

are calculated.

E. EK-SVSF and UK-SVSF

SVSF is proposed to increase the robustness of the filter
to modeling uncertainties and, at the same time, enhance the
smoothness in the estimated state. However, this comes at the
expense of a loss in the estimation accuracy as the SVSF

Fig. 9. Combination of different types of KF and SVSF [22].

does not optimize the estimated state against dynamics and
measurement noise sequences. To obtain a noise-optimal and
a model-robust estimator, the SVSF is combined with the EKF
and UKF. Two variants of the SVSF, the EK-SVSF, and UK-
SVSF, are therefore introduced. The flowchart describing these
hybrid filters is shown in Fig. 9 [22].

As can be seen from Fig. 9, after the prediction stage is
completed, the variable smoothing boundary layer is calculated
based on (14). In addition, a fixed smoothing boundary layer
is assigned based on the design criteria. If the fixed boundary
layer is greater than the variable smoothing boundary layer,
the predicted state is updated based on EKF or UKF. Other-
wise, the predicted state is updated based on the SVSF. In the
following, we describe the hybrid EKF-SVSF and UK-SVSF
formulations.

1) EK-SVSF Formulation: The complete formulation of the
EK-SVSF can be summarized as follows. Starting with the
current state and its corresponding covariance, x̂k|k and Pk|k ,
respectively, the predicted state, its covariance, and the pre-
dicted measurement are obtained as

x̂k+1|k = F(x̂k|k) (17)

Pk+1|k = FPk|k FT + Qk+1 (18)

ẑk+1|k = h(x̂k+1|k , xs). (19)

Subsequently, the innovation error and its covariance are
calculated as

z̃k+1 = zk+1 − ẑk+1|k (20)

Sk+1 = Hk+1 Pk+1|k H T
k+1 + Rk+1. (21)

Then, the variable smoothing boundary layer will be calculated
based on

ψvbl = (
diag(A)−1 H Pk+1|k H T S−1

k+1

)−1
(22)

where A = (∣∣z̃(k+1|k)
∣∣ + γ

∣∣z̃(k|k)
∣∣). The variable smooth-

ing boundary layer is afterward compared against the fixed
smoothing boundary layer. If �fixed > �vbl , then the EKF
gain factor will be calculated and chosen for state update as

Kk+1 = Pk+1|k H
′
k+1S−1

k+1. (23)
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Otherwise, the SVSF gain factor must be considered for state
update as

KK+1= H+diag[
( ∣∣z̃(k+1|k)

∣∣
+γ ∣∣z̃(k|k)

∣∣
)

◦ sat
(
ψ̄−1, z̃(k+1|k)

)
diag(z̃(k+1|k))−1]. (24)

Then, the state estimate, its covariance, and the measurement
estimation will be updated as

x̂k+1|k+1 = x̂k+1|k + Kk+1 z̃k+1 (25)

Pk+1|k+1 = Pk+1|k − Kk+1 Sk+1 K T
k+1 (26)

ẑk+1|k+1 = h(x̂k+1|k+1, xs). (27)

2) UK-SVSF Formulation: The summarized UK-SVSF for-
mulation can be written as follows. The state estimate, its
corresponding, and the sigma point are initialized, as shown
in Fig. 8. Then, the sigma points with their corresponding
weight are propagated and can be shown as

X̂ik+1|k = f̂
(
x̂k|k + uk

)
(28)

x̂k|k−1 =
q∑

i=0

Wi X̂ik+1|k . (29)

The state error covariance can be predicted as

Pk+1|k =
q∑

i=0

Wi
(
X̂ik+1|k − x̂k+1|k

)(
X̂ik+1|k −x̂k+1|k

)T +Qk . (30)

In the update stage, the nonlinear measurement is propagated,
and the estimated measurement can be calculated as

Ẑik+1|k = ĥ
(
x̂k+1|k

)
(31)

ẑk+1|k =
q∑

i=0

Wi Ẑik+1|k . (32)

The measurement covariance can be calculated as

Pzz =
q∑

i=0

Wi
(
Ẑik+1|k − ẑk+1|k

)(
Ẑik+1|k − ẑk+1|k

)T + Rk . (33)

The cross covariance (between the estimated state and the
measurement) is written as

Pxz =
q∑

i=0

Wi
(
X̂ik+1|k − x̂k+1|k

)(
Ẑik+1|k − ẑk+1|k

)T
. (34)

At this stage, similar to the EK-SVSF, the variable smoothing
boundary layer is calculated

ψvbl = (
diag(A)−1HPk+1||k H T S−1

k+1

)−1
(35)

where A = (∣∣z̃(k+1|k)
∣∣ + γ

∣∣z̃(k|k)
∣∣).

At this stage, the variable smoothing boundary layer
is compared with the fixed smoothing boundary layer.
If �fixed > �vbl , then the UKF gain factor will be considered
and can be calculated as

Kk = Pxz P−1
zz (36)

and corresponding estimated state covariance of the UKF is
given as

Pk+1|k+1 =
(

Pk+1|k − Pxz P−1
zz Pzz

(
Pxz P−1

zz

)T
)
. (37)

Fig. 10. X-estimate for the first set of measurements without paper insulation
barrier.

Otherwise, the SVSF gain factor must be considered

KK+1 = H +diag[
( ∣∣z̃(k+1|k)

∣∣
+γ ∣∣z̃(k|k)

∣∣
)

◦ sat
(
ψ̄−1, z̃(k+1|k)

)
diag(z̃(k+1|k))−1]. (38)

The corresponding covariance of the SVSF state estimate is
given as

Pk+1|k+1 = Pk+1|k − Kk+1 Sk+1 K T
k+1. (39)

The updated estimate state is then calculated as

x̂k+1|k+1 = x̂k+1|k + Kk+1 z̃(k+1|k) (40)

where z̃(k+1|k) = zk − ẑk+1|k . The updated estimate of the state
is given as

ẑk+1|k+1 = h(x̂ k+1|k+1, xs). (41)

Next, experimental results are shown to validate the perfor-
mance of the presented algorithms.

IV. RESULTS AND DISCUSSION

In this article, four different sets of measurements have
been used with 50 measurements in each set. The first data
pertains to initiating the PD in location 2 without using a
paper insulation barrier, as shown in Fig. 2. The second data
set is taken when an insulation paper is introduced in front
of sensor 2. The third data set is taken when the insulation
paper is introduced in front of sensor 3 (see Fig. 3). Finally,
the fourth data set is taken when the position of the PD is
changed to position 5 without using the insulation barrier.
The EKF, UKF, SVSF, UK-SVSF, and EK-SVSF are used to
obtain the estimate of the PD location from the measurements.
In the following, the performance of the proposed methods is
compared.

A. First Set of Measurement

In this set, 50 measurement points have been used to
estimate the PD location. The PD is initialized at position 2,
as shown in Fig. 2. The true PD x-coordinate has a value
of 50.5 cm, whereas the true PD y-coordinate has a value of
24.5 cm. The results are shown in Figs. 10 and 11 and Table I.



8750 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 11, NOVEMBER 2020

Fig. 11. Y-estimate for the First Set of Measurements without paper insulation
barrier.

TABLE I

ROOT MEAN SQUARED ERROR FOR THE FIRST SET OF DATA

Fig. 12. X-estimate for the second set of measurements with paper insulation
barrier near sensor 2.

As can be seen from Figs. 10 and 11, the performances of
the EK-SVSF and UK-SVSF are the best among other filters
based on the convergence time and the estimation accuracy.
Further discussion on these results is given in Section IV-F.

B. Second Set of Measurement

In this set, similar to the first set, 50 measurement points
have been used to estimate the PD location, whereas the
paper insulation barrier is introduced in front of sensor 2.
The PD is initialized at position 2, as shown in Fig. 3. The
true PD x-coordinate has a value of 50.5 cm, whereas the true
PD y-coordinate has a value of 24.5 cm. The results are shown
in Figs. 12 and 13 and Table II.

Figs. 12 and 13 show that the EK-SVSF and UK-SVSF out-
perform the performance of other filters in terms of estimation
accuracy and convergence speed. The detailed explanation is
described in Section IV-F.

Fig. 13. Y-estimate for the second set of measurements with paper insulation
barrier near sensor 2.

TABLE II

ROOT MEAN SQUARED ERROR FOR THE SECOND SET OF DATA

Fig. 14. X-estimate for the third set of measurements with paper insulation
barrier near sensor 3.

C. Third Set of Measurement

The third data set is similar to the second data set in terms
of the number of measurements, PD initialized location, and
the true position in the x-coordinates and y-coordinates. The
only difference is the location of the paper insulation barrier,
which is placed in front of sensor 3. The results are shown
in Figs. 14 and 15 and Table III.

Figs. 14 and 15 show the optimality and robustness of the
EK-SVSF and UK-SVSF. Further discussion on the perfor-
mance of the different filters is given in Section IV-F.

D. Fourth Set of Measurement

The fourth data set is similar to the first three data
set in terms of the number of measurements. The PD is
initialized at the true position (51, 50.5) in the x-coordinates
and y-coordinates, respectively. No insulation paper is added
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Fig. 15. Y-estimate for the third set of measurements with paper insulation
barrier near sensor 3.

TABLE III

ROOT MEAN SQUARED ERROR FOR THE THIRD SET OF DATA

Fig. 16. X-estimate for the fourth set of measurements without paper
insulation barrier.

Fig. 17. Y-estimate for the fourth set of measurements without paper
insulation barrier.

between the sensor and the barrier. The results are shown in
Figs. 16 and 17 and Table IV.

Figs. 16 and 17 show the optimality and robustness of the
EK-SVSF and UK-SVSF. Further discussion on the perfor-
mance of the different filters is given in Section IV-F.

TABLE IV

ROOT MEAN SQUARED ERROR FOR THE FOURTH SET OF DATA

TABLE V

COMPLICATED SCENARIO CONFIGURATION FOR PART D

E. Monte Carlo Tests with More Complicated
Scenarios of Measurement

The third data set is used again to create more complicated
scenarios. These include injecting modeling uncertainties to
the coordinates of the sensors with 10%, 20%, and 40%
in x and y values, and extra noise to the ultrasonic reading;
with maximum absolute value Vmax of 1, 5, and 10 cm2. The
noise vector is assumed white with known covariance matrix
to be Vmax × 0.33 × I3×x .

Five scenarios are created with these modeling and noise
uncertainties, as listed in Table V. A 10 000 Monte Carlo
test was performed on these cases. The root-mean-square
error (RMSE) and the maximum absolute error were obtained.
The obtained performances of the five scenarios are shown
in Tables VI and VII. To enrich the comparison, these
methods were compared with the function “fminsearch” from
MATLAB that is used to find the solution of the set of
equations (1).

F. Discussion

Figs. 10–17 show that all the methods converged to the
proximity of the actual value of the PD locations. The fil-
ters associated with SVSF show a faster convergence rate
compared with EKF and UKF. The combination of EK/UKF
with SVSF has improved performance compared with SVSF,
which can be seen from the obtained RMSE in Tables I–VII.
The tables show that the EK-SVSF and UK-SVSF have the
minimum RMSE.

The results of Monte Carlo simulations reported in
Tables VI and VII show that the EK-SVSF and UK-SVSF
perform sustainably better than all other filters despite the
added modeling uncertainty and added measurement noise.
The improvement can be seen in both the RMSE and the max-
imum absolute error. Although increasing the modeling uncer-
tainties reduces the performance of all filters, the UK-SVSF
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TABLE VI

MONTE CARLO TESTS, RMSE FOR SCENARIOS WITH INJECTED MODELING UNCERTAINTY AND ADDED MEASUREMENT NOISE

TABLE VII

MONTE CARLO TESTS, MAXIMUM ABSOLUTE ERROR FOR SCENARIOS WITH INJECTED MODELING UNCERTAINTY AND ADDED MEASUREMENT NOISE

and the EK-SVSF are much less affected than the EKF,
UKF, and SVSF filters. UK-SVSF has slightly better results
than the EK-SVSF and is recommended in this study due
to its characteristic of avoiding the linearization step of the
nonlinear measurement function. The results of using the
MATLAB function fminsearch are also included in Tables VI
and VII. It is clear that our proposed solution outperforms the
results obtained by fminsearch. This is expected as fminsearch
only considers the measurements of the sensors. It does not
consider possible measurements bias. In addition, it also does
not benefit from the dynamic model of the system, as given
in (7). Finally, fminsearch does not consider possible model
uncertainty.

V. CONCLUSION

PD precise localization is crucial to service engineers as it
enables them to identify the PD location and, consequently,
its type. Identifying the PD type helps identify the severity of
the PD activities. For example, PD in transformer oil is not as
significant as PD inside the transformer winding as the earlier
could be an indication of merely the existence of air bubbles.
However, the later might be an indication of the existence of
a transformer winding internal or external discharge. One of
the main causes of transformer failure is the existence of PD
activities inside the transformer winding.

Five different methods for PD localization were compared
in this article: EKF, UKF, SVSF, UK-SVSF, and EK-SVSF.
While the EKF and UKF provide an optimal PD estimate in
the existence of dynamics and measurement noise sequences,

the SVSF provides a PD estimate that considers the possible
uncertainty in the dynamics and measurements models. There-
fore, in the presented results, the EKF and UKF showed good
steady-state error results. However, they converged slowly
toward the actual trajectory. Combining the EKF or UKF
with SVSF improved the results as the filters converged faster
toward the true trajectory, and the estimate’s RMSE was the
minimum.

In summary, the UK-SVSF method is proposed for PD
localization for the following reasons. First, the method pro-
duces an estimate that is robust to dynamics and measurements
noise sequences. Second, the proposed method reduces the
estimation error by utilizing the nonlinear measurement model
through the use of the UKF. Finally, the proposed method
considers possible model uncertainty through the use of the
SVSF structure. Among other factors, the model uncertainty
could result from a change in the transformer model due to
aging. One of the limitations of this article is the simplistic
model of the transformer’s internal structure. In the future, the
authors will apply the proposed methods in real transformers
with full core and windings.
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