
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 10, OCTOBER 2020 7725

Per-Pixel Time Constant Measurement
of Bolometer Cameras
Dennis L. Waldron and Dieter J. Lohrmann

Abstract— A novel system to measure the time constant of
microbolometer cameras per-pixel to create a 2-D time constant
map is presented. The measurements take place at the camera
level and do not require any special control of the camera beyond
the ability to capture raw data. Detailed simulations are run for a
broad range of variables and values to demonstrate the usefulness
of the system in extracting even extremely fast time constants
with high accuracy and repeatability. Measurements are taken
on a proof of concept system with an example camera, and a
2-D time constant map is reported. These results are compared
with measurements from a linear motion stage system.

Index Terms— Bolometer, camera, focal plane array (FPA),
long-wave infrared (LWIR), microbolometer, per-pixel, sensor,
time constant.

I. INTRODUCTION

M ICROBOLOMETER sensor performance is frequently
quantified by a figure of merit (FOM). FOM is the

product of the noise equivalent difference temperature (NE�T)
and its thermal time constant (τ ); it is expressed in units
of mK·ms. NE�T is a measure of sensitivity, while τ is a
measure of response time or blur. One can typically achieve a
given FOM with certain process technology, and NE�T and
τ can be traded against each other to get a more sensitive or
faster responding detector. (Since FOM roughly scales with
the area of the pixel, an alternate FOM would additionally
include pixel area in its product [1].) Different applications
may put a premium on either NE�T or τ ; a lower (faster)
τ detector is useful for on-the-move applications, such as an
unmanned aerial system payload, while greater sensitivity is
useful for finding low-contrast targets at greater range.

It is important to know both NE�T and τ not only for
system applications but also for research, development, and
process troubleshooting when fabricating detectors. This arti-
cle will focus on a novel method of measuring time constant
for each pixel individually in the focal plane array (FPA) at
the system level; to the best of our knowledge, this has never
before been reported.

There are many reported methods of measuring τ depending
on the level of control one has over the system or component.
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One common method for test structures is to electrically excite
the bolometer array with a controlled current to raise the
temperature through Joule heating and simultaneously measure
the voltage across the device [2]–[5]. The device resistance is
then used to calculate a temperature change over time based on
the knowledge of the thermal coefficient of resistance (TCR)
of the device material. This method has the advantage that τ
for each pixel can be recovered though the result is typically
averaged across the array to reduce error. The temperature
of the bolometers can alternatively be measured directly after
Joule heating with a fast thermal camera [6]. In either case, τ is
found by fitting the rise or decay of the bolometer temperature
to an exponential equation

y = a + b exp

�
c − t

τ

�
(1)

typically with some least square method, where y is the value
measured (counts, voltage, temperature, and so on), a is an
offset or asymptotic level, b is related to the amplitude, c is
an offset in time, and t is the time.

In another method, the phase difference between the current
and voltage under a sinusoidal input can be used. The phase
lag will be zero as the frequency approaches dc or infinity and
maximum at a frequency related to τ [7].

Without direct electrical control, as assumed earlier, the
pixel must be excited optically, typically with a large black-
body target and shutter. There are many variations on this
method, including a slow chopper [8], [9], an aperture mounted
on a linear motion stage (LMS) [10], [11], and a “fast”
shutter (transition < 25% of τ ) [9], [12]–[14]. In all cases,
the pixels are excited by the blackbody when the aper-
ture is open and cool when it is closed. These methods
all fundamentally suffer from the same problem: they all
are attempting to gather enough data to fit a curve to (1),
but the frame rate of the camera is too slow to populate
more than a point or few along the characteristic exponential
curve.

The current industry-standard techniques, the slow chopper
(2–3 Hz), and LMS (300–500 mm/s) get around this limitation
by taking advantage of the spatial profile of the response to a
moving aperture. As the aperture moves, the counts increase
rapidly where it is open and then fall off in a characteristic
blur tail where it is closed. Thus, in a single image frame,
one observes that it can fit to the exponential ramp or decay.
This occurs over hundreds of pixels in a row, dependent
on the details of the FPA, lens, and exact geometry of the
measurement. One analysis of the expected error for a slow
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chopper method predicted ±3.3%, assuming that each error
source is uncorrelated [9].

On the other hand, the fast shutter approach must take many
frames of imagery. A shutter is thrown with a different delay
�t before the collection of each frame. The bolometer then
has a different amount of time to heat or cool before each
frame is collected. By carefully tracking �t for each frame, a
single curve can be reconstructed from many frames of data.
A related method using a fast chopper (up to 500 Hz) and a
laser instead of a blackbody eschews the timing constraints and
instead examines response at various chopper frequencies [15].
In this approach, chopper frequency and bolometer response
are inversely proportional; the strength of this relationship—
how quickly the response falls with frequency—is related to τ .

While methods that require direct electrical biasing of the
bolometer are capable of providing per-pixel τ measurements,
it is generally impossible to perform these measurements
outside of the facility in which the FPAs are fabricated.
In addition, these measurements tend not to be reflective of
their values in use in a system and under bias and suffer from
relying on approximations of the material TCR.

Current system-level approaches also have drawbacks.
Any system with a moving aperture will suffer deleteri-
ous effects from optics like distortion, defocus and other
aberrations, and nonuniform relative illumination. The FPA
and readout integrated circuit (ROIC) also introduce many
sources of error, such as the effects of responsivity nonuni-
formity and spatial and temporal noises. As pixels get
smaller, diffraction near the aperture edges may also become
problematic.

All known current system-level measurement apparatuses
report τ for the entire array, typically based on some subsets
of the pixels that are actually measured. This is a fundamental
limitation for slow aperture systems that require a spatial fit.
However, it is only a practical limit of how fast-shutter systems
have been constructed to date. This article presents a novel
evolution [16] of the fast-shutter approach, which we here call
the per-pixel folded-time (PPFT) method, to provide extremely
accurate and precise τ results for each pixel. Since NE�T is
already reported per-pixel, this will allow a per-pixel FOM
map to be generated for the entire FPA.

II. EXPERIMENTAL

A. Concept

The PPFT method is based on the fast shutter approach,
whereby τ can be extracted from camera response data col-
lected over many periods of a stimulus that we call the forcing
function. Collected data are “folded” back into one period,
as shown in Fig. 1, allowing data collected at the camera’s
frame rate to populate a curve. Either a shutter must be thrown
with a set of specific time differences in relation to the camera
frame rate ffr [12] or a shutter must be thrown periodically
with a period that is not phase-synchronized with ffr [13]. The
consequences of synchronization can be seen in Fig. 2; data
are captured at the same time relative to the camera frame
time and overlaps when folded back, not allowing for enough
unique points to fit a curve. If either the camera data or shutter

Fig. 1. Top: example simulated data collection with ffr = 30 Hz and 5.25 Hz
shutter. Bottom: collected data can be folded back into one period of the
forcing function making a curve suitable for extracting τ . Conceptually similar
to plots by Waddle et al. [13].

Fig. 2. Top: example simulated data collection with ffr = 30 Hz and
5 Hz shutter. Bottom: forcing function is synchronized to ffr, so a poorly
reconstructed curve results when the data are folded back into the period of
the forcing function. Conceptually similar to plots by Waddle et al. [13].

is not carefully timestamped, the shutter period must be long
enough to precisely resolve it in the camera response data.

Our system, which is laid out fully in Section II-B, improves
upon existing reported systems in key ways, enabling per-
pixel results to be calculated for nearly arbitrarily fast time
constants. The source type is one key enabler. A laser with
a fast acousto-optic modulator (AOM) is used in place of the
typical blackbody and mechanical shutter, allowing for fast
transition times and a high degree of tuning of various source
parameters independently of each other. A mechanical shutter
precludes the testing of low-τ cameras because of the large
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errors introduced to the response curve from the opening time
(at least 1 ms [17]) and possibly diffractive effects near the
edge of the shutter blades. Depending on the configuration
of the shutter blades, different pixels in the array may have a
different exposure time and duty cycle. For example, a pixel in
the center of an iris-type shutter will open first and close last,
so the observed duty cycle will be longer than for other pixels.
Unlike mechanical shutters, a laser beam can additionally be
made arbitrarily large, enabling the testing of full large FPAs.

The second key enabler is much more precise timing for
all components. Since data over many periods must be folded
back into one period, jitter and drift will translate to noisier
data and less accurate τ extraction. This can cause both sys-
temic errors in mean estimation and higher random errors char-
acterized by the greater standard deviation of measurements.
By timestamping the camera data and precisely controlling
the source period, the need to reconstruct the shape of the
forcing function with the camera response data is eliminated,
effectively reducing the number of fit parameters. Essentially,
all of the data can be used in the fit instead of throwing away
the highest and lowest 5%–10% as is typical; supplying the fit
algorithm with a more complete curve allows more accurate
and robust results.

A per-pixel approach additionally has many inherent ben-
efits over approaches that depend in some way on averaging
across many pixels. An LMS or other slow aperture technique
requires a clear view of the aperture. Distortion, diffraction,
defocus, relative illumination, and the modulation transfer
function of the lens across the entire field of interest will act
as strong sources of error for spatially averaged techniques.
A per-pixel approach is much less affected by the lens,
basically only to the extent that less flux will create a modestly
lower signal to noise near the edge of the FPA. In fact,
no lens is required to be used. Only the temporal component
of NE�T causes error in the per-pixel approach; the spatial
component, including responsivity differences between pixels,
can be ignored.

B. System Implementation

The PPFT τ measurement system that we implemented
can be broken into “source” and “data acquisition” (DAQ)
paths. The source path, as shown in Fig. 3, provides highly
controllable illumination to excite the FPA. An Access Laser
L5-S-WCCL CO2 laser provides up to 5 W of peak con-
tinuous wave power with ±1% stability (with closed-loop
beam tracker enabled), 2.4 mm beam waist, 5.5 mrad full-
angle divergence, and a quality factor of M < 1.1 [18].
This is coupled with an AOM with 117 ns/mm optical rise
time to provide fast switching and low transition times [19],
which is controlled by an IntraAction Corp. GE-4030 radio
frequency (RF) source and a Keysight 33611A waveform
generator. Additional control of intensity is provided by a
Lasnix free-standing wire-grid −10 dB neutral density (ND)
filter if needed. A thermopile power meter (Thorlabs S401C
head, PM400 console) can be flipped into the beam path to
monitor optical power.

The rest of the source path is designed to provide a broad
uniform-intensity beam. Here, a series of refractive collimating

Fig. 3. Source path diagram: components and spacings are mostly to scale.
Starting from the lower left, the beam originates in the laser and is split into
three beams by the AOM (orders −1, 0, and 1). The dump blocks the two
unwanted beams, passing the order 1 beam. Mirrors guide the beam through
a set of four expanders (1/4×, 2–8×, 5×, and 10×); the beam passes cleanly
through the clear aperture of each expander except going from 5× to 10×.
The expanded beam illuminates the camera, i.e., the device under test (DUT).
The lighter shaded components with a dotted outline can be flipped in and
out of the beam path as needed. They include a −10 dB ND filter, a power
meter head, and a beam block. The tracker provides closed-loop feedback to
stabilize the laser.

beam expanders are used although this wastes much of the
source beam power. We anticipate further refining this portion
of the path to waste less power and realize increased illumi-
nation spatial uniformity.

The DAQ path, as shown in Fig. 4, is primarily devoted
to collecting precision-timestamped camera response data but
also ensures the waveform generator—and, thus, the AOM—is
well disciplined and does not drift in time. Raw data from the
camera are transmitted via Camera Link base/medium/full to
splitter then breakout boxes (Vivid Engineering CLV-402 and
CLB-501B). The breakout box provides physical access to
the “frame valid” (FVAL) signal, and the splitter prevents
any possible signal degradation via the loading of the FVAL
output. A time tagger (Swabian Instruments Time Tagger 20) is
used to record the time of the leading edge of FVAL with 1 ps
resolution and 34 ps rms jitter [20]. This timestamp is used as
the frame time when folding data. While the time tagger excels
at precise timing over short periods, it is not designed to record
data over long periods with low drift without an external stable
clock [21]. A clock signal with a 6 ns period conditioned by
a 10 MHz rubidium frequency standard (Stanford Research
Systems CG635 and FS725/1C) is provided to the time tagger
to reduce drift to 0.005 ppm over 20 years [22].

Data frames are recorded on a digital video recorder (DVR)
(IO Industries CORE2CL); frames are timestamped by the
DVR, but the maximum precision (±4 μs [23]) may degrade
the τ extraction. An alternative to using the splitter and
breakout boxes would be to source FVAL from the DVR and
feed this to the time tagger but at the penalty of an estimated
200 ns jitter [24]. A “camera busy” signal sourced from the
DVR gates the collection of frame timestamp information by
the time tagger; timestamps are only generated for recorded
frames. The DVR is manually triggered to collect for a
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Fig. 4. DAQ path diagram; above the dotted line are connections to the
source path (see Fig. 3). Data from the camera (DUT) are split out to the
DVR and tagger; FVAL is made physically available to the tagger with a
breakout box (not shown). The DVR records video and exports it to a PC for
processing. The tagger generates timestamps based on the FVAL signal and
exports them to the PC. A clock generator provides stable timing information
to the tagger; it is disciplined by an external 10 MHz time base provided
by a frequency source. The frequency source also disciplines the waveform
generator that controls the AOM in the beam path via an RF source.

predetermined amount of time. All processing takes place on
a PC after collection. A slightly modified setup could support
other camera data protocols, such as CoaXPress and GigE.

C. Sources of Noise and Error

Timing errors are a primary source of error and were
carefully reduced or eliminated to ensure that the system error
is dominated by the camera under test. When looking at a plot
of bolometer response versus time, timing error will move
individual data points left or right, reducing fit accuracy. Note
that constant latency through the signal chain does not matter,
only jitter and drift.

Estimated jitter for each relevant component is shown in
Table I. Jitter for the camera has been broken into clock
and engine jitter. Camera clock jitter is a variation of when
the camera actually outputs a frame. This is unambiguously
clocked by the time tagger and, thus, does not contribute to τ
error except in extreme cases. Camera engine jitter is the jitter
between when the camera collects data and when it outputs
the data; this is estimated from a combination of a number of
blocks in the camera video pipeline, which are assumed to be
entirely correlated for a worst case analysis. The total jitter
on the DAQ path is 337 ps (including the splitter, breakout,
tagger, and clock), assuming jitters are uncorrelated (and, thus,
is computed via a root-sum-squared method). However, the
camera engine jitter must be included, so the total jitter is
dominated by and approximately equal to the camera engine
jitter, about 80 ns. There is also negligible jitter on the AOM,
about 1.4 ps (including the clock and waveform generator).

Drift is also a concern when collecting over long periods.
Standard crystal oscillators can accumulate error over time,
usually dependent on the temperature and the material’s qual-
ity. In this setup, the drift has been virtually eliminated as a
concern by using a frequency standard. There will still exist

TABLE I

TIMING JITTER OF VARIOUS RELEVANT COMPONENTS

drift on the output frame time based on the camera’s internal
oscillator, estimated to be about 20 ppm based on standard
oscillator performance, but this is unambiguously clocked by
the tagger and so is not expected to contribute to τ extraction
error except in extreme cases.

Finally, transition time of the source (e.g., ON→OFF and
OFF→ON) must be considered. The bolometer response rate of
change will be different during the transition period, so longer
transition times will introduce error into the τ fit. For transition
times that are not negligible, one could attempt to derive and
fit to an equation that includes this effect, but the increased
number of variables and complexity would also likely degrade
accuracy, especially if the transition is not very well char-
acterized. The AOM in this setup has a transition time of
117 ns/mm of beam diameter [19]. Assuming a 2.4 mm 1/e2

beam waist diameter [18], ≤4 ns rise time from the waveform
generator [29], and a rise time of 30 ns for the RF driver [30],
a transition time of <500 ns was estimated.

Data points in a bolometer response versus time plot can
also be moved up or down by errors in the response amplitude.
The primary source of this error is characterized by the NE�T
of the pixel. Luckily, only the temporal component of NE�T
contributes to the error with the PPFT method. This is a
characteristic of the camera under test and, thus, cannot be
eliminated. However, it can be compensated for to an extent
by averaging the results of many fits and gathering data longer
or perhaps by certain filters in postprocessing. Laser instability
can also add error, especially over longer periods of data
collection. Here, optical power instability is limited to ±1%
with the use of a CO2 closed-loop line tracker.

Other low-frequency sources of error are also possible, such
as (1/ f ) noise or changes in pixel responsivity from changing
thermal conditions. However, these can be largely mitigated
by limiting the collection time window for each fit and so are
ignored here.

III. MATHEMATICAL DERIVATIONS

As the foundation of our analysis and simulations,
we derived the equations describing both the forcing functions
and bolometer response solutions. While this analysis derives
and implements analytical and semianalytical solutions, a valid
alternative would be a fully numerical approach based on the
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Fig. 5. Square (left) and ramped (right) forcing functions with amplitude
A and no dc component. The forcing function and system response can be
viewed piecemeal in time with regions A�– D� with boundaries set by t0 to t4,
where t0 = 0 and t4 = p. t2 represents the center transition and sets the duty
cycle of the waveform, and t1 and t3 represent the amount of time it takes to
transition low→high and high→low, respectively. 0 < t1 < t2 < t3 < p.

fast Fourier transforms or similar and useful for more arbitrary
digital signals.

To solve for the sensor response to the square and ramped
forcing functions shown in Fig. 5, we considered boundary
conditions. Each segment of the forcing function is assumed
to result in a piecewise continuous solution taking the form of
a differential equation

y(t) = yh(t) + yp(t) (2)

where yh and yp are the homogeneous and particular solutions,
respectively. Critically, the solution must be continuous on
either side of a change in forcing function region and, since
the forcing function is periodic, must also be equal at the start
and end of the period.

yp can be found in general using the Laplace transform for
these cases by considering

Y (s) = H (s)F(s). (3)

H (s) is the bolometer transfer function in the Laplace domain,
a single-pole filter

H (s) = 1

1 + sτ
(4)

and F(S) is the Laplace transform of the forcing function.

A. Forcing Functions

Three forcing functions were considered: square, “ramped,”
and Dirac delta (δ). A “ramped” wave is a square wave that
transitions (low→high and high→low) linearly in nonzero
time. Both are shown in Fig. 5. All transition times are
independently variable for both square and ramped forcing
functions so long as t0 < t1 < t2 < t3 < t4, where t0 = 0 and
t4 = p.

These two forcing functions provide the flexibility to model
the nonidealities realized when implementing a real system.
For example, a shutter or AOM takes some nonzero time to
transition, perhaps with different opening and closing times.
The times bound the regions A�– D� shown in Fig. 5. In the
form of mt + b, the representative piecemeal equations are

Region A m = A

t1
, b = −A

2
(5)

Region B m = 0, b = A

2
(6)

Region C m = −A

t3 − t2
, b = At2

t3 − t2
+ A

2
(7)

TABLE II

ASSUMED VALUES FOR PLOTS IN THIS SECTION (SEE FIGS. 6–8)

Region D m = 0, b = −A

2
(8)

where m is the slope and b is the offset of the line.
Assuming that the forcing function in a given region is a

line, the forcing function can be expressed in the Laplace
domain as

f (t) = mt + b ⇔ F(s) = m

s2 + b

s
. (9)

An impulse forcing function δ(t) will also be considered.
The Laplace transform of a periodic δ function is given as [31]

L {δ(t)} =
� p

0 δ(t)e−st dt

1 − e−sp

= 1

1 − e−sp
. (10)

B. Bolometer Response Solutions

We solve for yp(t) in a given region using (2) and (3)

Y (s) = 1

1 + sτ

�
m

s2 + b

s

�

= m

s2 + (b − mτ )

�
1

s
+ 1

s − 1
τ

�

⇔ mt + (b − mτ )
	

1 + e
t
τ



yp(t) = m(t − τ ) + b, ignoring transient terms. (11)

Note that there is no particular solution for a δ forcing
function: yp = 0.

Plots of the bolometer response for each of the three forcing
functions will be provided. The assumed values for these plots
are given in Table II.

All solutions in this section are valid only for one period;
replace t with t − p�t/p� for a solution which applies over
multiple periods, where �x� denotes the floor of x .

1) Square Wave: The first case considered is a system with
a single τ forced by a square wave, as shown in Fig. 5. There
are two regions, B� and D�, so a piecemeal solution of two
equations is necessary

yB(t) = c1e−t/τ + A

2
(12)

yD(t) = c2e−t/τ − A

2
(13)



7730 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 10, OCTOBER 2020

Fig. 6. One period of the solution for a square wave forcing function [plot
of (18)].

where ±A/2 is the particular solution found by combin-
ing (11) with (6) or (8), respectively. There are now two
unknowns, c1 and c2, which can be solved with a system of
two equations derived from the boundary conditions. In this
case, the value at the beginning and end of the period must
be equal (yB(0) = yD(p)), and the value at the boundary
of regions B� and D� must be equal (yB(t−2 ) = yD(t+2 )).
Incorporating these conditions into (12) and (13) yields the
system

c1e0/τ + A

2
= c2e−p/τ − A

2
(14)

c1e−t2/τ + A

2
= c2e−t2/τ − A

2
. (15)

Solving the system for c1 and c2 gives

c1 = A(et2/τ − e p/τ )

e p/τ − 1
(16)

c2 = Ae p/τ (et2/τ − 1)

e p/τ − 1
. (17)

Finally, (12), (13), (16), and (17) can be combined to yield a
complete piecewise solution

y(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ae−t/τ (et2/τ − e p/τ )

e p/τ − 1
+ A

2
, 0 ≤ t ≤ t2

Ae

p − t

τ (et2/τ − 1)

e p/τ − 1
− A

2
, t2 ≤ t ≤ p.

(18)

One period of the solution is plotted in Fig. 6. The response
does not have time to converge fully to the half amplitude
of the forcing function before the pulse inverts, achieving a
maximum value of 0.424.

Any dc offset of the forcing can be added directly to this
solution since there is no gain from the transfer function.

2) Ramped Wave: Using a process similar to that for the
square wave, a solution can be found for a system being forced
by a ramped wave, as shown in Fig. 5. This time, there are

Fig. 7. One period of the solution for a ramped wave forcing function. The
“rounding” of the response will negatively impact τ extraction accuracy.

four regions, A�– D�, and, thus, four unknowns, c1–c4

yA(t) = c1e−t/τ + A

t1
(t − τ ) − A

2
(19)

yB(t) = c2e−t/τ + A

2
(20)

yC(t) = c3e−t/τ + A(t − t2 − τ )

t3 − t2
+ A

2
(21)

yD(t) = c4e−t/τ − A

2
. (22)

Again using the boundary conditions for values at the interface
of each region and setting the start and end of the period equal,
the unknowns can be found

c0 = Aτ

t1(t3 − t2)(e p/τ − 1)
(23)

c1 = c0

�
t1

	
e

t3
τ − e

t2
τ



+ (t3 − t2)

	
e

p
τ − e

t1
τ


�
(24)

c2 = c0

�
t1

	
e

t3
τ − e

t2
τ



+ (t3 − t2)

	
e

p
τ − e

p+t1
τ


�
(25)

c3 = c0

�
t1

	
e

t3
τ − e

p+t2
τ



+ (t3 − t2)

	
e

p
τ − e

p+t1
τ


�
(26)

c4 = c0

�
t1

	
e

p+t3
τ − e

p+t2
τ



+ (t3 − t2)

	
e

p
τ − e

p+t1
τ


�
(27)

where c0 is a common factor between each of the other cn .
Although omitted for brevity, it is now possible to combine

(24)–(27) into (19)–(22) to form a complete piecewise solution
as in (18). One period is shown in Fig. 7. The maximum value
this time is slightly less than the square case, 0.403 compared
with 0.424, and shifts slightly beyond the time the forcing
function begins to invert.

3) δ Function: Solutions are found for a single pulse applied
to a system at rest and for a pulse train with period p. For a
single pulse when the system is at rest, one need only solve
Y (s) = H (s)F(s), where F(s) = 1

1

1 + sτ
(1) ⇔ 1

τ
e−t/τ . (28)
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Fig. 8. Single δ pulse and three periods (p = 10 ms) of a train of δ pulses.

When considering a periodic train of δ pulses, Y (s) =
H (s)F(s) must again be solved, but, now, F(s) is given
by (10)

Y (s) = 1

1 + sτ

1

1 − e−sp

= 1

τ

1

s + 1
τ

(1 + e−sp + e−2sp + · · · + e−nsp) (29)

where the forcing function is represented by a power series.
Consider that each term in this power series will shift the
response function in time because F(s)e−st0 ⇔ f (t − t0)
u(t − t0) [32]. Thus, the Laplace transform of (29) can be
found

y(t) = 1

τ
e−t/τ (1 + e p/τ + e2p/τ + . . . + enp/τ ) (30)

= 1

τ
e−t/τ

�
1 − e p(n+1)/τ

1 − e p/τ

�
(31)

= exp
� p+np−t

τ

�
τ (e p/τ − 1)

− e−t/τ

τ (e−t/τ − 1)
(32)

= exp
� p+np−t

τ

�
τ (e p/τ − 1)

ignoring transients (33)

where the series has been condensed using the identity

n�
k=0

1 − rn+1

1 − r
, r = ep/τ .

For computational purposes, n is simply the integer number
of periods from t0

n =
�

t

p

�
. (34)

The response of a single δ pulse and a train of δ pulses
is shown in Fig. 8. Note that the period of the pulse train is
10 ms and so the system cannot fully relax between pulses.

4) “Noisy” Solutions: The solutions shown in
Sections III-B1 and III-B2 are limited in that they describe
the steady-state behavior of the system, unperturbed by
changes in conditions or noise. While some sources of noise,
such as NE�T, can simply be added after the calculation of
the detector solution, others will require new values of cn to
be calculated each period; equations for y(t) [see (12), (13),
and (19–22)] are still valid.

When it is necessary to solve for a new cn , a similar
procedure is followed as before, but with two differences. The
times t0–t4 are now not calculated just based on the period,
duty cycle, and rise time, but also considering various timing
jitter and drift. More importantly, the boundary conditions
change. We still assume that the solution must be continuous
between regions of the forcing function, but it is no longer
periodic because the noise on timing forces new values of tn
each period. Thus, we instead set the start of the current period
equal to the end of the previous period yprev and recompute all
values of cn every period. For the first period computed, the
noiseless equations are used to seed the noisy solution with
the “previous” value.

For the square case

c1 =
�

yprev − A

2

�
et0/τ (35)

c2 = c1 + Aet2/τ . (36)

For the ramped case

c1 =
�

A(τ − t0)

t1
+ yprev + A

2

�
et0/τ (37)

c2 = c1 − Aτ

t1
et1/τ (38)

c3 = c2 + Aτ

t2 − t3
et2/τ (39)

c4 = c3 − Aτ

t2 − t3
et3/τ . (40)

C. Fit Methods

In this work, we evaluated three methods to fit data and
extract τ from the PPFT data. The first method is to per-
form a nonlinear least squares (NLLS) fit to (1). We used
the ezfit function in the MATLAB EzyFit toolbox [33], but
any equivalent method would suffice. Goodness of fit for
this method depends strongly on good estimates of initial
conditions. Initial values for a, b, and τ are chosen based on
an integral noniterative nonlinear regression of the exponential
function [34] shown in (1) assuming that c = 0

Sk =
⎧⎨
⎩

0, k = 1

Sk−1 + 1

2
(yk + yk−1)(tk − tk−1), 2 ≤ k ≤ n

(41)

� ∼
−1
τ

�
=

⎡
⎢⎢⎣

n�
k=1

(tk − t1)2
n�

k=1
(tk − t1)Sk

n�
k=1

(tk − t1)Sk

n�
k=1

(Sk)
2

⎤
⎥⎥⎦

−1
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(43)

The other two methods that we consider are corrected suc-
cessive integration (CSI) [35], [36] based on trapezoidal inte-
gration and a related linear regression of the sum (LRS) [36]
based on rectangular integration; both use a solution of linear
least squares. The LRS method was shown by Everest and
Atkinson [36] to run about an order of magnitude faster than
a traditional Levenberg–Marquardt least-squares method while
maintaining near-equal accuracy. During their analysis, all
least-squares methods seemed to perform best with a record
length (i.e., forcing function period) of five to seven times τ .
Other methods that could be considered in the future are those
based on the Fourier transform [36]–[38] or the Legendre
transform [39].

IV. SIMULATION

We wrote a simulation in MATLAB to both act as proof
of concept and also to explore the limits of the accuracy
of this system. It first generates data as we would expect
to receive from the PPFT measurement hardware and then
attempts to extract τ . Depending on the parameters being
modeled, it uses the appropriate bolometer response solutions
discussed in Section III-B and the fit methods described in
Section III-C.

A. Description

The simulation generates a counts value for a single pixel
based on the bolometer response equations and an assumed
linear responsivity of the pixel in counts per Kelvin (cnt/K) at
the time each frame is collected. There are two primary cases,
“pristine” and “noisy.” In the pristine case, the simulation
simply calculates the response for all times t = 0 to tend in
increments of one over frame rate ffr using the appropriate
equation (for example, (18) for a pristine square wave). NE�T
(temporal noise) can be added directly to this result and
is assumed to be Gaussian noise with a mean of zero and
standard deviation equal to the NE�T.

However, to model timing jitter or drift or a change in
forcing function amplitude (e.g., if the laser source is unstable
over time), cn must be recomputed each period and so the
noisy functions must be used. The DAQ jitter is applied to each
frame timestamp as a Gaussian random variable with mean
zero and standard deviation equal to the total jitter, while AOM
jitter is likewise applied to the time of the start of the transition
of the forcing function from low→high (t0) and independently
to high→low (t2). Camera clock jitter is applied to the time
the response is calculated, i.e., the frame time. Thus, there are
two timings that are important within the simulation: the time

the response is calculated (frame time) and the timestamp is
applied to this response (the time the DAQ thinks the response
occurred).

Drift, typically measured in parts per million, is applied to
each clock, respectively, as a “time dilation.” A linearly spaced
vector with the same length as the clock vector is generated
from 1 to (1+drift), and the clock vector is multiplied by this
dilation vector.

Laser instability is modeled by changing the amplitude of
the forcing function each period. A moving average filter
is applied to Gaussian noise with mean zero and standard
deviation equal to one-third of the given percentage of the
amplitude so that values within three standard deviations will
be within the given stability percentage. The filter window
length was chosen such that the result looked “reasonable,” i.e.,
provided a realistic-looking result when 10 min of values are
plotted and viewed. In this scheme, amplitude A is computed
once for each period. Thus, if the length of the period is
changed, the noise statistics (e.g., power spectral density) will
change. To compensate, the window length is scaled linearly
with the length of the period. The window chosen was 5000 ∗
50 × 10−3/p, so the window is 5000 samples wide when the
period is 50 ms. Finally, the output of the moving average filter
is scaled by the square root of the window length to restore the
proper standard deviation after being suppressed by the filter.
This scheme generates random amplitude with proper standard
deviation but with high-frequency changes suppressed.

Data are generated in a loop for each frame for the duration
of the desired collection time, and all outputs are then wrapped
back to one period. Because this data always start with the
rising edge aligned with t = 0, the data can optionally be
randomly phase-shifted to simulate real data that will have
an arbitrary phase based on the exact pixel read time by the
ROIC.

With the simulated data now generated, the fit routine
starts by removing the minimum value and then removing the
phase shift. Central to the phase shift removal algorithm is
MATLAB’s findchangepts, a method to find abrupt changes in
a signal. In this case, it looks for changes in both the mean and
slope of the numerical derivative of the response. To assist the
function, the data are first smoothed using a Savitzky–Golay
smoothing filter (the unsmoothed data are still used to extract
τ ). This is used to find the indices of the array values at which
the rising edge transitions to a falling edge, and vice versa.
Fits to find τ are then performed on the selected falling edge
data after setting the start of the selected data to t = 0.

Some known sources of noise and variability have been
ignored in this model. Of particular importance is the fact that
a real FPA will be both nonlinear in response and has pixel-to-
pixel variability in responsivity that will likely be the ultimate
limit to the reduction of measurement standard deviation in
practice. Many low-frequency noise sources are ignored, such
as (1/ f ) and drift with temperature fluctuation.

B. Simulation Results

A number of simulation cases were run to explore the
best conditions for performing the experiment and perform
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TABLE III

BASELINE CASE SIMULATION VARIABLES, SYMBOLS, AND VALUES

a sensitivity analysis. Four cases were run to find ideal
experimental conditions, including a sweep through forcing
function period, duty cycle, data collection time, and equiv-
alent blackbody temperature. A list of simulation variables
and their values reflecting choices made during the four initial
sweeps for the baseline case is given in Table III. Variables
not optimized by these four sweeps were taken from collected
values (see Table I) or reasonable estimates; many of these
were later swept for a sensitivity analysis. In each case,
2000 simulations were run for each value of the variable
being swept, except for the baseline case, for which 10 000
simulations were run.

The results of the first baseline-setting decision sweep,
varying forcing function period 2.036–152.7 ms, can be seen
in Fig. 9. The standard deviation drops as desired as the period
length increases, leveling off near 50.9 ms; this matches prior
results predicting best performance with p = (5×–7×)τ [36].
NLLS slightly outperforms the other methods, with CSI and
LRS being about equal. The mean also stabilizes and con-
verges to the correct value as the period length increases
though much more quickly for CSI and NLLS methods. Again,
NLLS does best, with CSI close behind and LRS performing
noticeably worse. It is expected that an increased period length
will give better results because the bolometer is allowed to
relax more fully and more of the tail is available for fitting;
at extremely long period lengths, we would anticipate results
to get worse as the tail is overweighted while fitting. This
ranking of goodness, NLLS best and LRS worst, will become
a general trend.

Next, the duty cycle “high” fraction was swept 0.01–0.9;
results are shown in Fig. 10. There is a minima in standard
deviation around 0.3–0.35, and the mean is very near the true
value for CSI and NLLS. LRS is again seen to oscillate but is

Fig. 9. Mean and standard deviation of predicted τ values versus period
length p. Markers are data points; lines are guides to the eye.

Fig. 10. Mean and standard deviation of predicted τ values versus duty cycle
d. Markers are data points; lines are guides to the eye.

near the true value at 0.35, so this value of d was chosen for the
baseline case. Performance in terms of both mean and standard
deviation suffers as the duty cycle is increased beyond this
range because there is very little time in the falling edge curve
with which to fit. However, as the duty cycle is reduced, the
signal to noise suffers because there is less time for the pixel
to heat up; this can be, somewhat, ameliorated by increasing
the source intensity, but this may be impractical.

The length of time that the collection is run is another
parameter that can easily be varied. Obviously, it is desirable
to run the experiment for shorter lengths of time, especially in
terms of how long it takes to postprocess the data. A shorter
collection would also limit the effects of low-frequency noise,
which was not considered in this simulation. As shown in
Fig. 11, running the experiment longer allows the predicted
mean value to stabilize near the true value for CSI and
NLLS fits; 30 s was chosen to minimize time and system
resources to postprocess and immunity to low-frequency noise
while reducing systemic error. The fact that gains in standard
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Fig. 11. Mean and standard deviation of predicted τ values versus record
length (the amount of time data is recorded). Markers are data points; lines
are guides to the eye.

deviation begin to level off after 30–40 s implies that one is
better off averaging the results of two 30-s experiments rather
than running a longer single experiment to reduce random fit
error.

Finally, source intensity in terms of equivalent blackbody
temperature was swept 30 ◦C–200 ◦C (Fig. 12). Again,
as expected, standard deviation goes down as temperature
goes up due to the increased signal to noise, but the mean is
surprisingly robust to even the lowest temperatures; 80 ◦C was
chosen as a realistic temperature while maximizing simulation
performance, but a lower temperature may be better when
taking experimental data so as to limit nonlinear effects with
temperature not considered in this model. We note that at
30 ◦C, even though the mean was well predicted, there
were a significant number of fit failures as a result of the
phase-recovery portion of the algorithm failing. In general, fit
“failures” are due to failure of the phase recovery algorithm,
not because the fit algorithms fail to converge.

With parameters thus “optimized” and set as in Table III,
the baseline case was run. Aggregate results are shown in
Table IV, and a histogram of the 10 000 runs are shown in
Fig. 13 (solid traces). Again, we see that NLLS provides
the best fit, followed closely by CSI. However, NLLS has a
significant penalty in time per fit compared with CSI and LRS,
about three orders of magnitude slower. This makes NLLS
impractical for a large array; for a 1920×1200, NLLS will
take about 40.6 h to fit every pixel, compared with 3.35 min
for CSI and 1.47 min for LRS on a single 3.4 GHz processor
core. Given this, we view CSI as the best fit method to use
experimentally in terms of goodness of fit and processing time.
Fit times for the CSI and LRS cases are unfortunately limited
by the phase recovery algorithm that takes 1.21 ms per record
or 46.6 min for the aforementioned array.

To assess the potential impact to fit the accuracy of the
phase recovery algorithm, the simulation was run with a
known (zero) phase offset, and the phase recovery algorithm
was bypassed. A histogram of the results can be seen in

Fig. 12. Mean and standard deviation of predicted τ values versus source
equivalent blackbody temperature. Markers are data points; lines are guides
to the eye.

TABLE IV

BASELINE CASE SIMULATION RESULTS FOR RANDOMIZED

PHASE AND KNOWN ZERO PHASE

Fig. 13 (dotted traces). Both mean accuracy and standard
deviation improve slightly for CSI and NLLS as expected.
However, the goodness of fit for LRS actually degraded,
likely coincidentally due to its oscillatory behavior observed
in Figs. 9–11. In all cases, the impact is present, but relatively
minor.

After establishing the baseline case, a sensitivity analysis
was run by varying each of the other parameters in Table III
individually. While many of these parameters are either set
by the choice of experimental hardware or entirely outside of
the operator’s control (i.e., a parameter of the camera under
test), this was done to establish limits within which an accurate
result can be expected when performing the experiment. For
brevity, figures are omitted in the discussion of these results.

The camera clock drift was varied from 0 to 1000 ppm from
its baseline value of 20 ppm. There is a slight degradation
of mean and standard deviation starting at 20 ppm, but all
perform well out to 1000 ppm, with CSI and NLLS performing
best; NLLS has essentially no change in standard deviation
in the simulated range. At 1000 ppm, percent errors of
the predicted mean for CSI, LRS, and NLLS are <−0.1%,
<−0.35%, and <−0.02%, respectively.
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Fig. 13. Histogram of predicted τ values for each fit type for the baseline
case using 2000 simulation runs in 30 bins. Fits with “1” notation have their
phase randomized and must be run through the phase-detection algorithm;
“0” denotes a known zero phase shift. Both systemic error in prediction of τ
and standard deviation are reduced for the CSI and NLLS fits for the known-
phase case as expected, demonstrating the effect of imperfect phase detection.
For the LRS case, we believe that the oscillatory behavior seen in Figs. 9–11
explains why the systemic error is apparently increased, even as the standard
deviation is improved.

The camera clock jitter was varied 1 ps–1 ms from its
baseline value of 5 ns. All fit methods maintain nearly exactly
their baseline values out to >1 μs. CSI and NLLS maintain
performance to >10 μs, with the predicted mean unchanged
for NLLS within the simulated range.

The DAQ clock jitter was varied from 1 ps to 10 ms from
its baseline value of 337 ps. For this simulation, the camera
engine jitter was set to 0 because DAQ and engine jitter add
directly; a separate simulation sweeping camera engine jitter
was omitted. The results are essentially the same as for the
camera clock jitter sweep, except that all fit methods begin to
perform very poorly or fail at 0.1 ms.

The DAQ clock drift was varied from 0.1 to 1000 ppm
from its baseline value of 5 ppb. All perform equally well to
their baseline value out to > 0.1 ppm with only very minor
degradation to > 1 ppm and tolerable degradation out to about
10 ppm. For a drift of ≥ 50 ppm, all fits fail in nearly every
trial.

The laser stability was varied from 0% to 50% from
its baseline value of 1%. Impressively, the mean is nearly
unchanged across the entire simulated range although 1 of
the 2000 trials failed to be fit at 50%. However, the standard
deviation increases near-linearly with instability with a 2–4.5×
overall increase depending on the fit type, with a lower slope
below about 5%.

The NE�T was varied 0 mK–1000 mK from its baseline
value of 50 mK. The mean is essentially unchanged to
100 mK, with only minor degradation to 750 mK. However,
the standard deviation increases about three orders of magni-
tude with an increasing rate of change as NE�T increases,
especially above 35 mK. Limited fit failures begin to occur
near 750 mK.

TABLE V

SIMULATION RESULTS FOR TWO EXTREME VALUES OF τ

TABLE VI

SIMULATION RESULTS FOR TWO “PERFECT” NO-NOISE FORCING FUNC-
TION INPUTS, δ-FUNCTION AND SQUARE WAVE

The AOM timing jitter was varied from 1 ps to 1 ms from
its baseline value of 1.4 ps. The results are basically equivalent
to the results of the DAQ clock jitter although, at 1 ms, more
than two in three trials fail to find a fit.

The transition time ttr was varied from 1 ps to 10 ms from its
baseline value of 500 ns. The mean and standard deviation of
each fit method are essentially unchanged to 100 μs. At 1 ms,
there is a significant error in the mean (>10%) and degradation
of standard deviation performance; results at 10 ms do not fail
to fit, but the systemic error in prediction of τ is so great as
to make the results unusable. Assuming that ttr is sufficiently
stable, it is conceivable that a fit technique that took it into
account would be successful to larger values of ttr.

To evaluate the usefulness of the technique for varying τ , the
model was run at τ = 100 μs, p = 509 μs and τ = 100 ms,
p = 509 ms without any reoptimization of other parameters.
The results are shown in Table V and demonstrate the power of
such a system to predict a wide range of τ values. It is odd that
a histogram of the CSI fit results for the τ = 100 μs case (not
shown) shows a clear binomial shape, unlike any other case
that was run. This explains the larger than expected standard
deviation seen for the CSI fit in this case and merits future
investigation. It should be noted that although the sensitivity
analysis shows very wide bounds for successfully predicting
τ near 10 ms, it is likely that the bounds of timing parameters
would be narrowed significantly for τ on the order of 100 μs.

Finally, the fit techniques were evaluated under “perfect”
no-noise conditions and known phase with both a δ-function
and ideal square wave with d = 0.35. The results can be seen
in Table VI. All methods predict τ with very high accuracy
though, again, we see the trend of NLLS and CSI performing
the best. Since there is no noise or other variations between
iterations, the standard deviation is zero.
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Fig. 14. Raw data for a single pixel through 30 s of DAQ. Upper right inset:
histogram of the frequency of digital count levels (30 bins).

V. RESULTS

The proof-of-concept experimental results are given using
the system implementation discussed in Section II-B. These
results are compared with measurements taken on an
LMS [10], [11].

A. Experimental Validation

A FLIR model Tau camera was used without lens as a cam-
era under test. It features a 640 × 512 format microbolometer
FPA, 17-μm pixel pitch, and an expected τ ≈ 9 ms. Data
were collected in 14-bit raw mode, i.e., without bad pixel
replacement or noise filtering. A shutter-based nonuniformity
correction (NUC) was performed immediately prior to data
collection. Fig. 14 shows raw data in digital counts as collected
over 30 s for a single pixel. A histogram in the inset of Fig. 14
shows the frequency of digital counts. Overall, this shows a
very good spread of values, one indicator which implies that
we have chosen p well. Lower count levels are observed more
frequently because d < 0.5.

Fig. 15 shows the instantaneous frame rate generated from
the time tags collected by the tagger corresponding to each
data point in Fig. 14. It is interesting to observe that there
is indeed drift involved in the camera frame clock, apparent
here as a low-frequency change in frame rate. Also, the timing
jitter appears to be better characterized primarily as so-called
“popcorn” or random telegraph noise rather than the Gaussian
assumed in the simulation.

Fig. 16 shows the data from Fig. 14 folded back into a
length of time equal to the source period p with the help of
the gathered timing data. The data very nicely demonstrate the
expected characteristic exponential shape. Coincidentally, the
phase is nearly aligned as needed to fit the data, with just a
small bit of the falling edge data at the end of the sequence.

Fitting proceeds in the same manner as dealing with simu-
lated data but now looping over pixels in the array instead of
individual simulation runs. The falling edge data used for the

Fig. 15. Instantaneous frame rate generated from the gathered timing data
through 30 s of DAQ. Note that the y scale goes from 29.97 to 29.9702 Hz,
near the nominal frame rate of 30 Hz.

Fig. 16. Raw data from Fig. 14 folded back into a length of time equal
to source period p. Coincidentally, the phase is nearly aligned as needed to
fit the data, with just a small bit of the falling edge data at the end of the
sequence.

fit and the resulting fit curve from each algorithm are shown
in Fig. 17. Just as in the simulation, all fits perform well, with
CSI and NLLS providing a superior fit. The extracted τ ’s for
this example pixel are 8.9048, 8.8484, and 8.8936 ms for CSI,
LRS, and NLLS, respectively.

Repeating this process for each pixel results in the 2-D pixel
map shown in Fig. 18. The map shown was generated using the
CSI algorithm; maps using the LRS and NLLS maps look very
similar, so it has been omitted. Fig. 19 shows the histogram of
the frequency of predicted values of τ . The bimodal shape of
the histogram is reflected in the pixel map—roughly, the top
half of the FPA shows a faster τ than the bottom half. The
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Fig. 17. Selected falling edge data and fits using extracted τ . As expected
from modeling, all three fits are very representative of the data, but CSI and
NLLS are clearly superior. Upper right inset: a zoomed-in view of the first
3 ms from the 33.9 ms falling edge.

Fig. 18. 2-D per-pixel map of τ values extracted by the CSI algorithm for a
FLIR Tau camera. Values are in milliseconds. Note the appearance of a few
clusters of apparent dead pixels.

long tail on the trailing edge of the histogram is the band of
slow pixels along the bottom of the map (see Fig. 18).

Per-pixel run times of fits were virtually identical to those
observed in simulation. In this example, 64 pixels failed to
fit because the phase recovery algorithm failed. These can be
seen in small clusters in Fig. 18. We take these to be “dead”
pixels. (There are many definitions of dead pixels, which are
typically considered those which have a responsivity value far
from the observed mean; the exact definition is not important
here.)

Fig. 19. Histogram of the frequency of extracted τ values from each fit
algorithm. Bins are about 6.6 μs wide; markers appear every fifth bin.

TABLE VII

COMPARISON OF PER-PIXEL RESULTS TO LMS RESULTS FOR TWO REC-
TANGULAR REGIONS OF INTEREST

B. Comparison to Linear Motion Stage

Our current established practice for measurement of τ is
to use an LMS technique using a 6.5 mm slit traveling at
500 mm/s in front of a 50 ◦C blackbody. In order to compare
the methods, the same camera was measured on this LMS.
Two areas of the FPA were examined, each with a three row
by 150 column region of interest: a “top” rectangular region
bounded by points (210, 99) and (359, 101) and a “bottom”
region bounded by points (250, 339) and (399, 341), where (0,
0) is the top left corner of Fig. 18. These regions correspond
roughly to the area of darker blue in the top left and yellow
in the bottom middle. Extracted τ ’s from ten total frames in
each region were averaged for the LMS measurement, and all
pixels in each region of interest were averaged for the PPFT
measurement. Results are shown in Table VII.

The results from the LMS show a slower time constant in
the bottom region, as expected from the PPFT 2-D map. The
difference between the top and bottom regions are very similar
for both methods, about 0.3 ms. However, the PPFT method
results report a τ almost 9% faster than the LMS in both
regions. We have observed a similar magnitude of difference
between the LMS and rotating chopper methods in the past.

Preliminary simulations of the LMS technique suggest that
at least 0.14 ms of the difference is due to bias in the LMS
technique. Rounding of the response similar to that observed
in Fig. 7 is caused by the sliding of the slit across the pixel
(i.e., the source does not switch ON/OFF instantaneously). The
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amount of rounding and, therefore, the error in τ extraction are
dependent on many factors, such as measurement geometry,
lens parameters, and stage velocity. We have also observed that
for the LMS technique, the selection of data to fit is important
and somewhat arbitrary in terms of how close to the peak
response to select and how much of the tail to include. For a
given data set, selecting a different subset to fit can easily alter
the extracted τ by 0.2 ms or more. Different effective source
temperatures will also modify the operating or quiescent point
of the bolometers, altering the actual time constant of the pixel.
However, these sources of bias and error do not fully account
for the differences observed here, and further investigation is
ongoing.

VI. CONCLUSION

We have demonstrated a novel PPFT system and algorithm
capable of extracting τ on a per-pixel basis on the camera
level, without needing direct control of the ROIC. To the
best of our knowledge, this is both the first system reported
capable of doing so and also the first time a per-pixel τ map
has been reported. This exciting new capability will allow a
more complete characterization of microbolometer cameras.
Paired with current per-pixel NE�T measurements, we can
now generate per-pixel FOM maps.

This additional information will aid bolometer manufac-
turers in troubleshooting and refining fabrication processes,
enabling more rapid and cost-effective research and develop-
ment. It will also assist system integrators in setting compo-
nent specifications for camera cores and delivery compliance
testing.

As a part of the proof of principle testing of a FLIR
Tau camera, we performed a preliminary comparison to our
current method of record, i.e., the LMS. These limited results
seem to indicate a correlation between the two measurement
techniques in that both indicate regions of faster and slower
τ in the FPA. However, further investigation is required into
why there is a nearly 9% discrepancy between the methods.

In the near future, there is still work to be done in refin-
ing the system, especially the uniformity of the illumination
reaching the camera. Alternate approaches to beam manage-
ment, including optimized expander placement, an integrating
sphere, or a beam shaper [40], [41], are under consideration.
Improvements to source uniformity are our first priority,
as they will provide more accurate and precise results, allow-
ing us to make better comparisons to the LMS technique as we
investigate differences. Currently, we have only demonstrated
the ability to test cameras without optics (i.e., bare FPA
window), but we believe that the technique should be easily
extensible for use with a lens assembly. There also remains
some minor hardware work on the DAQ chain to allow the
collection of raw data from cameras using a protocol other
than Camera Link.

Further in the future, we hope to demonstrate the ability to
independently extract thermal time constants and information
about the ROIC transfer function characteristics, e.g., the
electrical time constant associated with a switch capacitor
network or integrator of a continuous bias system. However,

extraction of two time constants from a data set is nontrivial
and may only succeed under certain conditions [39], [42].
We believe that our hardware provides enough timing pre-
cision if appropriate algorithms can be found to perform the
parameter extraction.
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