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Abstract— Historically, the lack of patients’ sleep histories
has caused low identification of sleep apnea (SA) and refer-
ral rates. Moreover, the costly and time-consuming nature of
polysomnography (PSG) as a standard clinical test for detecting
SA and the lack of sleep clinics has created a demand for
suitable home-based monitoring devices. Pressure measurement
using a pressure sensitive mat (PSM) can address the challenges
found in current sleep-monitoring solutions. The noncontact
PSM has a potential to replace obtrusive breathing sensors
in the sleep lab and to be used as a prescreening tool for
patients suspected of having SA. Applying classical support vector
machine (SVM), this article presents a personalized system based
on the measurements of each patient to detect central SA (CSA)
events and monitor sleep characteristics longitudinally. For this
purpose, sensor set-ups were installed in nine seniors’ homes to
collect unsupervised pressure data in approximately one year
ranging from 8 to 12 months. Cost-based and resampling-based
approaches were examined to combat imbalanced data. The
results showed that the cost-based method outperformed other
methods. Next, the patient-specific system was used to determine
the total number of CSA events, as well as their starting
time and duration in each day. The SA severity was measured
by the central apnea index (CAI). In addition, other sleep
characteristics such as bed occupancy (BO), day clock, and
night clock were extracted from the PSM measurements. The
impact of longitudinal sleep monitoring could be in tracking SA
treatment progression, and possibly providing information on the
interaction between SA and other disease progressions.
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I. INTRODUCTION

SLEEP is a dynamic process that varies from day-to-
day [1]. Therefore, it is essential to measure multiple

nights of sleep data for health, medical, and research reasons.
In this regard, when compared with single-night polysomnog-
raphy (PSG) as the current clinical test for diagnosing sleep
disorders, home monitoring is preferred. It offers the potential
to provide a more realistic platform, capturing many nights
of sleep data. Longitudinal home monitoring allows tracking
the sleep dynamics of the same patient at different points
in time and reducing the between-subject variation of the
measurements. One of the most notable examples of individual
variability in sleep involves sleep apnea (SA) symptoms. In the
field of sleep medicine, SA is described as the most irritating
sleep disorder, causing sleep disturbance. It is characterized
by repeated periods of reduction or complete cessation of
airflow. Clinically, SA is defined when there is a drop in
the peak signal excursion by at least 90% of the pre-event
baseline for 10 s or more [2]. There are three forms of SA:
central SA (CSA) characterized by a complete cessation of
both respiratory movements and airflow, obstructive SA (OSA)
characterized by the presence of abdominal and thoracic efforts
for continuing breathing, while airflow completely stops, and
mixed SA (MSA) defined by a CSA followed by an OSA.
Given the absence of respiratory movement in CSA, our work
using PSMs focuses on this SA subtype.

The structure of this article is as follows. Section II
provides a summary of studies conducted to detect SA
through unobtrusive home monitoring schemes. Section III
covers the methodology for the design and optimization of
patient-specific systems adopting PSM measurements. The
outcome of different optimization processes and the obtained
sleep measures resulting from the methodology applied are
presented and discussed in Section IV. As a final point,
Section V briefly restates the article and summarizes the main
results and findings of this article.

II. RELATED WORK

For home monitoring without any assisting personnel, espe-
cially for those without a high degree of technical knowledge,
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TABLE I

SLEEPMINDER PERFORMANCE [3]

the recording of biosignals must be easy, without reducing the
subject’s comfort during sleep. Thus, a good sleep monitoring
system: 1) should record data without restricting patient move-
ments (e.g., no gauges or cables during the night); 2) Should
detect SA, vital signs (e.g., breathing rate and heart rate),
and movements during sleep even without attaching sensors
directly to the body; and 3) Should be installed in the user’s
native sleep environment. For this purpose, several clinically
useful sensor modalities and tools have been developed. These
types of devices have the advantage of being unobtrusive
and adequate for longer term monitoring without the user’s
intervention. For instance, in [3] a noncontact radio frequency
sensor called SleepMinder was placed next to a bed and
was adopted to continuously measure the biomotion due
to breathing and body-movement during sleep. The device
applied phase demodulation, amplitude, and correlation-based
signal-processing methods to detect SA. Comparing with PSG
recordings of 129 subjects, the apnea-hypopnea index (AHI)
estimated by the device had a correlation of 91%. The
sensitivity and specificity of SA detection for different AHI
boundaries are presented in Table I.

Some articles have employed visual information in the form
of photographs, film, or video signals to detect SA. In [4],
it was shown that support vector machine (SVM) and neural
network (NN) classifiers with depth video and audio signals
recorded by a Microsoft Kinect camera could be used to detect
and differentiate SA events, including OSA, CSA, and MSA.
However, it was claimed that the proposed system required
large storage for data recording, and it was relatively slow in
the fitting of a respiratory model and training classifier for each
patient. In [5], respiratory events were detected from a series
of digital images provided by a digital video camera. The
technology utilizes the circulation of air into the lungs, which
is proportional to the patient’s movement while breathing. The
proposed apnea detection algorithm compared signal variations
from the mean respiratory movement as a reference point for
the magnitude, detected in data from the previous minutes.
In the analysis of 50 patients, the system was found to have
a sensitivity of 100% and a specificity of 83%. The positive
predictive value (PPV) and negative predictive value (NPV)
were 97% and 100%, respectively.

Force sensors placed on top or under the mattress have
also been adopted for sleep monitoring, estimation of snoring
periods, and vital signs such as heart rate and respiration rate.

On this basis, a thin foam mattress with four polyvinylidene
fluoride film-based sensors having dimensions that fit a stan-
dard single-sized bed has been used to diagnose OSA [6].
In addition to respiratory movements, the mattress was also
able to record breathing sound. Apneic events captured by
the mattress were identified visually and not by an automated
algorithm, then scored and compared with the result of relative
PSG recordings. There were strong correlations between the
two devices for measures of sleep time, respiratory events, and
the AHI (all correlations > 0.89). The device defined more
than 93% of PSG defined respiratory events. The absence of
respiratory events was correctly identified in 91% of occasions.

In comparison with [6], an air mattress with a balanc-
ing tube was presented in [7] to noninvasively monitor not
just the respiratory signal but also heartbeat, as well as the
events of snoring, SA, and body movement. The proposed
system consisted of multiple cylindrical air cells, two sensor
cells, and 18 support cells. The physiological signals were
measured by the change in the pressure difference between
the sensor cells. Healthy participants were asked to simulate
CSA to investigate the ability of the system for the detection
of apneic events through a simple threshold-based detection
algorithm based on a variance analysis with a moving window
technique. The algorithm achieved sensitivity and PPV of
93% and 88%, respectively. Based on similar functionality,
in [8] a force-coupling pad equipped with a ballistocardiogra-
phy (BCG) system was installed on top of the mattress of a bed
to detect minute forces generated during cardiac contraction
and relaxation, and body movement from the respiratory effort
and postural changes. PSG of participants was recorded while
the force-coupling pad was on the mattress. A sensitivity of
89.2% and specificity of 94.6% were attained in the detection
of SA. The respiration analysis was partially automated. The
manual portion of the algorithm involved applying a set of
rules for marking apneas and arousals based on the scoring
system and classification of breaths.

All these studies commonly attempt to examine the ability
of their alternative system to detect SA unobtrusively applying
different detection methods, sometimes for each patient indi-
vidually. Mostly, the validation of the proposed methods was
due to the paired comparison of the total number of respiratory
events detected by an automated algorithm and those manually
scored.

Pressure sensitive mats (PSM) adopted in this article can
capture movement and breathing information while placed
beneath a mattress [9], [10]. In [11], the validation and
the assessment of PSM reliability for CSA detection were
presented, with a comparison to PSG data by applying a simple
decision threshold method. We recently designed a generalized
detection system to detect CSA events from nocturnal data
automatically [12]. The classifier achieved a better sensitivity
of 96.3% in comparison to 87.6% in [11]. However, it is
worthwhile to note that when compared with this article, all of
the reviewed methods and studies have used different original
sleep data. Therefore, a direct comparison of different results
only has limited reference significance.

In this article, we expanded our previous algorithm for
automatically detecting CSA events [12] for long-term sleep
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Fig. 1. PSM and measurement system.

monitoring. The focus of the previous study was to provide
a generalized model for detecting CSA events, regardless of
the sleep characteristics of individuals. While it could be
represented as a primary diagnosis tool, leading to a significant
reduction in the diagnostics cost and waiting time for a
sleep study, considering subject-specific factors can greatly
improve the accuracy of the system. Here, the goal is running
longitudinal design for long-term investigation of intrasubject
changes in sleep quality of older adults, extracted from unob-
trusive pressure sensor array data (collected in approximately
one year for each patient). The system is not only able to
report the total number of extracted respiratory events but
also indicate whether the events are detected at the same
temporal position of manually labeled events or not, which
may potentially prevent to mask inaccuracies in the detection
of events by the device. With this scheme, the stability of
sleep characteristics is to be determined within a subject. This
approach has substantial clinical utility given the known night-
to-night variability of SA [13]–[15].

III. METHODOLOGY

A. Database and Measuring System

The PSMs are the “bed occupancy sensors” (BOS) model
from S4 Sensors Inc. (Victoria, B.C., Canada). Each set of
PSM contains 72 Kinotex fiber optic sensors in total, distrib-
uted evenly, as shown in Fig. 1. The sensors are embedded in
foam as an eight by nine matrix, with eight sensors lining the
width and nine sensors lining the length of the bed, covering
from head to hip of the patient. The head of each panel
is a strip that contains the electronics for analog to digital
conversion, sampling, and transmission of the sensor data. The
device is connected to a recording box to save data for further
processing. The recording box is placed under the bed and
saves the data on a secure digital (SD) card.

Along with obesity, age is one of the most important risk
factors for SA. The prevalence of OSA is two to three times
higher in older persons (≥65 years) when compared with those
in middle age (30–64 years) [16]. Therefore, the main focus
for data collection was to monitor adults aged 65 or older,
living in affordable seniors housing.

To collect nonsupervised data, volunteers from different
communities passed some inclusion criteria, which were as
follows:

1) sixty-five years of age or more, female/male;
2) being community-dwelling older adults living in afford-

able seniors housing;
3) admitted to Geriatric Rehabilitation Unit at Élisabeth

Bruyère Hospital.

Sensor setups were installed in the seniors’ homes for
long-term monitoring and collecting pressure data continu-
ously, with no requirement from the patient for installation
and data acquisition. The monitoring time was 8–12 months.
Except for one visit every month, the rest of the data collection
was not supervised. Recorded data were in ASCII format and
autosaved as CSV files hourly. Files were concatenated on a
day-by-day basis for 24 h, from noon to noon to have a daily
observation, especially for sleep assessment. No other health
information is known about the patients, as ethics clearance
did not include access to patient health records. A week of data
from each of the nine participants randomly selected for [12]
is also employed for this article to optimize the individual
CSA detection models.

B. Preprocessing

Preprocessing is a set of steps that are implemented and
applied sequentially. In such a way, the output signal of each
step is the input of the next step. The steps are as follows:

1) Occupancy Extraction: As a subject leaves the bed,
a significant drop in PSM signal amplitude occurs. To decrease
the computational complexity and mostly to discard irrelevant
data, times when the bed was not occupied were detected
and removed based on the algorithm in [17]. The basic idea
behind the adopted algorithm was first introduced in [18].
However, the threshold selection in the algorithm depended
on anthropometric information of participants. Therefore, for
times when no prior anthropometric information was available
(such as in this article), some modifications were applied to
the original algorithm in [17] to select a proper threshold.

In the algorithm, a single output is first obtained from the
summation of all 72 raw sensor signals, from noon to noon
for each day, denoted as P . The occupancy is then determined
when P exceeded a threshold, T , defined by

T = β + τ (1)

where β is the base value obtained as the minimum value of P .
The value of τ is established based on using the maximum and
minimum value of P to make it independent from the person
who is lying in bed, respectively, denoted by Max(P) and
Min(P), such that

τ = Max(P) − Min(P)

n
(2)

where n can be adjusted depending on the sensitivity required
in an application. Those parts of P where the differ-
ence between Max(P) and Min(P) is below the threshold
are reflagged as not-occupied to avoid false detection of
occupancy.

The occupation data obtained in this step are kept for further
processing, and the rest of the data are discarded.
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2) Bandpass Filtering: The average respiration rate for an
adult at rest is 12 to 20 breaths per minute (bpm). However,
the full range of possible respiration rates, including extreme
conditions, can range from 4 to 48 (bpm), which is related to
the frequency range of 0.07 to 0.8 Hz [9]. Therefore, for the
extraction of the breathing signal, a 70th-order finite impulse
response (FIR) linear phase bandpass filter with a passband
corresponding to the frequency range of 0.07 to 0.8 Hz is
employed to filter the signal from each sensor. The reason
for choosing the linear-phase FIR filter is to avoid changing
the time shape of the useful time signal components. After
filtering, data at the edges (beginning and end) of the output
signal were discarded due to the “edge effect.”

3) Combining and Concatenating Signals: Signals of PSM
placed below a mattress can be heavily attenuated and local-
ized loading may be less distinct [19]. To overcome this
issue, all 72 signals can be combined to generate a single
output signal with better signal quality. In ambient systems,
using the linear combining paradigm, sensor signals are condi-
tioned by preprocessing, multiplied by a gain factor, and then
summed. By adopting this procedure, in [9] two breathing
signal fusion methods were proposed. They are Pearson’s
correlation coefficient (PCC)-based signal fusion and signal-
to-noise ratio (SNR)-MAX-based signal fusion. Later in [20],
for more complex data containing movement in bed and
different types of breathing, such as shallow breathing, deep
breathing, and periods of apnea, the SNR-MAX was found to
be the best method of sensor signal combining, resulting in the
highest Pearson Correlation Coefficient with the respiratory
band signal as the gold standard. Therefore, in this section,
the SNR-MAX method is applied to the 72 sensor signals
to generate a single output signal with better signal quality.
Signals are combined every 30 s, with a 50% overlap.

Different window sizes may be needed to detect CSA,
especially since the minimum acceptable length for CSA
events is 10 s. Therefore, after signal combining for every
30-s segments, all segments are concatenated to have one
single signal. The following method is applied to achieve a
smooth transition cross overlapping segments during concate-
nation [21], [22].

1) For every two consecutive segments, the last N overlap-
ping samples of the first segment are gradually attenu-
ated by multiplying with a linear cross-fading function
changing from 1 to 0 ( f (n); n = 1, . . . , N), while the
first N samples of the second segment are gradually
amplified by multiplying with 1 − f (n).

2) All modified segments are aligned based on their starting
point in the original signal and then added together to
construct a concatenated signal.

From this stage onward, the rest of the algorithm uses this
single signal and not an array of signals.

4) Signal Normalization: PSM does not directly measure
the airflow or respiratory effort. It captures movement infor-
mation transmitted through the mattress by a person lying on
it. Changing the body position or posture on the bed is always
accompanied by movements including bed entries/exits,
rollovers, sleep starts, posture shifts, or small movements such
as arm/leg twitches and gasps (deep breathing), which generate

large fluctuations in the signal. Several studies have been
done to detect movement [23]–[25]. This article adapted the
previously published movement detection algorithm in [23]
to detect movements, with a few modifications in terms of
defining a threshold. Here, a movement is detected when
the value reaches more than three-scaled median absolute
deviations (MADs) away from the median of signal y. For
y of length N , the MAD is defined as

MAD = c × median(|yi − mean(y)|); i = 1, . . . , N (3)

where c is a constant scale factor.
The amplitude of the PSM signals and consequently y can

vary based on body posture and position, respectively. The
effect of body position on the output of PSMs has been
investigated in a few article s such as [26]. Through the
supervised data collection, a comparison of different body
positions including side, supine, and prone showed that signals
captured from the supine position have tended to have the
lowest SNR [26]. Therefore, after detecting movements, each
part of the signal Z between any two movements is normalized
to a comparable range to reduce the number of false-positive
events. For normalization, first the average of Z , ZMean,
is removed. Then, Z is divided by ZMax, which is calculated as
the maximum absolute value of Z , excluding the highest 5%
and lowest 5% of the values to ignore outliers. Sorting data
to find outliers can be computationally expensive. However,
dividing Z by ZMax without ignoring outliers might result
in a signal with a much smaller breathing range, which can
potentially be confused with an apnea event. ZMax and the
subtracted mean ZMean are added as two features for each
segment to avoid information loss, especially when Z is too
short and mostly consists of noise.

C. Feature Extraction

For automatic detection of CSA, different algorithms are
applied to extract suitable features. Some features are the
result of time series data, directly fed to the classifier, whereas
others first involve a transformation of time series data into the
frequency domain. To extract features, the normalized signal
is segmented by rectangular 9-s window functions with 50%
overlap, whose length is chosen based on the best performance
of the system on the training database. It was observed that by
increasing the window duration beyond 10 s would reduce the
performance of the proposed system as the CSA events can be
of 10 s by definition. Increasing the window duration affects
the performance of the event detector (which will be described
later in the article) rather than the classifier. Contrarily, if the
window length is too small and does not contain the major
part of a respiration cycle, the performance of the classifier
drops. However, the performance of the event detector to
correct the misclassified windows and the detection of events
improve. By considering all these factors and the number of
calculations required, a window duration of 9 s is chosen. The
next parameter which is adjusted is the amount of overlap.
It is expected that a small amount of shift (large overlap)
will improve the performance by increasing the resolution
of the entire event detection process but will also impose a
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computational burden. The amount of overlap was chosen to
be 50%, since on average (at a rate of 15 bpm) it is long
enough to provide a complete respiratory cycle to the next
window.

The resulting segments are categorized into two classes:
apneic event class, “A” or normal breathing class, “N.”
“A” labeled segments are those that have at least 50% of their
length falling within the start-to-end time of apnea events.
All the other remaining segments are labeled as “N.” For the
classification of these segments into two categories, 34 features
from the time and frequency domain are extracted from each
segment.

1) Time Domain-Based Features: Time series analysis
includes methods for analyzing time-series signals directly
in order to extract meaningful statistics and other character-
istics of the signal. The brief descriptions of different time
domain-based measures extracted in this article are as follows.

2) Statistical Measures: These first- to fourth-order statis-
tical parameters, i.e., mean (M1), variance (M2), skewness
(M3), and kurtosis (M4), are computed for each segment
of data to quantify the central tendency, degree of disper-
sion, asymmetry, and peakedness, respectively. Other statistical
measures extracted from time series segments are: the median
as the measure of the “center” of a signal since it is less
sensitive to outliers, the maximal (Max) and minimal (Min)
value of the signal, the range as the difference between the
Min and Max values of a signal, the root-mean-square (rms),
and the standard deviation (SD).

3) Subsegment Ratio: Each segment is divided into five
subsegments. Then, the maximum absolute value is obtained
in each subsegment. Afterward, the SSR is calculated for each
segment based on dividing the highest maximum absolute
level by the lowest maximum absolute level from the five
subsegments [27].

4) Hjorth Parameters: Hjorth parameters [28] are quite
popular for the analysis of biomedical signals, especially EEG
signals for sleep stage classification [29], [30]. For a signal x
of length N , and x � as its first derivative, the parameters are
calculated using the following equations:

Mobility =
√

Var(x �)
Var(x)

(4)

Complexity = Mobility
(
x �)

Mobility(x)
(5)

where Var(x) and Var(x �) are the variance of x and x �,
respectively. x � is approximated by the difference between
successive elements of x .

Nonlinear combination (i.e., multiplication and division) of
existing features can be considered as new features and be
helpful to optimize the linear classifier. A linear classifier can-
not consider these complex features unless they are explicitly
provided for the classifier. f1 to f4 listed in Table II are adopted
based on this principle. A brief explanation of these features
can be found in [31].
Time-domain

5) Frequency Domain-Based Features: based features are
not always the best representation of signals for many

TABLE II

LIST OF THE NONLINEAR COMBINATION OF EXISTING FEATURES

signal-processing applications. In many cases, the most useful
information is hidden in the frequency content of the sig-
nal. Herein, from the auto-power spectral density (PSD) of
each segment, the following features were extracted. In this
section, wherever it speaks of the frequency band of interest,
it means 0.2–0.33 Hz, corresponding to normal breathing range
(i.e., 12–20 bpm).

6) Spectral Moments: Median and SD, as well as the first-
to fourth-order spectral moments in the frequency domain,
were calculated. These features characterize the shape of the
spectral density of the signal in each segment. In [32], the
spectral moments were applied to classify sleep stages from
PSG recordings.

7) Peak Power Frequency: It is the frequency at which
the highest power exists. Also, peak power frequency (PPF)
corresponding to the frequency band of interest PPFR and its
proportion to PPF (PPFR / PPF) are calculated as two new
features.

8) Spectral Flatness Measure: The ratio of the geometric
mean of the signal PSD to the average of the signal PSD is
a measure of the spectral flatness of the signal (SFM) also
known as tonality coefficient. The meaning of tonal in this
context is in the sense of the number of peaks or resonant
structure in a power spectrum, as opposed to a flat spectrum
of white noise. A high-spectral flatness represents a similar
amount of power in all spectral bands, as in white noise.
Therefore, the graph of the spectrum would appear relatively
flat and smooth. A low-spectral flatness indicates that the
spectral power is concentrated in a relatively small number
of bands. Therefore, the spectrum would appear spiky, such
as a mixture of sine waves [33]

SFM = GeometricMean(x)

Mean(x)
. (6)

9) Relative Spectral Powers (PR): The percentage of the
total area under the curve corresponding to the frequency band
of interest.

The features listed in Table II are also calculated as fre-
quency domain-based features where, in this case, x would be
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Fig. 2. Maximum margin hyperplane and margins for SVM trained with
samples from two classes.

the power spectrum, corresponding to the frequency band of
interest. Overall in total for each patient, the extracted features
from time and frequency domains, in addition to ZMax and
ZMean from the normalization procedure, produce 34 features
to be fed the patient-specific classifiers.

D. Classifier

The ultimate goal of the pattern recognition problem is to
classify the objects into a number of categories or classes. For
this purpose, the role of the classification models is to divide
the feature space into disjoint regions assigned to class labels.
The classification models are divided into different groups,
including Naïve Bayes, linear discriminant analysis (LDA),
NNs, kernel methods, similarity-based approaches, and deci-
sion trees. Recently, SVM as a kernel-based classifier was
found to have much advanced theoretical background and
often provide good performance, especially for binary clas-
sification in the field of biomedical pattern recognition [34].
Initially, SVM was designed to solve binary classification and
regression problems. Nowadays, SVM has been successfully
applied in many areas [35]–[37].

Finding an optimized hyperplane is the fundamental idea of
SVM. Such a goal can be defined as the maximization of the
minimum distance, i.e. margin, between the hyperplane, and
the closest training data points, i.e., support vectors

max
w,b

min
{||x − xi || : wT x + b = 0, i = 1, . . . , m

}
(7)

where w is the weight vector and b is the bias for the model.
In linear binary SVM classification, w and b can be rescaled in
such a way that the point closest to the hyperplane wT x+b = 0
lies on hyperplanes H1 : wT x +b = 1 and H2 : wT x +b = −1
for either class, as shown in Fig. 2.

Suppose that all the training data satisfy the following
constraints:

wT xi + b ≥ 1 for yi = +1 (8)

wT xi + b ≤ −1 for yi = −1. (9)

These can be combined into one set of inequalities

xi : yi
[
wT xi + b

] − 1 ≥ 0. (10)

As it is shown in Fig. 2, the width of the margin is simply
equal to 2/||w||. Support vectors are the training points for
which the equality in (10) holds.

The optimization problem in (7) can be restated as τ (w) :
minw,b τ (w) = (1/2)||w||2, subject to the constraint (10) to
find the pair of hyperplanes, H1 and H2, which gives the
maximum margin by minimizing ||w|| [38].

In comparison with nonlinear kernels, a linear kernel is
less prone to overfitting and faster to train. However, depend-
ing on data, a different type of kernel may be required.
Comparing the cross-validation data, the results of various
types of kernels including RBF, third-order polynomial, and
linear kernel showed that the use of nonlinear kernels did not
significantly improve the accuracy of the model in the data
set. Therefore, a binary linear SVM classifier is considered
to classify segments into two categories, i.e., “N” or “A.”
Those segments that overlap with the detected movement are
considered as outliers, and they are eliminated from data
before training the classifier.

E. System Optimization

1) Application of Learning Curve Concerning the Amount
of Data: When it comes to building a personalized model,
the first important question is how much data are needed to
provide an optimized model for long-term monitoring. Herein,
for each patient, a week of labeled data is split into different
sizes of training and validation sets. Then, learning curves
are plotted to show how the error changes as the size of
the training data set increases. As a common issue among
all patients, the distribution of the two classes, A and N,
is imbalanced. Therefore, for every iteration, balancing the
training data set, as well as the presence of apneic segments
from class “A” in the training data set, is necessary to generate
the validation curves. A random selection of segments from
class “N,” the majority class, has to be performed in each
iteration to overcome the imbalanced data problem such that
both classes have the same size. The procedure is well known
in the literature as the “undersampling” method [39]. As a
result of this technique, the maximum training data set is two
times L, where L is the total number of class “A” instances
in the main training data. The procedure of generating the
learning curve is repeated seven times (as the total number
of days of labeled data) to perform cross-validation. It means
that in each fold, data of one day is put aside as a test data
set, and the remaining data of six days are used to train the
classifier.

Moreover, in each fold, to investigate how much the system
performance depends on the characteristics of the selected
training data set, the data are randomly shuffled 50 times
before creating the learning curve. Once the data are shuffled,
no further changes is made in the order of instances, so that
one complete learning curve can be generated. The training is
performed over iterations. In each iteration, based on the order
of the instances in the data matrix, a new unseen patch of data
including examples from class “A” and examples from class
“N” is added to the existing training data set. Fig. 3 illustrates
the summary of the generation of the learning curve for each
patient.

2) Dealing With Imbalanced Classes: As it was discussed
in the previous section, the CSA detection problem is faced
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Fig. 3. Process of generating a learning curve for each patient.

with imbalanced data, where class “N” as a majority class
dominates over class “A,” the minority class. The problem
causes the model to be more biased toward the majority class
and to suffer from the accuracy paradox. There are many
approaches to deal with this problem. They can be generally
classified into two major categories of: 1) sampling-based
and 2) cost-based. Sampling-based methods can be broken
into three major categories: a) oversampling; b) undersam-
pling; and c) hybrid of oversampling and undersampling.
In [12], a combination of oversampling of class “A” instances
and undersampling of class “N” examples was implemented.
To avoid overfitting, the oversampling approach was not done
by replicating class “A” instances but instead by constructing
new minority class data instances via the synthetic minority
oversampling technique (SMOTE) algorithm. SMOTE creates
new instances of the minority class by forming convex combi-
nations of neighboring instances, i.e., effectively drawing lines
between minority points in the feature space, and samples
along these lines [40].

In this article, the diversity of the data is narrowed down to
only one patient’s information, and for each patient a limited
amount of data is available. Sampling-based methods change
the original data distribution, causing loss of important infor-
mation or the model overfitting [41]. Therefore, given these
two issues instead, a cost-based method is used to address
the class imbalance problem. A cost-sensitive classifier learns
more characteristics of the minority-class instances by setting
a high cost to the misclassification of a minority-class sample.

For cost-sensitive SVM in binary classification, the objec-
tive is to determine a hyperplane that maximizes the margin
while minimizing a quantity proportional to the misclassifi-
cation errors. This can be done by introducing positive slack
variables ξi in (10), which then becomes

xi : yi
[
wT xi + b

] ≥ 1 − ξi . (11)

Hence τ (w) = (1/2)||w||2 can be changed into (12) [34]

τ (w, ξ) = ||w||2
2

+
(

C
n∑

i=1

ξi

)
. (12)

The algorithm uses ξi to penalize the objective function for
those observations that cross the margin boundary for their
class; ξi = 0 for observations that do not cross the margin
boundary, otherwise ξi ≥ 0. C controls the trade-off between
the margin and the misclassification errors. A larger C means
that a higher penalty is assigned to misclassification errors.

F. Event Detector

The time sequence of consecutive feature vectors for each
day of a subject data is fed one by one to the already trained
and optimized classifier, to predict the possible classes. The
output of the classifier is the series of class labels, separated by
an interval equal to the window sliding duration. These time
sequences of class labels are then fed to the event detector.
During the process of event detection, first, the windows
which contain movements are ignored by the classifier model;
whether they are labeled as “A” or “N” since no information
related to movements is presented to the classifier while it is
being trained. A sequence of segments which are all flagged as
events are merged as a single event. A common duration of an
apneic event is about 20–40 s [42]. Therefore, detected events
with a duration of more than 60 s are reflagged as “N” events.

G. Descriptive Statistics of the Sleep Measures

For each patient, after optimizing the cost matrix, the final
classifier is trained on all data from 7 days. Then the data of
the whole year are fed to the system day-by-day to extract
sleep-related information. In this section, the main findings of
the longitudinal study are described and broken down into the
specific sleep measures.



AZIMI et al.: UNOBTRUSIVE SCREENING OF CSA FROM PRESSURE SENSORS MEASUREMENTS 3289

1) Bed Occupancy: BO is defined as the total time spent
in bed during the 24-h cycle. For every 24-h cycle from
noon to noon the next day, BO is extracted by the occupancy
extraction algorithm, as a part of the preprocessing procedure.
Bed-occupied time can be described as “intention to sleep,”
and it includes nighttime sleep and daily naps. BO is also
calculated separately for the day clock (defined as 10 A.M. to
10 P.M.) and the night clock (defined as 10 P.M. to 10 A.M.).

2) Central Apnea Index (CAI): CAI is defined by the
number of CSA events detected per hour of BO. CAI can
indicate the severity of the CSA, similar to the AHI.

3) CSA Duration per Night: As the output of the system,
in addition to the number of extracted events and their tem-
poral position for each night, the duration of each event is
investigated.

H. System Evaluation

The event-based evaluation of the proposed system com-
pares the proposed system outputs and the corresponding
reference on an event-by-event basis [43]. The F-score judges
the performance of event detection. The F-score is computed
from the sensitivity and precision

Fscore = 2 × Precision × Sensitivity

Precision + Sensitivity
(13)

where sensitivity and precision are calculated by (14) and (15)

Sensitivity = TP

(TP + FN)
× 100% (14)

Precision = TP

(TP + FP)
× 100%. (15)

Herein, the event-based TP as true positive, FP as false
positive, and FN as false negative represent the following
conditions [44].

1) TP: An event in the output of the proposed method that
has a temporal position overlapping with the temporal
position of an event with the same label in the reference
ground truth. Based on the definition of TP, multiple
covering events are counted as a correct detection too.

2) FP: An event in the proposed method output that has no
correspondence to an event with the same label in the
reference ground truth.

3) FN: An event in the reference ground truth that has no
correspondence to an event with the same label in the
proposed method output.

It should be noted that the event-based metrics have no
meaningful true negatives (TNs) [44].

Precision is a measure of exactness (i.e., of the events
labeled as apnea, how many are labeled correctly), whereas
sensitivity is a measure of completeness (i.e., how many apneic
events are labeled correctly). These two performance metrics,
much like accuracy and error, share an inverse relationship
between each other. An attempt to maximize precision usually
leads to lower sensitivity values and vice versa. However,
unlike accuracy and error, precision and sensitivity are not
both sensitive to changes in data distributions. Inspection on
the precision and sensitivity formulas yields that precision

is sensitive to data distributions, while sensitivity is not.
An assertion based solely on sensitivity is misleading since
sensitivity provides no insight into how many events are
incorrectly labeled as apnea. On the other hand, precision
cannot state how many apnea events are labeled incorrectly.
The F-score metric combines precision and sensitivity as a
measure of the effectiveness of the event detection system,
in terms of a ratio of the weighted importance on either
sensitivity or precision (here both are weighted equally). As a
result, F-score provides more insight into the functionality of
the system than the accuracy metric.

IV. RESULTS AND DISCUSSION

Adopting PSM measurements, a personalized system was
designed for longitudinal monitoring of sleep characteristics.
There were some challenges in optimizing the patient-specific
system, each of which has been met, and the results are further
elaborated and interpreted in this section.

A. System Optimization

1) Application of Learning Curve Concerning the Amount
of Data: One of the important points to be considered for
designing personalized systems is the amount of data required.
Fig. 4 shows the performance of the system on the test data
set for each patient in terms of F-score. The plots are arranged
based on the patients’ average number of events per day (AED)
in ascending order, from left to right and from top to bottom.
Each plot contains seven curves, representing the results of
different folds. Each curve denotes the average performance of
the system in a 50-time shuffle. The SD of system performance
in a 50-time shuffle is calculated to investigate the dependence
of the system on the data characteristics, and it is displayed
as shade around the average curve: the thinner the shade,
the less dependent the characteristics of selected data. If the
system performs properly, apart from individuals’ differences
and different fold of data set, as the training size increases the
average performance of the classifier will increase because the
model can generalize better from a higher amount of informa-
tion. As the curve reaches a saturation point, it means that
adding more training data points will not lead to significantly
better models. Comparison of the different curves in each plot
indicates how the model performs in general when used to
make predictions on unseen data.

According to Fig. 4, interindividual and intraindividual
differences show that the following.

1) Commonly among all patients, as the training size
increases the average performance of the system
increases since the system becomes more generalized.

2) As the AED among the patients increases, the over-
all average performance of the personalized system
increases, from an F-score of 24% for the patient with
AED of 6 to an F-score of 75% for the patient with
AED of 210, which is the largest AED observed.

3) The system built for the patient with the largest AED
(210) has the least dependence on the characteristics of
the selected data and the best performance.



3290 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 69, NO. 6, JUNE 2020

Fig. 4. System’s performance in terms of F-score on the test data set for each patient. Each curve represents the result of the system for each fold.

4) The performance curves for all patients reach a satura-
tion point, meaning that adding more training data points
will not lead to a significantly better system and a week
of labeled data is sufficient to build a generalized model
for long-term monitoring.

Overall, the analysis shows that the more severe the disorder
is, the fewer the number of days of data are needed from a
patient to build a personalized model. In acute condition, i.e.,
for a patient with a great AED, even one day of data can be
enough to optimize the model.

2) Dealing With Imbalanced Classes: After extracting the
relevant features, the next challenge is to deal with imbalanced
data. The cost for each patient is optimized based on the
average F-score of the event detector, using a cross-validation
scheme. Six out of seven days of data (six days, six folds) are
used for training the classifier and consequently the system.
One day of data is put aside as unseen data to evaluate the
cost-optimized system. Given the cost structure array as

C =
[

0 a
b 0

]
(16)

the cost ratio can then be defined as (b/a).
Fig. 5 depicts the cross-validation results as a function of

the cost ratio. By changing the cost ratio, the F-score changes.
The optimized cost ratio is the point on the curve that, on
average, produces the best performance in all folds. For more
investigation, the results of the optimized system using a
cost-based approach are compared with a hybrid method of
oversampling and undersampling applied in [12], i.e., a com-
bination of oversampling of class “A” instances using SMOTE
and random undersampling of class “N” instances. Class “N”

instances are randomly undersampled by a factor of two. Then,
Class “A” instances are oversampled to have the same size as
the (undersampled) instances of the class “N.” In addition, not
only random but also two informed undersampling approaches
using KNN classifier are considered [45]. They are:

1) NearMiss-1 (NM-1): Selecting those class “N” instances
whose average distance to the three closest class “A”
instances is the smallest.

2) NearMiss-2 (NM-2): Selecting the class “N” instances
whose average distance to the three farthest class “A”
instances is the smallest.

After resampling of both classes, the ratio of their size
becomes (1:1).

The bar chart in Fig. 6 shows that for all patients, the opti-
mized system has the best performance using the cost-based
approach. In comparison with other approaches for patients
with low AED, the superiority of this approach is more pro-
nounced. Alongside the cost-based approach, the comparison
of undersampling methods combined with SMOTE shows that
superiority of method over others varies for each patient.
However, by increasing AED on average, the performance of
these methods improves.

The better performance of the cost-based approach in com-
parison with other implemented resampling methods is not the
only advantage of this method. Systems with a cost-optimized
SVM classifier are resistant to be over-fit. The metric C
controls the tradeoff between achieving a low error on the
training data and minimizing the norm of the features’ weights.
It can, in fact, be seen as a parameter controlling the num-
ber of features to be selected by the SVM, assigning more
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Fig. 5. Cross-validation results as a function of cost ratio.

Fig. 6. System performances on unseen data for each patient in terms of
F-score using different approaches for addressing imbalanced data: “Cost-
Based” and “Hybrid of SMOTE and Undersampling” methods.

weights to more important features. To illustrate how one
feature (variable) is affected by another, Fig. 7 contains scatter
plots showing the data points of two classes, i.e., CSA class
and normal breathing, for two of the nine patients. The selected
features are R1: Variance, R2: f3 from Table II and R3: f4
from Table II; which for the majority of the patients are the
top three features with the largest absolute weights assigned
by the SVM after optimization.

B. System Evaluation

Presently, AHI is known as the major and primary diag-
nostic and classification parameter for SA. However, it does
not contain information on the morphology and duration of
the breathing cessations and desaturations. Clearly, within

the same severity of SA, shorter apnea-hypopnea dura-
tion and shallower desaturation may have different conse-
quences than longer and deeper ones. The findings of [46]
have supported that while the AHI reflected the frequency
of respiratory events, parameters related to event duration
such as mean total apnea duration (MTAD), mean cen-
tral apnea duration (MCAD), mean obstructive apnea dura-
tion (MOAD), and mean mixed apnea duration (MMAD)
can represent the severity of respiratory events in varying
degrees.

Moreover, according to AASM, a device for home moni-
toring must allow sleep technician to look at the raw data and
extracted events, and if it is necessary to edit the automated
scoring [47]. As previously mentioned in Section II, in most of
the reviewed studies, there is no discussion of these issues, and
the evaluation of the previously proposed approaches has been
done in terms of AHI or segment-by-segment basis through
blind segmentation, where one apneic event can be covered
by more than one segment or one segment may contain more
than one event.

Event detector as a postprocessing step allows to detect and
visualize the apneic events and compare them to a ground truth
event-by-event. The system can provide the opportunity for a
sleep technician to view events and perhaps edit the scoring
if needed. Table III illustrates the performance of the system
on unseen data. The results are arranged based on AED in
ascending order. The event-by-event evaluation approach is
extremely stringent in dealing with FP and FN events; espe-
cially if the patient is not severely ill, i.e., low AED. According
to Table III, among all patients, the lowest F-score achieved
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TABLE III

PERFORMANCE OF OPTIMIZED COST-SENSITIVE
MODEL ON UNSEEN DATA

is 66.7% for the patient with AED of 6 (±6). Regarding
this AED, in the worst scenario, i.e., a day with 12 events,
a sensitivity of 100% means that all 12 events have been
detected, and a precision of 50% means that the system only
misclassified 12 events (FP). The same explanation applies to
other patients. It should be noted that the severity of SA is
based on AHI and therefore the number of events wrongly
detected (FP) or ignored (FN) would not cause any significant
misdiagnosis.

In current PSG scoring conventions, EEG recording is
required to confirm that the patient is asleep so that respiratory
events may be scored. However, it has been found that only
1% of a very large number of respiratory events were scored
when PSG classified an awake patient [6]. This suggests that
an EEG recording may not be essential in the diagnosis of
SA and explains why many other diagnostic devices that
do not quantify sleep are still diagnostically accurate. Also,
a proof of associated oxyhemoglobin desaturation or EEG
arousal may be needed when scoring SA, especially hypopneas
where there is a decrease in the amplitude of the nasal flow
signal in PSG. The same can be applied to OSA detection
and consequently MSA detection through PSM. In most cases,
there is a paradox breathing (180◦ difference in phase) between
the abdomen and thorax signals while OSA happens. The
pressure applied to an area of the rigid plastic covering the
array can cause the area next to it to bend upward and
subsequently create difficulty to detect the paradox breathing.
Evaluating the reliably of PSM for detecting OSA and MSA
needs more investigation and perhaps could lead to using
an auxiliary sensor such as associated oxyhemoglobin desat-
uration simultaneously with PSM. It is technically possible
to add the information in question which obviously would
increase the overall performance and efficiency of the system,
especially in terms of precision. However, that would lead to

Fig. 7. Feature visualization for two of patients adopting 3 of 34 features:
R1: Variance, R2: f3 from and R3: f4 from Table II.

the drawback of the PSM measurement system ceasing to be
noninvasive.

C. Descriptive Statistics of the Sleep Measures

Fig. 8 shows descriptive statistics of the sleep measures for
one of the patients (chosen randomly), through his entire data.
Each bar in the plots represents information on one specific
day. For each day, CAI in the plot (c) is obtained by dividing
a total number of extracted CSA events by a total number of
hours spent in bed as “intention to sleep.” Part of the plots
in red represents the seven days of a week selected randomly
for manual labeling. The usefulness of the CAI is that after
an initial diagnosis, it can be monitored in the long-term to
track a patient’s treatment progress. In addition to CAI, the
duration of CSA events are extracted to provide additional
information for the assessment of CSA severity in Fig. 9. The
bar chart in Fig. 9 groups total extracted CSA events into
different time intervals from the data of the same patient in
Fig. 8. The height of each bar shows how many events fall
into each range. According to the bar chart, for this specific
patient, most events have a duration of 13 to 14 s.

Table IV provides a summary of sleep characteristics for
each patient, extracted from longitudinal data by applying
day-by-day the personalized system (optimized on a week
of data only), and averaged on the total number of occu-
pied days. BO is separately calculated for the day clock
and the night clock, to monitor daytime napping and night-
time sleep, respectively. Daytime napping may be a sign
of excessive daytime somnolence. Subsequently, some have
hypothesized that excessive daytime somnolence may be
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Fig. 8. Descriptive statistics of sleep measures for one of the patients. (a) Total number of CSA events extracted from each day. (b) Time spent in bed (in
hours) during 24 h a day from noon to noon. (c) CAI per day. Bar charts in red represent the 7 days of a week selected randomly for manual labeling.

TABLE IV

SUMMARY OF SLEEP CHARACTERISTICS FROM THE LONGITUDINAL STUDY FOR EACH PATIENT AVERAGING THROUGH OCCUPIED DAYS

due to the presence of an underlying and undetected sleep
disorder such as SA, a condition that is strongly associ-
ated with increased cardiovascular risk [48]. Investigating
the relationship between daily naps and SA severity over

a long period can confirm the validity or incorrectness of
this hypothesis. However, an investigation of this issue and
interindividual sleep measures are beyond the scope of this
article.
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Fig. 9. Histogram of the CSA events’ duration (in seconds).

V. CONCLUSION

This article explored the capability of PSM as an unob-
trusive home monitoring sensor device. Adopting PSMs for
measurements, a patient-specific system was designed and
optimized for CSA detection and longitudinal monitoring of
sleep characteristics in older adults. Data analysis showed
that even for a healthy person with AHI < 5 and few
numbers of CSA events, a week of data would be enough
to design a personalized system. When there is a limited
amount of labeled data available for each patient, optimization
of the system especially in terms of data balancing should
be done thoughtfully. Resampling the data may result in loss
of information or changing its original distribution. To this
end in this article, different methods were implemented and
examined to deal with imbalanced data. As expected, the
cost-based method conceded the best results without any
data manipulation. Overall, systems designed for all patients
achieved reasonable performances with sensitivity above 70%.

Although PSG is the most accurate clinical test to diagnose
SA, unfamiliar surroundings in sleep laboratories and the
knowledge of a clinical observer might affect the patients’
sleep characteristics (i.e., “the first night effect” (FNE) [49]).
Furthermore, a controlled environment like a sleep laboratory
might not hold a home’s sleep-disrupting factors, which can
potentially result in an incorrect diagnosis. The extracted
sleep measures such as BO and CAI are the results of
PSM measurements obtained in a completely natural home
environment, without the involvement of external factors such
as discomfort caused by electrodes, limitation of movements
by gauges and cables, potential psychological consequences of
being under scrutiny, and a change of environment. However,
despite all its benefits, unsupervised data collection faces some
limitations. For instance, since no supplementary information
was provided by the patient, it was challenging to draw a
conclusion about abnormalities seen in the individual’s data
while reviewing PSM measurements (e.g., absence of the
patient in bed for a long period of time). Therefore, for future
studies, the patients should be asked to write sleep diaries.

This article proves that employing PSM as a home moni-
toring measurement device can be an effective approach for
timely diagnosis of SA and presenting patients’ sleep charac-
teristics closer to real-life sleep in long-term monitoring. Given
that access to information such as movements, respiration rate,
and now CSA detection is possible from PSM measurements,
future work will be to identify the sleep phases using PSM
measurements.
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