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Abstract— Phase noise induced by environmental disturbance
was greatly reduced when the optical fiber was installed in
an ultrastable environment. In this paper, the optical fiber
length was 10 m, and the reduction in the phase noise power
spectral density was approximately 70 and 30 dB at Fourier
frequencies of 10 mHz and 10 Hz, respectively. To evaluate faint
fiber noise, we developed a modified Mach–Zehnder heterodyne
interferometer with reduced optical path length fluctuation. The
Allan deviation calculated from the phase noise was 7 × 10−20

at a 1-s averaging time and reached 2 × 10−21 at a 10 000-s
averaging time (measurement bandwidth: 500 Hz). In addition,
we revealed the frequency bands in which fiber noise is reduced
by selectively removing the environmental stabilization measures
of evacuation, vibration isolation, acoustic shielding, and temper-
ature stabilization from an ultrastable environment.

Index Terms— Environmental factors, frequency stability, laser
interferometer, laser noise, metrology, noise cancelation, noise
measurement, optical fiber interference, phase measurement,
phase noise. I. INTRODUCTION

IN RECENT years, the frequency uncertainty of optical
clocks has been greatly reduced [1]–[3]. One of the factors

limiting the uncertainty is the frequency fluctuation of the laser
used to observe clock transitions (clock laser); its improve-
ments have been successively reported [4]–[8]. The use of a
cesium-based time scale as a reference in a frequency mea-
surement has already become insufficient for evaluating such
a highly precise frequency, and frequency ratio measurement
between optical clocks [9] has become important.

To meet this requirement, transfer of frequency stability,
spectral linewidth, and purity using a fiber-based frequency
comb (fiber comb) has been attracting increasing attent-
ion [2], [10]–[13]. This technique can precisely compare opti-
cal frequencies in different wavelengths and can significantly
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suppress the influence of the frequency fluctuation of the clock
laser on the frequency ratio [2].

In such precise frequency comparisons, “fiber noise” occurs
in the transmission lines of the fiber comb and often limits
the frequency precision [14]. Fiber noise is a phase noise
induced in the signal light of a laser passing through an optical
fiber. The noise is induced by environmental disturbance
along the optical path length. In particular, the fiber noise
strongly affects the frequency precision of a fiber comb with
a multibranch configuration (multibranch fiber comb) since
the fiber paths in the respective branches suffer different fiber
noises [15]. Thus, a single-branch configuration has been
proposed to avoid the fiber-noise difference [12], [16]–[18].

However, we believe that multibranch fiber combs still have
various advantages including spectral tailoring of a nonlinearly
broadened spectrum and a high signal-to-noise ratio of the
beat note with a continuous-wave (CW) laser output. Recently,
we proposed and demonstrated a method to actively cancel the
interbranch phase noise difference of a multibranch comb and
improve the relative frequency precision of a multibranch fiber
comb [19].

In this paper, we demonstrate a simple fiber noise reduction
technique with the aim of improving the frequency precision
of the multibranch fiber comb. Specifically, we stabilized the
environment surrounding the optical fiber and investigated
the extent to which a highly stabilized environment reduces
fiber noise. We investigated the frequency band of fiber
noise induced by certain environmental factors by selectively
removing the environment stabilization measures. Further-
more, we designed and constructed a modified Mach–Zehnder
heterodyne interferometer for the precise measurement of such
faint fiber noise.

II. INTERFEROMETER FOR FAINT FIBER

NOISE MEASUREMENT

This section describes an interferometer for detecting fiber
noise with high sensitivity. In [21] and [22], a highly stable
environment was introduced to realize a frequency reference
with low-frequency instability using a fiber delay line inter-
ferometer [20], [21]. In contrast, in this paper, we investigate
the relative phase noise and frequency stability of optical
fiber in highly stable environments. Fig. 1 shows a diagram
of an interferometer for the detection and measurement of
fiber noise induced in a fiber under test (FUT). The detec-
tion is based on a self-heterodyne technique with a Mach–
Zehnder interferometer. One arm of the interferometer has an
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Fig. 1. Diagram of a Mach–Zehnder-type self-heterodyne interferometer
for measuring fiber noise induced in an FUT. FUT: fiber under test; AOM:
acousto-optic modulator; and PD: photodetector.

Fig. 2. Experimental setup for a modified Mach–Zehnder interferometer
for the highly sensitive measurement of fiber noise accumulated in an FUT.
PC: polarization controller; FRM: Faraday rotator mirror; PD: photodetector;
DDS: direct digital synthesizer; and FNC: fiber noise cancelation.

acousto-optic modulator (AOM) and an FUT. The AOM shifts
the CW laser frequency for heterodyne detection. In this paper,
we set the length of the FUT at 10 m, which is comparable
to the length of one of the branches in a multibranch fiber
comb. We used a phase measurement system to measure
the fiber noise from a self-heterodyne signal detected by a
photodetector (PD).

To selectively measure the faint fiber noise accumulated in
an FUT in a stable environment, the fiber noise induced in
the fibers composing the interferometer should be suppressed.
In addition, heat from the AOM generated from an intense
radio frequency driving signal disturbs the interferometer
environment and neighboring fiber temperature.

To achieve highly sensitive measurement, we designed and
constructed the interferometer shown in Fig. 2 [22]. We incor-
porated two techniques in the setup to selectively detect the
fiber noise accumulated in an FUT while suppressing the fiber
noise in the fibers composing the interferometer.

First, we placed an AOM outside the ultrastable envi-
ronment. This makes it possible to avoid the heat release
from the AOM that disturbs the neighboring fiber, the FUT,
and the ultrastable environment itself. The fiber noise accu-
mulated in the fiber path, which is shown by the green
line in Fig. 2, was canceled by using a fiber noise
cancelation (FNC) technique [14]. An error signal was demod-
ulated by a mixer from a heterodyne beat detected at PDFNC.
The AOM was driven through a loop filter and a direct
digital synthesizer (DDS). The AOM was used not only as
a frequency shifter but also as an FNC actuator. The fiber
path length for FNC is about 10 m, which is short enough to
obtain sufficient FNC servo bandwidth and gain.

Second, we suppressed the fiber noise caused in the
fiber composing the interferometer except for the FNC
path [23], [24] by adjusting the fiber length difference between
the two arms. We cannot distinguish the fiber noise induced
in a path shown as a red line and the FUT from the detected
phase noise signal. The fiber length adjustment can cancel out
the fiber noise in a low-frequency region between the two
arms [25]. By appropriately adjusting the fiber length shown
by the red line in Fig. 4, we can selectively measure the fiber
noise accumulated in the FUT.

To detect faint phase noise accumulated in the FUT, the fre-
quency noise of the light source should be minimized. We used
a 1535-nm ultrastable laser locked to the resonance of an
ultralow expansion (ULE) glass cavity as the source; the
configuration is similar to that described in [26]. Although
the frequency noise of the laser is largely canceled out at
the detection stage, residual noise is included in the measured
phase noise. This is explained in Section III-B. The frequency
noise of the ultrastable laser is currently in the lowest class
and can minimize the laser noise to influence the phase noise
measurement.

III. ULTRASTABLE ENVIRONMENT

To prevent fiber noise from being induced in the interfer-
ometer and FUT, we placed them in an aluminum chamber.
We employed the following six environment stabilization mea-
sures to realize an ultrastable environment inside the chamber.

1) Hermetic Sealing: We closed the valve of the vacuum
chamber and blocked any air exchange with the outside
air. The chamber and flange were sealed with O-rings.
We used a hermetic feed-through attached to the flange
to introduce an optical fiber into the chamber.

2) Evacuation: We evacuated the gas in the chamber with a
turbomolecular pump. The pressure was pumped down
to several Pascals. We stopped the pump before the mea-
surement to avoid vibration and other noise. We were
able to keep the pressure below 500 Pa for several days
although it rose gradually once we stopped the pump.
The 500 Pa is less than 1/100 the atmospheric pressure.
We assume it to be sufficient for suppressing fiber noise.

3) External Temperature Control: We controlled the tem-
perature of the outside surfaces of the aluminum cham-
ber. A platinum resistance thermometer was fixed to the
outer surface of the chamber lid as a temperature sensor.
We attached large film-type heaters to the outside plane



2248 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 68, NO. 6, JUNE 2019

TABLE I

COMBINATIONS OF ENVIRONMENT-STABILIZATION MEASURES DEMONSTRATED IN THIS PAPER

of the chamber to uniformly control the temperature of
the entire chamber. We used a commercial temperature
controller to control the temperature. We set the temper-
ature slightly higher than the room temperature since we
control the temperature solely by heating. As a result,
the temperature fluctuation, measured with a platinum
resistance thermometer in a control loop, was suppressed
to within 10 mK.

4) Internal Temperature Control: We controlled the tem-
perature of the copper box inside the chamber. The
internal temperature can be more precisely stabilized by
controlling the temperature of the inner copper box in
addition to the use of external temperature control [26].
A thermistor was attached to the upper surface of the
copper box as a temperature sensor and was used as
one resistance of a Wheatstone bridge. This configura-
tion produces highly precise temperature controllability.
We applied an ac voltage across opposite corners of
the Wheatstone bridge. A lock-in amplifier measured
the voltage across the other two corners of the bridge,
and its output was used as an error signal. Using the
error signal, we fed back the output current via a loop
filter to a heater attached across the entire surface of the
copper box. The setting temperature was 25 °C, which
was slightly higher than the external temperature control,
since the temperature was controlled only by heating.
We assume that the internal temperature was controlled
to within a few mK based on fiber noise measurements
as mentioned later.

5) Acoustic Shielding: We installed a vacuum chamber in
an acoustic enclosure. The enclosure has a specification
value of an acoustic transfer rate of lower than −20 dB
from several hertz to several hundreds of hertz.

6) Vibration Isolation: Operate a vibration isolation plat-
form where the chamber is placed. The specification
as regards vibration suppression from the bottom to the
top surface of the passive antivibration table used in the
study was more than 20 dB for 3–10 Hz and more than
40 dB for more than 10 Hz.

In this paper, we demonstrated combinations of environment
stabilization measures as shown in Table I. There are certain
impossible combinations for the six environment stabilization
measures. For example, evacuation must be accompanied by
a hermetic seal and internal temperature control must be
accompanied by external temperature control. We were able
to investigate the influence of environmental factors related to
these measures by excluding one or two of them. Here, we use
the term “ultrastable environment” for an environment to
which we applied all six environmental stabilization measures.

IV. RESULTS AND DISCUSSION

A. Propagation Delay Fluctuation

To confirm whether or not an ultrastable environment could
suppress fiber noise, we measured the phase fluctuation of a
beat signal at 55-MHz detected at a PD by a phase noise
test set (Symmetricom 5125A). Fig. 3 shows the propagation
delay time fluctuation of the signal light, which was calculated
from the phase fluctuation. The ultrastable environment greatly
improved the delay fluctuation accumulated in the FUT. This
result indicates that fiber noise can be reduced by environmen-
tal stabilization.

B. Phase Noise

To analyze the fiber noise in detail, we measured the power
spectral density (PSD) of the phase noise from 10 mHz to
1 MHz by using the phase noise test set. Fig. 4 shows the
results obtained under the various environmental conditions.

The ultrastable environment greatly suppressed the fiber
noise below a Fourier frequency of 1 kHz compared with our
laboratory environment [24]. The fiber noise was suppressed
by more than 70 and 30 dB at 10 mHz and 10 Hz, respectively.
In 30-Hz–30-kHz range, the phase noise reached the shot noise
limit, which can be lowered by increasing the power incident
on the PD.

Table II summarizes the improved phase noise frequency
band obtained with the various environmental stabilization
measures. Vibration isolation reduced the fiber noise existing
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TABLE II

IMPROVED PHASE NOISE FREQUENCY BAND AND ALLAN DEVIATION AVERAGING TIME RANGE
WITH DIFFERENT ENVIRONMENTAL STABILIZATION MEASURES

Fig. 3. Propagation delay fluctuation induced in a 10-m-long FUT.
(a) Comparison of laboratory and ultrastable environments. (b) Magnified
delay fluctuation in the ultrastable environment. (A) and (G) corresponding
to the notation of the combinations shown in Table I.

in 6–100 Hz. This was assumed to be realized by isolating
the interferometer from ground vibration. Acoustic shielding
suppressed low-frequency phase noise to below 10 Hz. After
the acoustic shielding, the power incident on the PD became
stable. We assumed that the acoustic enclosure stabilized
the temperature and suppressed the acoustic noise. The fiber
connectors used in the FNC path might form a weak cavity and
that resulted in faint fiber noise being converted to intensity
noise by means of weak cavity resonance. We assume that
this phase and intensity noise is simultaneously suppressed by
the acoustic shielding. By evacuating the chamber, the fiber
noise at Fourier frequencies of around 20 Hz and below 4 Hz
was suppressed. We assume that the frequency components
around 20 Hz and below 4 Hz were due to vibrational and
thermal conduction through air to the fiber interferometer,
respectively. The thermal controls suppressed the fiber noise
in the low-frequency region. The external and internal temper-
ature controls suppressed the fiber noise below 1 and 10 mHz,
respectively.

Here, we consider the fiber noise measurement limit with
our setup. The strong peak at 700 kHz in Fig. 4 in all cases
originates from a modulation to stabilize the ultrastable laser

to the ULE glass cavity. Although this modulation component
was reduced by the self-heterodyne interferometer, the com-
ponent remained because of the path length difference of the
interferometer arms, and a residual component appeared in the
frequency range. Thus, the measurement limit around the peak
frequency is limited by the residual modulation component
from the laser. The white phase noise floor ranging from
30 Hz to 30 kHz provided a good match with the shot noise
level (magenta solid line in Fig. 4) calculated from the power
incident on the PD. Thus, we assume that the frequency range
measurement limit is determined by the shot noise.

We measured the background noise of the measurement
setup by removing the FUT and measuring the fiber noise
in an ultrastable environment (black dashed line in Fig. 4).
In this measurement, we increased the power incident on
the PDs to the PD saturation power to reduce the shot
noise. Although the measured phase noise was reduced in
30-Hz–10-kHz frequency range, it was higher than some other
results in the frequency region below 10 Hz. We assume that
some measurement condition was not reproduced after we had
removed the FUT. It is possible that the reflectivity at the fiber
connectors, which were linked with a polarization controller,
the AOM and the fiber feed through, changed when the FUT
was removed. Further investigation is necessary to understand
the difference.

C. Allan Deviation

We measured the Allan deviation (0.001–20 000 s) by using
the phase noise test set to understand how the fiber noise
degrades the frequency stability of the signal light of the laser.
Fig. 5 shows the Allan deviation calculated from the PSD
shown in Fig. 4 with a measurement bandwidth of 500 Hz.
The measurement bandwidth is comparable to the fiber noise
bandwidth. The Allan deviation is normalized by the carrier
frequency of the laser (195.3 THz).

The Allan deviation in our laboratory environment (black
circles in Fig. 4) is comparable to the relative frequency
stability of recent multibranch combs [15], [27], [28]. This
indicates that the frequency stabilities of the multibranch fiber
combs are limited by the fiber noise differences between the
branches.

In ultrastable environments, the frequency stability was
improved over the entire averaging time range compared with
our laboratory environment because of the fiber noise sup-
pression. The Allan deviation was 7 × 10−20 at an averaging
time of 1 s and improved down to 2 × 10−21 at an averaging
time of 10 000 s. Specifically, it was improved by three orders
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Fig. 4. PSD of phase noise accumulated in 10-m-long FUT under various
environmental conditions. (a) Vibration isolation removed and acoustic shield-
ing removed. (b) Internal temperature control removed and both temperature
controls removed. (c) Evacuation removed and without an FUT. (The results
for an ultrastable environment, our laboratory environment, and shot noise are
shown in all figures.) temp. cont.: temperature control. (A)–(G) correspond to
the notation of the combinations shown in Table I.

of magnitude for a 0.2–2000-s averaging time. Table II also
summarizes the averaging time range of the Allan deviation
improved by different environmental stabilization measures.

Here, we consider the measurement limit of the Allan
deviation. The Allan deviation difference for long averaging
times ranging from 2000 to 20 000 s in ultrastable environ-
ments, with the vibration isolation removed, and with the
acoustic shielding removed is assumed to reflect the fluctu-
ations in room temperature on the days of the experiments.

Fig. 5. Frequency instability depending on interferometer environment
(measurement bandwidth 500 Hz), temp. cont.: temperature control. (A)–(G)
correspond to the notation of the combinations shown in Table I.

With a short averaging time, all cases showed similar results.
This indicates that the signal shot noise is dominant in the
time range. We investigated the measurement limit of the
setup by removing the FUT. As the result, for an averaging
time exceeding 4000 s, Allan deviation was better than that
measured using the interferometer with the FUT. This indicates
that the fiber noise between the two interferometer arms was
reduced by adjusting the path lengths of the arms. In contrast,
some results were better than for an ultrastable environment
without the FUT with shorter averaging times of less than
4000 s. This may indicate the presence of an unrecognized
noise source as described in the phase noise analysis in
Section IV-B.

D. Discussion

We revealed that highly stabilized environments greatly
reduce fiber noise. With a 10-m-long fiber, the reduction in
the phase noise PSD was as large as 30–70 dB in the low-
frequency region, which corresponded to Allan deviations of
7 × 10−20 and 2 × 10−21 at averaging times of 1 and 10 000
s, respectively. These values are no worse than the frequency
precisions of the best frequency combs.

We also revealed how each environmental stabilization
measure works in terms of fiber noise reduction by applying
appropriate combinations of stabilization measures. This con-
stitutes a valuable guideline for designing an efficient system
since we can select the measures depending on the target
frequency precision.

Our final goal is to reduce the relative phase noise of a
multibranch fiber-based frequency comb; this paper is part
of a study toward this goal. As regards a frequency comb
phase locked to an ultrastable laser with a broad servo band-
width, we assume that the phase noise added in “out-of-loop”
transmission lines is dominant in the phase noise of the comb
output. In this paper, we found that the fiber noise induced in
a 10-m-long fiber in our laboratory environment was similar to
the relative frequency stability of multibranch combs obtained
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in [28]. This suggests that the dominant factor limiting the
relative frequency stability of the multibranch fiber comb is
the fiber noise induced at each branch. On the other hand,
an erbium-doped fiber amplifier (EDFA) is also a possible
noise source in the transmission lines. At the current stage,
we have concluded that the noise generated in the EDFA is
not much larger than the fiber noise induced by the laboratory
environment.

V. CONCLUSION

We investigated the degree to which “fiber noise” is induced
by surrounding environmental disturbance and added to signal
light through optical fiber and can be reduced by suppress-
ing environmental disturbance. For this purpose, we devel-
oped methods including a modified Mach–Zehnder heterodyne
interferometer to measure such small fiber noise. Its measure-
ment limit is of an unprecedented level both in terms of Allan
deviation and phase noise spectral density; the method would
prove useful for fiber noise measurement in many scenarios.
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