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Robust Electromagnetic Pose Estimation for
Robotic Applications

Harald Gietler , Habib Ammari , and Hubert Zangl

Abstract— A wireless electromagnetic field-based sensor system
is proposed, which enables the tracking of moving objects, e.g.,
drones. The gathered up to 6-degrees of freedom information is
complementary to existing sensing principles, e.g., global posi-
tioning system (GPS) or vision-based systems. In addition, it can
be used for stand-alone navigation or noninvasive localization
of medical devices inside the human body. The sensor system is
comprised of an exciter and a sensor. The exciter can be mounted
on a moving robot and generates an electromagnetic field. The
field is measured by the sensor, and subsequently, the pose of the
exciter with respect to the sensors’ pose is estimated. Conductive
objects in the vicinity of the sensor alter the measured magnetic
field due to the induced eddy currents. In general, unmanned
aerial vehicles or wheeled robots mainly consist of conductive
materials, which cause a significant estimation error. This arti-
cle introduces an interference-aware electromagnetic near-field-
based pose estimation approach. Specifically, the change in the
magnetic field due to close conductive and ferromagnetic objects
is modeled. Iterative numerical solutions of Maxwell’s equations,
based on, e.g., finite-element method, are avoided. Instead,
an analytic expression of the change in the magnetic field due to
present eddy currents is given. The advantages of the proposed
concept for model-based low-complexity pose estimation concepts
are shown using an extended Kalman filter. It is observed that the
tracking performance using the introduced model outperforms
the traditional model in eddy current scenarios significantly.

Index Terms— Computational electromagnetics, eddy currents,
Kalman filters (KFs), magnetic field measurement, pose
estimation.

I. INTRODUCTION

ALONG with the growing number of autonomous
mobile platforms, the demand of accurate localization

approaches for navigational tasks increases. Recent research
focuses on indoor navigation, a global positioning system
(GPS)-denied environment, using the visual and inertial sen-
sors for pose estimation [1]. However, their accuracy decreases
when approaching objects. Reasons are, e.g., motion blur
and low overlap between consecutive images. Alternatively,
ultra wide band (UWB) modules have been used for indoor
localization enabling high accuracy [2] and the capability of
data transmission at the same time. However, a direct line of
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sight is necessary between the transmitter and the receiver to
maintain accuracy [3], [4]. This issue is addressed by placing
redundant UWB modules, which increases the chance to cover
the targeted object. Alternatively, electromagnetic field-based
sensors can be used to estimate the pose of the mobile platform
[5], [6]. Recently, magnetic field-based sensors were proposed
as the noninvasive localization method for the miniature med-
ical device in human bodies [7]. Electromagnetic field-based
approaches do not rely on direct line of sight and do not drift
over time. The drawback is the limited range, but usually,
the accuracy increases with the decreasing distance. Thus,
they are beneficial to the robotics field [8], [9] especially
when using them complementary to existing systems such
as visual-inertial odometry (VIO). This article introduces a
robust electromagnetic field-based localization concept. It is
comprised of an electromagnetic field emitter and a magnetic
field sensor. The emitter can be positioned on any moving
platform, e.g., a robot-arm end-effector or a unmanned aerial
vehicle (UAV). The sensor is supposed to have a fixed pose
and its measurement data are used to estimate the relative pose
of the field source. It is well known that conductive materials
in the vicinity of the field alter the field distribution. This is
caused by the induced eddy currents that create an additional
electromagnetic field, which interacts with the original field.
The introduced concept is able to suppress the influence of the
known conductive materials such as the moving platform itself.
This significantly increases the robustness of the approach
especially for highly conductive materials, e.g., metals. Note
that iterative numerical solving of Maxwell’s equations is
avoided. Instead, the change in the magnetic field due to
the interference is explicitly formulated [10]. The accuracy
of the formulation is verified by comparing it with a clas-
sical finite element method (FEM)-based solution. Due to
its low computational complexity, the concept is especially
useful for real-time applications. This is ultimately showcased
by using an extended Kalman filter (EKF)-based tracking
approach. A comparison between the traditional model that
assumes surrounding air and the extended model for conduc-
tive and ferromagnetic objects close to the sensor systems
is carried out. The results substantiate the need for models
considering the electromagnetic interferences (EMIs) caused
by parasitic eddy currents. Finally, an investigation of the
algorithmic complexity is reported, which pronounces the
applicability for real-time devices.

II. SYSTEM MODEL

The proposed concept consists of a freely movable alternat-
ing magnetic field source (emitter), e.g., attached to a UAV,
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and a magnetic field sensor arrangement with a fixed position
and an attitude, e.g., on the ground. Ideally, the emitter consists
of three-point dipole sources with orthogonal magnetic dipole
moments. A manufacturable system could be a stack of small
orthogonally placed coils, which can be approximated by a
dipole model. The approximation is valid in certain limits
described in [11]. Alternatively, each coil can be modeled as
a stack of magnetic point sources rather than just multiplying
the magnetic dipole moment with the number of turns. Such
a coil structure may efficiently be driven using rectangular
waveforms and employing parallel resonant circuitries. The
complementary magnetic field sensor could also consist of
three orthogonally placed pick-up coils to serve for all three
spatial axes. Often, it is assumed that placing the emitter on the
moving platform is disadvantageous in terms of energy con-
sumption. This is not always true, especially when low-noise
amplifiers are used on the receiver side. They often consume
more energy than the transmitter circuitry. On the contrary,
placing the receiver on the robot may cause EMI issues.
Note that the source of interferences, e.g., motors, can be
very close to the receiver. When the transmitter is far away,
the EMIs could be critical. In addition, it is easier to provide
computational power at the ground station, which is required
on the receiver side. Hence, the transmitter is placed on the
moving platform and the receiver is located at the base station.

The first-field analysis neglects the emitter-carrying plat-
form, and the surrounding space is assumed to be air. The
magnetic field strength at the sensor position xr is then given
by [12]

H0(r, m) =
⎡
⎣Hx

Hy

Hz

⎤
⎦ = 1

4π

�
3r(m · r)

|r|5 − m
|r|3

�
. (1)

The quantities r = xr − xs , m, and μ0 denote the relative
position with respect to the emitter, the magnetic moment of
the emitter, and the permeability of free space, respectively.
An understandable visualization of the geometrical depen-
dences is shown in Fig. 1. If the attitude of the mobile platform
changes, r remains the same, whereas m would be altered.
Therefore, the magnetic dipole moment can be used to model
the attitude of the emitter and more generic the attitude of the
mobile platform. Reformulating the magnetic dipole moment
yields

m = Rm� (2)

where m� is the magnetic dipole moment in initial situation
and R ∈ IR3×3 is a rotational matrix, with xs being the center
of rotation. R is defined by the rotation angles θ ∈ IR3 and
the rotation sequence

R = RzRyRx (3)

where Rz , Ry , and Rx are given by

Rz =
⎡
⎣cos θ3 − sin θ3 0

sin θ3 cos θ3 0
0 0 1

⎤
⎦ , Ry =

⎡
⎣ cos θ2 0 sin θ2

0 1 0
− sin θ2 0 cos θ2

⎤
⎦

Rx =
⎡
⎣1 0 0

0 cos θ1 − sin θ1
0 sin θ1 cos θ1

⎤
⎦ . (4)

Fig. 1. Schematic view of the proposed system. The electromagnetic field
emitter is mounted on the mobile platform, i.e., UAV, whereas the sensor is
attached to the ground. The relative position and orientation of the emitter are
of interest.

Suppose the magnitude of the magnetic moment is known,
then the magnetic field strength at any observation point is
described by 6-degrees of freedom (DOF), i.e., the space
vector pointing from the emitter to the point of observation
and the attitude of the emitter. For some applications, partial
information about the pose already exists, which can be used
to reduce the model complexity.

Independent of the field model, different kinds of magnetic
sensors can be used to measure the local magnetic field.
A common way to measure alternating magnetic fields is
pick-up coils [13], [14]. Faraday’s law links the local mag-
netic field strength to the induced electromagnetic force. For
a homogeneous magnetic field in the cross section of an
air-cored solenoid, the electromagnetic force is given by [15]

V = −μ0 NA · δH
δt

(5)

where N is the number of windings and A represents the
area of the cross section of the coil. For a nonhomogeneous
magnetic field, e.g., dipole field, this can still be a good
approximation depending on the location of the point of
observation. The taken measurements are the basis for pose
estimation. Due to the model order, a single observation is
not sufficient to get an accurate estimate. Therefore, a number
of either sensors or emitters are required.

III. TRACKING OF A MOBILE TARGET

This section presents an approach to estimate both the
location and orientation of the target. A widely used approach
to track system states is the Kalman Filter (KF). It produces an
optimal estimator for linear systems with Gaussian noise. The
EKF is the generalization of the KF to nonlinear dynamical
systems. Note that the EKF does not produce an optimal
estimator anymore. Although it remains robust with respect to
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noise and is computationally cheap, which makes it suitable
for real-time applications.

A. System-State Observation

In general, the dynamics of the employed robots can be
used to model the system states, i.e., pose and velocities.
Here, the target dynamics are modeled in a generic fashion
in order to be independent of specific devices. A general
external driving acceleration that has the form of white noise
is assumed to affect the position of the target. The velocity
(V(τ ))τ∈R+ of the target is given in terms of a 3-D Brownian
motion, also known as Wiener process (Wv (τ ))τ∈R+ , and its
position (Z(τ ))τ∈R+ is given by the integral over the Brownian
motion. The increments of Wv , e.g., Wv (t) − Wv (s) with
0 ≤ s < t , are statistically independent and distributed as
N (0, t − s). The stochastic differential equation linking the
random acceleration and the velocity term can be solved,
as shown in [16]

V(τ ) = V0 + σ vWv (τ ), Z(τ ) = Z0 +
� τ

0
V(s)ds. (6)

Note that V0 = V(0) and Z0 = Z(0) are constant vectors
and denote the initial velocity and position of the object,
respectively. The angular acceleration of the target is subject
to independent white noise, so that the angular velocity
(�(τ ))τ∈R+ is given by means of a 3-D Brownian motion
(Wω(τ ))τ∈R+

�(τ ) = �0 + σωWω(τ ), �(τ ) = �0 +
� τ

0
�(s)ds. (7)

Here, �0 = �(0) and �0 = �(0) are constant vectors and
denote the initial angular velocity and orientation of the target,
respectively. The target can be observed at discrete times
t�τ, t ∈ N, with time step �τ . Furthermore, we denote the
system states at time step t�τ as vt , zt , ωt , and θ t . They can
be represented using the recursive relations

vt = vt−1 + αt

αt = σ v (Wv (t�τ) − Wv ((t − 1)�τ))

zt = zt−1 + vt−1�τ + β t

β t = σ v

� t�τ

(t−1)�τ
(Wv (s) − Wv ((t − 1)�τ))ds

ωt = ωt−1 + γ t

γ t = σω(Wω(t�τ) − Wω((t − 1)�τ))

θ t = θ t−1 + vt−1�τ + δt

δt = σω

� t�τ

(t−1)�τ
(Wω(s) − Wω((t − 1)�τ))ds. (8)

The increments of the Brownian motions are independent of
each other and are summarized in

Ut =

⎡
⎢⎢⎣

αt

β t
γ t
δt

⎤
⎥⎥⎦ . (9)

The instances of Ut are independent and identically distributed
with the multivariate normal distribution with zero mean and

covariance matrix � given by

� = �τ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
v I

σ 2
v

2
�τ I 0 0

σ 2
v

2
�τ I

σ 2
v

3
�τ 2I 0 0

0 0 σ 2
ωI

σ 2
ω

2
�τ I

0 0
σ 2

ω

2
�τ I σ 2

ω
3 �τ 2I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

where I represents the 3-D identity matrix. The covariance
matrix can be computed using Ito’s lemma to account for the
stochastic integrals [17]. The state vector

Xt =

⎡
⎢⎢⎣

vt

zt

ωt

θ t

⎤
⎥⎥⎦ (11)

is linearly propagating, satisfying

Xt = FXt−1 + Ut , F =

⎡
⎢⎢⎣

I 0 0 0
�τ I I 0 0

0 0 I 0
0 0 �τ I I

⎤
⎥⎥⎦ . (12)

The magnetic field observation made at time t using (1) is
denoted as Vt . The magnetic field observation is also subject
to additive noise Wt . Note that the system state zt corresponds
to the position of the magnetic field source xs and the system
state θ t corresponds to the orientation of the magnetic dipole
moment defined in (2)–(4). The velocity vectors vt and ωt do
not contribute to (1). To highlight the dependence upon zt , θ t ,
the nonlinear function h is introduced, which corresponds to
(1). Then, together with (12), the system state and observation
equations are given by

Xt = FXt−1 + Ut (13)

Vt = h(zt , θ t ) + Wt . (14)

B. EKF

This section summarizes the well-known EKF approach
[18], [19]. Consider a nonlinear dynamical system with the
state propagation function f �

t depending on the system states
X �

t−1 and process noise W �
t ∼ N (0, Qt �) and the observa-

tion equation h�
t depending on X �

t and measurement noise
V �

t ∼ N (0, R�
t )

X �
t = f �

t

�
X �

t−1, W �
t

�
(15)

Y �
t = h�

t

�
X �

t , V �
t

�
. (16)

The functions f �
t , h�

t are nonlinear and differentiable. In gen-
eral, nothing can be said about the conditional distribution
X �

t |Y �
1:t due to the nonlinearity. The EKF calculates an approx-

imation of the conditional expectation by an appropriate
linearization of the state transition and observation model.
Due to the approximation, the resulting algorithm is not
optimal in the least-squares sense. Let F �

X and F �
W be the

partial derivatives of f � with respect to system state and
process noise, respectively. Furthermore, let H �

X and H �
V be

the partial derivatives of h� with respect to system state
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and measurement noise, respectively. The EKF algorithm is
summarized in the following.

1) Initialization:

x̂ �
0|0 = E


X �

0

�
, P �

0|0 = cov
�
X �

0

�
. (17)

2) Prediction:

x̂ �
t |t−1 = f ��x̂ �

t−1|t−1, 0
�

(18)

Y �
e,t = Y �

t − h��x̂ �
t |t−1, 0

�
(19)

P �
t |t−1 = F �

X P �
t−1|t−1F �T

X + F �
W Q�

t F �T
W . (20)

3) Update:

S�
t = H �

X P �
t |t−1H �T

X + H �
V R�

t H �t
V (21)

K �
t = P �

t |t−1 H �T
X S�−1

t (22)

x̂ �
t |t = x̂ �

t |t−1 + K �
t Y

�
e,t (23)

P �
t |t = �

I − K �
t H �

X

�
P �

t−1|t−1. (24)

C. Tracking Experiments

In this section, the performance of the EKF-based tracking
is investigated. As mentioned, a number of unique measure-
ments are required due to the model complexity. Therefore,
three emitters and one sensor are used. The sensor is mea-
suring the 3-D field at a known spatial point. The emitters
are static to each other. However, in a global coordinate
frame, the vector between the emitters is not static due to
the rotation of the object. Without the presence of rotation,
the distance between the first emitter s1 and the second emitter
s2 is given by p12 = [0.05, 0.05, 0.05]T . The distance
between the first and the third emitter s3 is given by p13 =
[−0.02, 0.03, 0.02]T . The position of s1 is used as target
position xs following the trajectory simulated according to
(8). A period of 20 s using �τ = 0.1 s with parameters
σ v = 0.01, σω = 0.1 and initial state X0 = [v0, z0, ω0, θ0]
is simulated

v0 = [0.01, 0, − 0.005]T , z0 = [0.2, − 0.2, 0.3]T

ω0 = [0, 0, 0]T , θ0 =
�
0.02, − 0.05,

π

4

�T
.

The measurement data Vt are generated first, calculating the
magnetic field using (1) and then adding white noise. The
receiver xr is located in the origin. Note that the emitters are
used in a time-multiplexed fashion; thus, only one emitter is
transmitting at any instant in time. In addition, the magnetic
dipole moment of each emitter is 1 Am2, and they point
toward orthogonal directions. The initial guess of X0 for the
EKF is X̂0 = [v̂0, ẑ0, ω̂0, θ̂0] given by

v̂0 = [0, 0, 0]T , ẑ0 = [0.05, − 0.1, 0.4]T

ω̂0 = [0, 0, 0]T , θ̂0 = [0, 0, 1]T .

Note that (13) is linear; therefore, in order to apply the
EKF, only (14) needs to be linearized. This can be done by
calculating the partial derivatives of h with respect to Xt . The
tracking performance of the EKF in terms of position x̂s is
shown in Fig. 2 and in terms of orientation θ̂ is reported
in Fig. 3. It can be seen that the true system states can

Fig. 2. Magnetic field source is moving along a random trajectory, indicated
with black markers, driven by Brownian motion. The EKF estimates the
trajectory shown as magenta waveform. The algorithm is able to identify
the true states, despite its poor initial guess.

Fig. 3. While moving along the trajectory, the orientation of the magnetic
field source is changing by means of a 3-D Brownian motion. The true
orientation is indicated with black markers, whereas the estimated orientation
is shown as a magenta waveform. Note that the x-value, y-value, and z-value
represent the rotation around the x-, y-, and z-axes, respectively.

be found, despite the poor initial guess. The process noise
covariance is given by (10). The initial state propagation
covariance is set to 0.1 · I, and the measurement noise is
additive white Gaussian noise (AWGN) with a variance of
10−4. This results in an average signal-to-noise ratio (SNR)
of approximately 30–40 dB at 1-m distance. The measurement
noise is added to all the components of the field. For the
dominant parts of the field, it appears to be quite small.
Despite the parts with small amplitude where it is significant,
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TABLE I

MSE IS CARRIED OUT FOR DIFFERENT MEASUREMENT NOISE LEVELS

an SNR at 1-m distance can drop below 0 dB for the individual
components. The tracking accuracy decays with the increasing
distance to the receiver. This is explained by the decreasing
SNR of the measured magnetic field. Jumps in the orientation
result plot are due to the restriction of the angle to −π ≤
θ < π . The experiment is repeated a hundred times and the
average mean squared error (mse) is reported in Table I. Here,
divergence of the EKF is detected by watching the estimated
position. When the distance between the receiver and the
estimate becomes greater than 2 m, the experiment is stopped.
The mse is based on the distance between the estimate and the
true position (|zt −ẑt |). Five different measurement noise levels
are carried out, and the results are compared.

IV. EDDY CURRENT MODEL

The previous chapter showed that a stack of moving
magnetic field sources can be tracked using an EKF. However,
conductive objects in the vicinity of the sensor are not
considered and may distort the pose estimation, because the
magnetic field is altered and is not accurately modeled by (1)
anymore. Often the carrier of the emitter, e.g., UAV or wheeled
robot, is made of conductive materials. This chapter introduces
a methodology to suppress the influence of those known
conductive objects. Suppose that there is an electromagnetic
inclusion in R

3 of the form B , where B is a bounded, smooth
domain. Let the constant quantities μ� and σ� denote the
permeability and conductivity of the inclusion. The piecewise
constant magnetic permeability and electric conductivity are
given by

μa =
�

μ� in B

μ0 in Bc = R
3 \ B

σa =
�

σ� in B

σ0 in Bc.
(25)

Let (Ea, Ha) denote the eddy current fields in the presence
of the electromagnetic inclusion B and a source current
J0 located outside the inclusion. It is supposed that J0 is
divergence free ∇ · J0 = 0 in R

3. The fields (Ea, Ha) are
the solutions of the following eddy current equations:⎧⎪⎨
⎪⎩

∇ × Ea = iωμaHa in R
3

∇ × Ha = σaEa + J0 in R
3

Ea(x) = O(|x|−1), Ha(x) = O(|x|−1) as |x| → ∞.

(26)

Commonly, FEM-based simulation environments are used
to solve (26) for Ha . Those approaches come with high
computational cost and are often not applicable in low-power
real-time devices. In the applied mathematics community,
the change in magnetic field H̃a = Ha − H0 due to the
presence of the object B is explicitly expressed given by (27).

The mathematical proof is conducted in [10]

H̃a(xr ) =
�

B
∇xr G(xr , y) × ∇y × H̃a(y)dy +

�
1 − μ�

μ0

�

×
�

B
(Ha(y) · ∇y)∇xr G(xr , y)dy. (27)

Here, xr denotes the point of observation, where xr ∈ Bc. The
scalar function G(xr , y) represents the fundamental solution of
the Laplace equation given by

G(xr , y) = 1

4π |xr − y| . (28)

In Sections IV-A–IV-D, it is shown that this formula is
especially useful for objects that are static with respect to the
emitter. In such a situation, the curl of H̃a(y) as well as the
field Ha(y) are constant.

A. Numerical Experiments and Verification

This section investigates the accuracy of the formula
given in (27) by comparing it with the classical FEM-based
approach. Therefore, a cube made of copper is centered at
[0 0 0.15]T . Its electrical conductivity and edge length are
given by σ� = 59.9 × 106 S/m and 0.05 m, respectively. The
used magnetic permeability is μ� = μ0 = 4π × 10−7 H/m.
The first emitter is located at [0 0 0.2]T . The distances to the
second and the third emitter are reused from Section III-C,
given by p12 and p13. The corresponding dipole moments are

m0 =
⎡
⎣ 0

0
0.01

⎤
⎦ m1 =

⎡
⎣ 0

0.01
0

⎤
⎦ m2 =

⎡
⎣0.01

0
0

⎤
⎦ Am2.

The point of observation xr is located at [0.05 0.05 0.2]T .
As a reference, a commercial FEM-based software kit is
used [20]. The simulation runs once in the presence and
once in the absence of the copper cube and calculates the
magnetic field at xr . The magnetic field difference represents
the reference result H̃r . It is worth noting that boundary
conditions regarding the simulation environment border are
avoided by extending the mesh until the field drops below the
numerical boundary. The used excitation frequency is 450 kHz.
Consequently, the near-field region is around 666 m and
field-propagation phase shifts are negligibly small for short
distances. In addition, the penetration depth of objects with
low conductivity such as desks and concrete walls is large,
and they do not shield the field. This excitation frequency
is used throughout the article. The explicit formula (27) is
used to obtain a comparative result. The field curl difference
∇y × H̃a(y) and the magnetic field Ha(y) are precomputed
using the presented FEM environment. The remaining parts
of (27) are analytically evaluated. Note that the object is



GIETLER et al.: ROBUST ELECTROMAGNETIC POSE ESTIMATION FOR ROBOTIC APPLICATIONS 4263

TABLE II

COMPARISON OF THE FEM-BASED SOLUTION WITH THE EXPLICIT FORMULA. THE USED OBJECT PARAMETERS

ARE σ� = 59.9 × 106 S/m AND μ� = μ0 = 4π × 10−7 H/m

TABLE III

COMPARISON OF THE FEM-BASED SOLUTION WITH THE EXPLICIT FORMULA. THE USED OBJECT PARAMETERS

ARE σ� = 0.1 × 106 S/m AND μ� = 100 · μ0 = 4π × 10−5 H/m

statically linked to the field emitter. Consequently, the field and
its curl at the object are independent of the global position and
orientation. Hence, it is only required to be calculated once,
independent of the relative pose with respect to the receiver.

As shown in Table II, the classical FEM-based approach
and (27) obtain similar results. The minor discrepancies are
mostly explained by numerical inaccuracies. It is worth noting
that the magnetic field components at the observation point
changed by approximately 50% due to the presence of the
copper cube. The imaginary part of the field is negligibly
small for diamagnetic materials. To show the validity of the
explicit formula for ferromagnetic materials, a second scenario
is presented with σ� = 0.1 × 106 (S/m) and μ� = 100 · μ0.
The geometric configuration is reused, and the corresponding
results are reported in Table III. It is shown that (27) generates
the same result as the classical FEM-based approach for both
the imaginary and real parts of the magnetic field.

B. Adapted EKF Model

This section describes how the EKF-based tracking
approach is adapted with respect to the presented eddy current
scenario. The formula given in (27) consists mainly of two
parts, where the second part corrects for the effects of ferro-
magnetic objects. As a starting point, the first part is analyzed
and given by

�
B ∇xr G(xr , y)×∇y × H̃a(y)dy. By introducing

a second coordinate frame, the integral can be simplified. The
first coordinate frame is from now on called global frame
and the second coordinate frame is called local frame. The
local frame has its origin at the position of the first emitter.
The local coordinate frame can freely move and change its
orientation with respect to the global frame, which is assumed

to be fixed. Consequently, the target of the tracking algorithm
is the origin of the local frame expressed in the global frame.
For simplicity, the volume integral over the conductive object
is defined in the local coordinate frame, where its limits are
constant due to the static link between the target and the object.

Furthermore, the object B is separated into a number n
of smaller objects Bi with i = 1 . . . n, where Bi ⊂ B and
Bi ∩ B j = ∅ with j = 1 . . . n and i �= j . The volume integral
can then be rewritten as�

B
∇xr G(xr , y) × ∇y × H̃a(y)dy

=
n�

i=1

��
Bi

∇xr G(xr , yi) × ∇yi × H̃a(yi)dyi

�
. (29)

The EKF-based tracking approach becomes applicable when yi
is fixed to the geometric center of Bi called yi . This introduces
an quantization error when calculating (27). However, as n
tends to grow toward infinity and Bi shrinks toward zero,
the error would vanish. As a consequence of the quantization,
∇xr G(xr , yi ) becomes independent of the integration, which
results in

n�
i=1

��
Bi

∇xr G(xr , yi)∇yi × H̃a(yi)dyi

�

≈
n�

i=1

(∇xr G(xr , yi ) ×
�

Bi

∇yi × H̃a(yi)dyi ). (30)

The integral over ∇yi × H̃a(yi ) is constant and can be
precomputed, which results in H̃Ci . A proper discretization
for this approximation has to be found for any individual
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Fig. 4. Conductive object in the vicinity of the sensor is divided into smaller objects. The part that points toward the emitters is more significant.
Therefore, the object resolution close to the emitters is intentionally higher. The shown constellation represents the initial state X0 for the vast amount of
experiments throughout the article. In addition, it is used in the comparison made in Tables II and III.

object geometry and constellation with respect to the emitters.
The used discretization for the copper cube is schematically
shown in Fig. 4. The parts of the cube, which are closer to
the emitters, are more significant. Therefore, the surface with
higher object resolution points toward the emitter. A higher
object resolution would increase the accuracy of (30) and
is, therefore, favorable. However, this comes with additional
computational cost.

The described procedure is also applied to the second part of
the formula. On the contrary, the integral over the magnetic
field instead of the curl of the magnetic field is required to
be precomputed. In total, for large n and small Bi , a good
approximation of (27) is given by

H̃a(xr ) ≈
n�

i=1

(∇xr G(xr , yi ) × H̃Ci )

+
�

1 − μ�

μ0

� n�
i=1

(Hi · ∇yi )∇xr G(xr , yi ). (31)

Here, Hi denotes the volume integral over the magnetic field
in Bi in the presence of the object. In the global frame,
the quantity yi can be expressed as yi = r + Rzi with zi

being the known distance (in local frame) between the emitter
and the geometric center of Bi . Note that the known point
of observation xr is defined in the global coordinate system,
which result in six remaining DOF, i.e., xs and θ .

The geometric dependences are schematically visualized
in Fig. 5. Although Fig. 5 shows a 2-D setup, the same
relations hold for the 3-D case. The magnetic field at xr is
ultimately given by

H(xr ) = H0(r, m) + H̃a(xr ). (32)

Note that (31) explicitly expresses the change of magnetic
field at observation point xr without solving the full
Maxwell’s equations. Since the position and orientation of

Fig. 5. Geometric dependences are schematically shown. Here, xr represents
the point of observation defined in global coordinate system and xs rep-
resents the magnetic field source and origin of the local coordinate frame.
Furthermore, zi given in local frame denotes the vector between the geometric
center of object part Bi and magnetic field source. The limits of object B
are known in local frame. The transition between the local and the global
coordinate frame is defined by translation r and rotation R.

the target change over time, the result needs continuously
to be updated. FEM-based solutions, for example, are com-
putationally heavy and can hardly be solved in real time
on common hardware. The introduced concept in contrast
is computationally lightweight and can easily be evaluated
at certain instances in time. The approximation made from
(30) to (31) limits the accuracy. The algorithm cost directly
depends on the number of subobjects Bi . For complex and
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large shapes, it can be difficult to get accurate results with a
low object resolution. In fact, it is a tradeoff between accuracy
and computational complexity. The nonlinear function h in the
observation equation (14) clearly corresponds now to (32).
To apply the EKF, it needs to be linearized with respect to the
system states Xt .

C. Tracking Experiments

This section compares the EKF-based tracking performance
of the model extended for close conductive objects (32) with
the model given by (1). Note that a conductive cube, shown
in Fig. 4, is located close to the magnetic field sources. Most
of the used parameters of this experiments are reused from
Section III-C. The starting point of the trajectory X0, shown
in Fig. 4, is given by

v0 = [0.001, 0.001, 0.001]T , z0 = [0, 0, 0.2]T

ω0 = [0, 0, 0]T , θ0 = [0, 0, 0]T .

To get a meaningful comparison, the initial guess of the
EKF is equal to the initial position X̂0 = X0. For this and
the following experiments with good initial guess, the state
propagation covariance is lowered to 10−3 · I due to the good
initial guess. The process and measurement noise covariances
are reused from the previous experiment. The edge length of
the conductive cube B is 5 cm and its center is located at
[0, 0, 0.15]T . The geometry is separated into n = 79 smaller
cubes Bi , as shown in Fig. 4. The integrals over the curl
of the magnetic field resulting in H̃Ci and the integrals over
the magnetic field resulting in Hi are precomputed. For zero
conductivity and permeability, the models H0 and H have the
same result.

First, a comparison is made, where the conductivity of the
cube is changed to σ� = 1000 (S/m), which is approximately
the conductivity of various carbon-based materials.

The estimated trajectory and orientation using both the
models as well as the true trajectory and true orientation are
reported in Figs. 6 and 7, respectively. It is observable that, for
the used conductivity, the performance of both the models is
acceptable. The trajectory and orientation of the target is well
tracked. The experiment is repeated a hundred times and the
average mse for different measurement noise levels is reported
in Table IV. It is shown that, for objects with low conductivity,
the interference is very small and the model extension can be
omitted for the presented case. Depending on the shape of
the object, its conductivity, and the desired accuracy, it can
individually be decided whether the extension is required or
not.

To visualize the advantages of the H model, the con-
ductivity of B is increased to the level of copper σ� =
59.9 × 106 (S/m). The evolution of the position and ori-
entation estimates using both the models is reported in
Figs. 8 and 9, respectively. The EKF tracking accuracy based
on the H0 model decreased dramatically, while for the adapted
model H, the tracking remains accurate. Here, the benefit in
terms of accuracy of the comparatively complex model exten-
sion is clearly visible. The extended model is able to accurately
track the trajectories until the receiver signal strength becomes

Fig. 6. EKF-based position tracking is shown with two different underlying
models. The black markers indicate the true position, the magenta waveform
represents the underlying model (1), whereas the blue waveform shows the
tracking based on the extended model (32). Due to the low conductivity of
the object (σ� = 1000 S/m), the accuracy of both the models is almost equal.

Fig. 7. EKF-based orientation tracking is shown with two different underlying
models. The waveform colors and underlying models are defined as in Fig. 6.
Due to the low conductivity of the object (σ� = 1000 S/m), the accuracy of
both the models is almost equal.

too weak and measurement noise starts to dominate. The base
model, which neglects the highly conductive cube, performs
insufficient even in the areas, where the receiver signal strength
is still reasonable. As in the previous experiments, the mse is
carried out and shown in Table V. For the highly conductive
cube, the superior performance of the extended model is also
pronounced by the mse.

A third experiment featuring a ferromagnetic material with
parameters σ� = 0.1 × 106 S/m and μ� = 100 · μ0 is
carried out. In Figs. 10 and 11, it is shown that the tracking
performance is maintained for ferromagnetic objects. As in
the previous experiments, the MSE is carried out and shown
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TABLE IV

MSE IS CARRIED OUT FOR DIFFERENT MEASUREMENT NOISE LEVELS AND BOTH UNDERLYING MODELS

TABLE V

MSE IS CARRIED OUT FOR DIFFERENT MEASUREMENT NOISE LEVELS AND BOTH UNDERLYING MODELS

Fig. 8. EKF-based position tracking is shown with two different underlying
models. The black markers indicate the true position, the magenta waveform
represents the underlying model (1), which holds for surrounding air, whereas
the blue waveform shows the superior tracking performance based on the
extended model (32) for close-by conductive objects. The conductivity of the
cube is σ� = 59.9 × 106 S/m.

in Table VI. Note that the introduced phase shift, also shown
in Table III, may be difficult to measure with common sen-
sors. However, it can easily be estimated when the emitter
and the receiver are synchronized. A comparison with the
traditional model (1) is neglected, because it does not support
the phase shift introduced by the ferromagnetic material. For
certain constellations, the phase shift is substantial. As a
consequence, the EKF based on the traditional model diverges
quickly.

In the last experiment, a trajectory, which is not randomly
generated, is used. Instead of using the Brownian motion
model from (8), a helical line with constant vertical velocity
is used. In addition, the angular velocity is constant, but its
x and y components vary periodically. Note that the attitude
of the target is always aligned to the flight direction. The
system model remains the same and is designed for random
trajectories. The flight path simulates nonrandom real-world
movement, e.g., a UAV in the vicinity of the sensor. The initial

Fig. 9. EKF-based orientation tracking is shown with two different underlying
models. The waveform colors and underlying models are defined as in Fig. 8.
Due to the high conductivity of the object (σ� = 59.9×106 S/m), the extended
model performs superior.

states X0 are given by

v0 = [0, 0.12, 0.02]T , z0 = [0.6, 0, 0]T

ω0 = [0, 0, 0.02]T , θ0 = [0.1662, 0, 0.02]T .

The initial guess of the EKF is X̂0 = X0. The conductive
cube is made of copper with 59.9 × 106 S/m and μ� = μ0.
Its relative location and size is reused from the previous
experiments. The simulated flight lasts 80 s, and its trajectory
is given by

z(t) =
⎡
⎣0.6 cos(0.2 t)

0.6 sin(0.2 t)
0.01 t

⎤
⎦ , θ(t) =

⎡
⎣0.0831

0
0.02 t

⎤
⎦ . (33)

The evolution of the position and orientation estimates
is shown in Figs. 12 and 13, respectively. Again, the mse is
carried out for five different measurement noise levels and is
shown in Table VII. The experiment is repeated a 100 times
each, using the same trajectory but different realizations of the
noise distribution. The estimator with an underlying extended
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TABLE VI

MSE IS CARRIED OUT FOR DIFFERENT MEASUREMENT NOISE LEVELS AND BOTH UNDERLYING MODELS

TABLE VII

MSE IS CARRIED OUT FOR DIFFERENT MEASUREMENT NOISE LEVELS AND BOTH UNDERLYING MODELS

Fig. 10. Black markers indicate the true position and the blue waveform
represents the EKF-based position tracking for the extended model (32), which
holds for close-by conductive and ferromagnetic materials. The conductivity
and permeability of the cube are σ� = 0.1 × 106 S/m and μ� = 100 · μ0,
respectively.

model accurately tracks the nonrandom helical trajectory until
the received signal strength becomes weak caused by the
increasing distance to the transmitter. The traditional model in
contrast only roughly tracks the helical line. It is shown that
the approach of generally modeling movement using Brownian
motion is also valid for nonrandom trajectories. Targets such
as wheeled robots or UAVs are commonly modeled using
their specific dynamics. This technique in contrast can be used
without prior knowledge about the robot-actuation properties.
Throughout the article, it is shown that the sensor performance
increases with the decreasing distance to the receiver, e.g., base
station. This makes it especially useful to support autonomous
landing scenarios under harsh conditions of UAVs. Often,
fiducial markers are used to support autonomous landing
maneuvers. Detrimental influences such as rain, snow, fog,
or bad illumination limit the usability of those markers.
In contrast, such circumstances do not influence the perfor-
mance of the proposed sensor system. It is suggested to use
it complementary to existing techniques, e.g., VIO.

Fig. 11. Black markers indicate the true orientation and the blue waveform
represents the EKF-based orientation tracking for the extended model (32),
which holds for close-by conductive and ferromagnetic materials. The conduc-
tivity and permeability of the cube is σ� = 0.1 × 106 S/m and μ� = 100 ·μ0,
respectively.

D. Computational Complexity

This section gives an idea of the computational complexity
of the algorithm. The complexity is mainly determined by
the number of subobjects Bi . The more the subobjects,
the better the accuracy of the algorithm. In fact, it is a
tradeoff between accuracy and computational complexity. For
the presented case with the conductive/ferromagnetic cube
consisting of 79 subobjects, the computation times are carried
out. The computation was performed in MATLAB running on
a notebook with an Intel i7-7600U processor. The memory
requirements are negligibly small. A pose-estimation iteration
using the presented EKF framework requires 2.5 ms for non-
conductive/non ferromagnetic objects. This represents the least
complex case, where the model extension is not required. For
the conductive but nonferromagnetic cube (see Figs. 8 and 9),
the computation time is 20 ms. Finally, for a conductive as
well as ferromagnetic cube (see Figs. 10 and 11), the com-
putation time is about 200 ms. It can be concluded that the
algorithm is very fast for conductive but nonferromagnetic
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Fig. 12. EKF-based position tracking is shown with two different underlying
models. The black markers indicate the true position, the magenta waveform
represents the underlying model (1), whereas the blue waveform shows the
tracking based on the extended model (32). The conductivity of the close-by
copper cube is σ� = 59.9 × 106 S/m. The used trajectory is not randomly
chosen, despite the model formulation that expects random motion.

Fig. 13. EKF-based position tracking is shown with two different underlying
models. The black markers indicate the true position, the magenta waveform
represents the underlying model (1), whereas the blue waveform shows the
tracking based on the extended model (32). The conductivity of the close-by
copper cube is σ� = 59.9 × 106 S/m. The used trajectory is not randomly
chosen, despite the model formulation that expects random motion.

materials and can consequently be used in many applications.
Typical materials are water, carbon, aluminum, or copper. For
the ferromagnetic materials, the computation times are higher,
but there are still applicable scenarios, e.g., complementary to
other pose-estimation principles. The conducted computation
times show the benefit with respect to classical FEM-based
approaches. The FEM environment used in Tables II and III
requires 95 s and additionally 3.5 GB of memory for a single

forward calculation of the electromagnetic field. Such an
update rate is too low even for slowly moving objects.

V. CONCLUSION

In this article, a 6-DOF pose-estimation principle based
on electromagnetic fields is presented. It is especially useful
for autonomous systems operating under harsh conditions
such as denied line of sight, bad light conditions, rain, fog,
or when navigating close to objects. The system consists of
two parts, a transmitter and a receiver with known pose. The
pose of the transmitter, which is, e.g., mounted on a mobile
platform, is estimated. The system accuracy increases with
the decreasing distance, which makes it especially beneficial
to the landing scenarios of UAVs. This article additionally
introduces a methodology to account for conductive and
ferromagnetic objects in the vicinity of the sensor, which alters
the electromagnetic field due to eddy currents. The correctness
of the introduced formulation is verified by comparing it
with an FEM-based solution of the full Maxwell equations.
FEM-based solutions are computationally complex and require
a huge amount of memory. Thus, recalculating the FEM
solution for each step in a pose-tracking scene is inappro-
priate for real-time applications. In contrast, the introduced
model is computationally lightweight. It only requires a single
FEM-based field solution, which can be precomputed. The
consecutive field updates are analytically evaluated. The
applicability for real-time pose tracking is showcased by
carrying out the computation times of an employed EKF.
In addition, the introduced model is compared with the tradi-
tional magnetic field model, and the superior performance of
the model extension in the interference scenarios is reported.
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