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The Effect of Internal Pipe Wall Roughness on the
Accuracy of Clamp-On Ultrasonic Flowmeters

Xiaotang Gu

Abstract— Clamp-on  transit-time ultrasonic flowmeters
(UFMs) suffer from poor accuracy compared with spool-
piece UFMs due to uncertainties that result from the in-field
installation process. One of the important sources of uncertainties
is internal pipe wall roughness which affects the flow profile and
also causes significant scattering of ultrasound. This paper purely
focuses on the parametric study to quantify the uncertainties
(related to internal pipe wall roughness) induced by scattering of
ultrasound and it shows that these effects are large even without
taking into account the associated flow disturbances. The
flowmeter signals for a reference clamp-on flowmeter setup were
simulated using 2-D finite element analysis including simplifying
assumptions (to simulate the effect of flow) that were deemed
appropriate. The validity of the simulations was indirectly
verified by carrying out experiments with different separation
distances between ultrasonic probes. The error predicted by
the simulations and the experimentally observed errors were in
good agreement. Then, this simulation method was applied on
pipe walls with rough internal surfaces. For ultrasonic waves at
1 MHz, it was found that compared with smooth pipes, pipes
with only a moderately rough internal surface (with 0.2-mm
rms and 5-mm correlation length) can exhibit systematic errors
of 2% in the flow velocity measurement. This demonstrates that
pipe internal surface roughness is a very important factor that
limits the accuracy of clamp on UFMs.

Index Terms— Clamp-on flowmeter, roughness, transit time,
ultrasound, uncertainties.
I. INTRODUCTION
RANSIT-time ultrasonic flowmeters (UFMs) are widely
used in many industrial sectors, such as oil and gas,
power, nuclear, process, water distribution, and chemical
plants. These flowmeters measure flow velocity by calculating
the difference in arrival time between the ultrasonic signals
that are traveling with the flow (downstream signal) and
against the flow (upstream signal). There are two common
ways to install the ultrasonic transducers, “inline” and “clamp-
on” (Fig. 1). The installation of the inline UFM requires
cutting the pipe and subsequent insertion of a premanufactured
and calibrated spool piece that contains integrated ultrasonic
transducers. The clamp-on flowmeter only requires transducers
to be mounted on the outside of the pipe wall to take a
measurement. This clamp-on flowmeter has a number of
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Fig. 1. (a) Direct path inline transit-time UFM. (b) Direct path clamp-on
transit-time UFM. The black bar is the pipe wall. The black dotted shape
is the transducer and the angled wedge. The arrows represent ultrasonic
propagation path.

advantages compared with other flowmeters. It is noninvasive,
easy to install, and requires a little maintenance [1].

While the clamp-on transit-time UFM has many advan-
tages, its main disadvantage is the uncertainties that are a
result of the in-field installation process [2]. The source of
uncertainties may come from installation of transducers, pipe
works, properties of fluid, and so on, among which some
of the sources have been studied, such as inhomogeneity
of pipe materials [3], separation distance between transduc-
ers [4], and frequency of transducers [5]. However, there is
a limited amount of information available on the effect of
internal pipe wall roughness on the uncertainties. The pipe
wall roughness would induce uncertainties in two sets of
problems, one is distortion of the flow profile, the other is
the scattering of ultrasound [6]. The flow profile has been
studied by Mori et al. [7] and Calogirou et al. [8], but there
are limited studies on the scattering of ultrasound from rough
surfaces on flow measurements. Szebeszczyk’s research [9]
shows that the deposits on the internal pipe wall cause large
attenuation and distortion of the received ultrasound signal.
Cermakova et al. [10] demonstrate the impact of the roughness
of the pipe by comparing measurements on corroded and
noncorroded pipes. However, these studies only show that
pipe wall roughness has a large impact. None of these studies
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Fig. 2. Schematic changes in scattered energy distribution using polar plots.
(a) Smooth surface. (b) Rough surface. The rough surface reduces the energy
of the transmitted coherent field and increases the scattered energy.

provide a parametric study to quantify the range of the
possible errors caused by different roughness parameters due
to scattering. Wave scattering from a rough surface has been
the subject of study for many decades [11]. As can be seen
in Fig. 2, the rougher the surface, the higher the reduction in
the energy of the transmitted coherent field will be. This can
cause phase modulation and attenuation [12] of the received
signal. For flow measurements in the field, this may potentially
reduce the signal-to-noise ratio and cause distortion of the
signal waveform. Since the internal pipe wall is inevitably
rough, the impact of the wave scattering from these surfaces
needs to be studied and quantified.

Therefore, the aim of this paper is to carry out parametric
studies to quantify the effect that internal pipe wall surface
roughness has on the uncertainties of clamp-on UFMs for
nonflow profile related effects (scattering effects).

To achieve this, a reference simulation method (with sim-
plifying assumptions which were deemed suitable) is pre-
sented in Section II. This simulation method was then verified
experimentally by quantifying uncertainties that result from
horizontal separation between transducer probes (Section III).
Then, the method was used to quantify the effect of internal
pipe wall roughness on uncertainties for different roughness
parameters (Section IV).

II. REFERENCE SIMULATION METHOD
A. Static Reference Condition

Fig. 3 shows the reference setup of a typical direct path
clamp-on UFM. The main components in this setup are the
pipe, fluid, wedges, and transducers. The transducers are
placed onto the angled edge of the perspex wedges which are
clamped onto the opposite sides of the steel pipe wall. This
setup allows the two transducers to send ultrasound to each
other at an oblique angle to the flow direction. The properties
of each component are shown in Table I. Water is chosen as
the fluid, and the pipe size follows the industry standard [13].

The selection of the wedge angle has to satisfy two criteria,
to maximize the velocity sensitivity and also to ensure that
only shear waves exist in the pipe wall so that only one beam
of ultrasound propagates in water [5]. To maximize velocity
sensitivity, the propagation angle (@) of ultrasound in water
needs to be maximized. To ensure that only shear waves exist
in the pipe wall, # has to be larger than the first critical
angle and less than the second critical angle. According to

Transducer
K, Perspex wedge
L

S: Shear wave
L: Longitudinal wave

Pipe

Fig. 3. Illustration of the reference condition. Pipe, fluid, and wedge
properties are shown in Table I. 0 is the propagation angle in water.

TABLE I

PROPERTIES OF THE STEEL PIPE, WATER AND WEDGE
FOR THE REFERENCE CONDITION

Standard
Outer diameter (mm)
Thickness (mm)

3/, NPS, SCH 40s
101.6
5.74

Material Carbon steel
Young’s modulus (GPa) 217
Material Density (kg/m?) 7932
Temperature (°C) 20
Density (kg/m3) 998.2
Bulk modulus (GPa) 2.17

Average flow velocity(m/s) 2

Reynold’s Number 1.8x10°
Wedge angle(®) 50
Wedge thickness (mm) 20
Young’s modulus (GPa) 6.33
Density (kg/m?) 1180

Snell’s law, (1) calculates the range of 8, where cg; and cgg
are the shear and longitudinal wave velocity in steel pipe
and ¢, is the phase velocity in water. Using the information
in Table I, & was calculated to be between 14° and 27°.
However, to allow for the uncertainty in material properties,
an angle of approximately 24° was chosen. This provides some
slack and also results in a nice round angle of 50° for the
perspex wedge. These values are similar to those encountered
in some industrial applications [14]

. Cyp . Cup
arcsin — < 6 < arcsin —. (1)
Csl Css

After 6 has been fixed, Snell’s law was used to determine the
propagation angle in all three media and then the installation
horizontal distance (ideal installation distance) between the
wedges (transducers) was calculated. This distance is used
as the separation distance of the wedges for the reference
condition.
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TABLE II

DETAILS OF ELEMENT AND MESH CHOICE FOR A FULL-SCALE 2-D
CLAMP-ON FLOWMETER FEM. 2-D ACOUSTIC ELEMENTS ARE
USED TO MODEL WATER AND 2-D SOLID ELEMENTS ARE
USED TO MODEL THE WEDGE. THE MESH SIZE WAS
SELECTED SUCH THAT AT LEAST 15 ELEMENTS PER
WAVELENGTH WERE USED. CPE4R Is A FOUR-NODE
BILINEAR PLANE STRAIN QUADRILATERAL ELE-

MENT AND AC2D4R Is A FOUR-NODE LINEAR
2-D ACOUSTIC QUADRILATERAL ELEMENT

Layer Perspex | Steel pipe Water
wedge

Element type CPE4R CPE4R AC2D4R

Mesh size (mm) 0.05 0.1 0.05
Minimum 1.43 3.26 1.48

wavelength (mm)
No. elements per 28.6 32.6 29.6

wavelength

B. FE Simulation

After defining the reference condition, a finite element
model (FEM) was setup using the commercial software,
Abaqus/Explicit. This solver is based on integration of the
equations of motion for the body using an explicit central
difference integration rule [15]. The setup of the full-size
model is shown in Fig. 4. The dimensions of each layer
were as described in the reference condition. One of the
transducers was modeled as the generator and the other one as
the receiver. The generator signal was a Hanning windowed
toneburst with 1-MHz, five cycles in the time domain, and
a Gaussian beam in the space domain. The amplitude of the
central displacement on the generator transducer was 1 ym.

To accurately model the wave propagation, it is necessary
to ensure correct element size and time step size in order to
ensure accuracy and stability. According to [16], the choice
of 15 elements per wavelength should have enough mesh
density for modeling, so the mesh size (A) was calculated
accordingly using (2)

A< Vmin 2
Ne
where N, is the minimum number of elements per wave-
length. The selection of element and mesh size are shown
in Table II. In addition, to ensure the stability of the model,
the time step (f;) is calculated using (3) as suggested by
Abaqus/Explicit

A
ty < — 3)
Cmax
where cmax 1s the maximum phase velocity in the model.
In this case, the maximum phase velocity is the longitudinal
velocity in steel and therefore the choice of ts = 5 ns is
resulted.

Fig. 5 shows the sum of the displacement magnitude of
all the observation points on the receiver transducer. It can
be seen that there are no signals before the first longitudinal
wave arrives. Furthermore, shear waves arrive immediately
after the longitudinal wave. This is expected because the shear
wave (second ’S’ wave in Fig. 3) incident on the steel-
perspex interface will generate both longitudinal and shear
transmission in the perspex wedge.

Spatial amplitude
distribution applied on
the wedge (toneburst

1MHz, 5 cycles)

Red line: Tie
between different
media

Acoustic element to
model water

Steel pipe wall
Observation points

Fig. 4. FE model setup in Abaqus, showing the stress wave in the perspex
wedge and steel pipe and the acoustic pressure wave in the water, 18 us after
the transducer emits the signal. An arbitrary and different color map scale was
chosen to visualize both the stress and acoustic pressure wave on the same
plot. The pipe and wedge are using the same color scale (rainbow) to represent
the displacements due to the ultrasonic wave in these two media, where blue
represents low or no displacement and red represents large displacement. The
wave in the water is shown in the form of the acoustic pressure and this is
hence potted on a different color scale.
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Fig. 5. Reference signal transmitted through pipe without flow.

C. Flow Simulation

After defining and modeling the static reference condition,
the flow and both upstream and downstream signals needed
to be simulated. A number of simulation methods have been
published to simulate the flow in a UFM using ray tracing [17],
FEM [18], and commercial CFD software [19]. These flow
simulation methods are computationally demanding and a
single simulation may take up to one day. In addition, the focus
of these papers was to investigate the effect of the flow on
the receiving signals, whereas the focus of this paper is to
investigate the effect of roughness (parametric study) on flow
measurement uncertainties. Therefore, to optimize simulation
speed, a simplified method to simulate the effect of flow was
used in this paper based on considerations of what happens in
the fluid. Without flow, as shown in Fig. 6(a), the ultrasonic
wave packet with phase angle o propagates at the same angle
o and arrives at the other end of the pipe at the same phase
angle a. Assuming uniform flow across the cross section of
the pipe (Fig. 6), while the phase angle of the wave packet
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Fig. 6. Effect of the flow on ultrasonic wave propagation. The transducer
sends ultrasonic signals through the pipe and arrives at the other side of the
pipe. To a first approximation, the phase angle remains the same, whereas the
angle at which the wave packet traverses the pipe changes. (a) Propagation
of ultrasound without flow. (b) Propagation of ultrasound with uniform flow.
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Fig. 7. Transducer movement to simulate flow and shift of the location at
which the wave packet arrives on the other side of the pipe.

with respect to the pipe cross section remains the same (the
impedance mismatch between the pipe and water remains
constant), the angle at which the wave packet traverses the
pipe cross section changes to o 4 da. The same phenomenon
was observed in [19].

This suggests that the upstream and downstream signals can
be simulated by moving the receiving transducer along the pipe
wall at a distance x [see (4)] while maintaining the transmitting
transducer at the same location. This is illustrated in Fig. 7

=V “)
Cw

where VT is the flow velocity, /,, is the travel distance in
water, and ¢, is the phase velocity of ultrasound in water.
Fig. 8 shows the upstream and downstream signals that are
simulated using this method.

This method not only keeps the complexity of signals by
taking into account the presence of both shear and longitudinal
waves but also reduces the required computation effort. The
assumptions that a uniform flow profile exists and that the
phase angle of the wave packet remains the same with respect
to the pipe cross section (with or without the flow) were made.

1.5
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Fig. 8. Simulated upstream and downstream signals.
TABLE III
SIGNAL PROCESSING METHOD TO DETERMINE FLOW
VELOCITY FROM SIMULATED SIGNALS
Steps Procedure
1 The upstream and downstream signals are digitally filtered
using a Sth order Butterworth filter with cut-off frequency
0.6MHz and 1.4MHz.
2 The signal tail which is defined to start 5 cycles after the
maximum in signals is removed
3 The upstream and downstream signals are cross-correlated.
4 The signal is zero-padded in the frequency domain so that a
virtual sampling frequency of 800MHz is achieved
5 Linear interpolation is used between samples to find the
maximum of the cross-correlation function and the arrival
time difference (At).
6 The flow velocity is calculated using the transit time equation
(Equation 5).

D. Signal Processing Method to Determine Flow
Velocity From Simulated Signals

Table III shows the signal processing steps that were used
to calculate flow velocity from the simulated upstream and
downstream signals

_ d; At
"~ 2t,t4sin0cosh

of 5)

where of is the mean flow velocity, At is the difference
of the arrival time between f, (upstream arrival time) and
ty (downstream arrival time), d; is the internal diameter of the
pipe, and @ is the angle between the sound travel path in water
and the normal direction. v f can be determined by combining
the individual upstream and downstream travel times that are
shown in
di
= cosf(cyy — vfsind) ©
di
fa = cosf(cy + vfsind) @
where 7, and 75 are upstream and downstream arrival time,
¢y 1s the phase velocity in water, v f is the mean flow velocity,
and d; is the internal diameter of the pipe. The upstream signal
is decelerated by the flow while the downstream signal is
accelerated.
The cross-correlation function and interpolation were used
to determine the arrival time difference. The correlation
method is the best for cases with low S/N ratio, but the limiting
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Fig. 9. Photograph of the transducers and pipe sample that were used in

experiments.

Arbitrary wave generator
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Transducer 1
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60dB

Transducer 2
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Fig. 10. Block diagram showing how the individual elements were connected
together in the experimental setup.

factor is the sampling frequency which can be improved by
interpolation [20], [21]. This processing method provides a
reference method to process the signals and therefore allowing
the parametric study to be performed unbiased.

III. VERIFICATION EXPERIMENTS
A. Experimental Setup

An experimental setup as shown in Fig. 9 was built. The
dimensions are the same as in Table 1.

Transducers (Aerotech) with center frequency of 1 MHz
were fixed by brackets onto a 50° angled perspex wedge.
A micrometer was fixed onto the clamping system to move the
wedge and transducer horizontally by small distances (accurate
to 10 um).

Furthermore, a linear variable differential trans-
former (LVDT VG/2/s, 54.1 mV/V/mm sensitivity, Solartron
Metrology, West Sussex, U.K.) is used to measure the
horizontal displacement of the wedge. In this case,
a multimeter (61/2-Digit Multimeter 2000, KEITHLEY,
Bracknell, U.K.) that has resolution 10-xV (able to condition
the LVDT to repeatability of 0.018 xm), 10-V range was
used to read the output of this LVDT. Therefore, if the
distance required to move is 300um in order to generate
2-m/s estimated flow, the theoretical repeatability of this
distance measurement is better than 0.1%.

1 —Experimental signal
---Simulated signal

Amplitude(arb)
o
o (6]

o
o

70 80 90 100 110 120

Time(us)
Fig. 11. Experimental reference signal compared with simulated reference
signal.

A schematic electrical setup is shown in Fig. 10. The
Handyscope HSS (Tiepie Ltd., Sneek, The Netherlands) was
used to transmit signals (1-MHz, five cycles toneburst, 12 V)
via one of the transducers. The other transducer is used
to receive the analog signal, which is amplified and digi-
tized (14-bit ADC at 200-MHz sampling frequency) on one
of the ports of the HSS.

Fig. 11 shows the static reference signal obtained experi-
mentally (not moving the wedge). It can be seen that there is
good agreement between the arrival time and wave shape of
the simulated and experimental signal. There are also small
discrepancies that can be noticed. Compared with the simula-
tion signal, there are additional low-amplitude waves arriving
before the main signal. This might be the waves traveling
around the circumference of the pipe; while they would need
to travel further, the speed of sound in the pipe is faster than in
the liquid. Since the simulation is 2-D, there are no 3-D effects
such as the curvature of the pipe being simulated. The tail of
the signals is also different. In simulation, there are significant
amounts of energy reflected from the top of the wedge which
arrive later than the main signals, but these signals seem to be
attenuated in the experiment.

B. Horizontal Distance Uncertainty Test

For the purpose of verifying the simulation, the experimen-
tal setup was used to determine the uncertainties of one of
the easily measured parameters, horizontal separation distance
between the transducer probes.

Errors of horizontal distance were introduced deliberately
by moving the receiver transducer relative to the reference con-
dition. For each position (expressed as a % error with respect
to the horizontal separation distance of the reference condi-
tion), the upstream and downstream signals were obtained
by an additional small positioning offset with respect to the
new horizontal transducer position, as previously described in
Section II-C. Then, procedures in Table IV were carried out
to obtain repeated flow measurements at one position.

The tests were repeated for horizontal distance errors from
—40 to 430 mm.

The flow velocity error was then plotted against the error
in the horizontal separation distance of the transducers. The
negative distance error means that the wedges were closer to
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TABLE IV
EXPERIMENTAL TEST PROCEDURE

Steps Procedure
1 The wedges were placed onto the pipe at a required
horizontal separation distance
2 50 ultrasonic signals were sent from one transducer to the
other, these signals represent the downstream signal
3 One of the wedges was displaced horizontally (increasing
the horizontal separation distance between the two
transducer by 2x)
4 Another 50 ultrasonic signals were sent, these signals
represent the upstream signal
5 The upstream and downstream signal are processed to
calculate the estimated flow velocity(vs).
6 Flow velocity error is calculated using @, where V.
is the reference velocity "
7 Procedures from 1 to 6 were repeated 10 times and the
velocity errors were averaged

4 —*Simulation
--Experimental

) o N
| | |
.

Error in estimated velocity(%)
A

8 I I I I I I I
-40 -30 -20 -10 0 10 20 30 40

Horizontal distance error relative to reference condition(%)

Fig. 12. Estimated flow velocity error as a function of horizontal separation
distance error. The error bar represents the standard deviation of the estimated
flow velocity measured experimentally.

each other compared with the reference condition, whereas the
positive distance error means that they were further apart.

Fig. 12 shows the result for this test. It can be seen that
between —15% and 15% horizontal distance error, the velocity
error estimated from simulations was small compared with
the standard deviation in experimental tests. This means that
if the horizontal distance error varies from —15% to 15%,
the estimated errors cannot be accurately measured by the
test setup and therefore cannot be proved that the experi-
ments agree with simulation. However, outside this range,
the simulations predicted that much larger errors could be
experimentally confirmed. This gave us confidence that the
presented simulation approach yields valid results.

IV. PIPE ROUGHNESS UNCERTAINTY SIMULATION

After good agreement between simulation and experiment
was found, this method was applied to investigate the effect
of pipe roughness on uncertainties of UFMs. There are both
external and internal pipe surfaces and they both can be rough.
In this case, only the internal pipe roughness is considered
as this is the surface that cannot be accessed during the
installation process.

The surface roughness is defined using rms height (ver-
tical extent) and correlation length (horizontal extent) [22].
Fig. 13 shows the examples of the surface profile for different

6.4
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I . ---RMS 0.2 mm
i ; —Ref thickness
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Distance along the pipe length (mm)
Fig. 13. Pipe roughness profile for the internal wall surface with different

rms heights and correlation length 1 mm.
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Fig. 14. Tllustration of different correlation lengths used in the simulation of

the effect of internal pipe wall roughness on uncertainties of clamp-on UFM
with rms value 0.05 mm.

rms values with reference to the reference thickness of the
pipe (5.74 mm for 3',-in NPS, SCH 40s pipe). A value
of 0.05 mm is the estimated roughness for a new pipe, whereas
0.2 mm is the roughness for a moderately corroded pipe [23].
Correlation length is a statistical measure of the variation of
the roughness profile along the pipe lengths. Fig. 14 shows the
surface profiles of different correlation lengths. Three lengths
were chosen, 1, 3, and 5 mm, where 3 mm is approximately
the wavelength for 1 MHz shear wave ultrasound in the steel
pipe.

Twelve different combinations of roughness parameters (rms
value and correlation length) were simulated. For each com-
bination, ten different realizations of thickness profile were
generated with the same parameter of rms height and correla-
tion length.

After this, the reference simulation method described in
Section IT was used to simulate the upstream and downstream
signals. This includes the static reference condition (dimen-
sions, wedge angle, and placement), FE simulation setup,
and flow simulation. The internal pipe surfaces in the FE
simulation setup need to be replaced with the rough surfaces as
defined in Figs. 13 and 14. Then, signal processing was carried
out to calculate the flow velocity and the percentage error (due
to internal rough surface) of this flow velocity compared with
the reference flow velocity for each realization of a rough
surface.
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Fig. 15. Mean (marker) and standard deviation (error bar) of estimated

velocity error as a function of surface roughness and rms values for different
correlation lengths. For each point plotted, 10 realizations were used to
estimate the mean and standard deviation that are shown in the graph.

This means for every rms and correlation length com-
bination, 10 profiles and 10 systematic errors are gener-
ated. The reason for generating 10 different realizations is
because depending on the actual pipe profile that ultrasound
is transmitted through, the systematic errors will be different
even if the profiles have the same rms value and correlation
length. Therefore, one profile is not representative for this
combination of parameters and several simulations need to be
carried out to explore the range of systematic errors that can
be expected.

The mean and standard deviation of 10 systematic errors
generated from 10 realizations were then calculated for each
rms and correlation length pair.

Fig. 15 shows the mean of the estimated flow velocity error
as a function of correlation length and rms value. It can be
seen that the mean of the errors is approximately O and the
standard deviation is increasing as a function of rms. This
means that although the mean error for roughness profiles with
the same combination of parameters is 0, it is highly possible
that for one particular pipe profile in the field, the systematic
error generated will be nonzero. This proves that in this
particular study, the mean error does not truly represent the
influence of the roughness, but the standard deviation provides
information on the average effect of roughness on the flow
velocity measurement. This presentation is also consistent with
that used by other authors to investigate the effect of scattering
from rough surfaces [24].

The rms value of the internal pipe wall roughness clearly
has a large impact on the uncertainties of clamp-on UFMs.
Previous publications on the effect of roughness on ultrasonic
measurements [25], [26] have described the main effects that
are to be expected from the interaction of the ultrasonic
beam with the rough surface. The relative size of the rms
height compared with the wavelength of the ultrasonic wave
is important. If the surface height varies by a considerable
fraction of the ultrasonic wavelength, then the wave that enters
the fluid from the surface of the steel can have spatially
varying phase so that different components of the beam can
constructively and destructively interfere with each other. This
can change the amplitude and phase of the waves received and
hence the apparent travel time. The correlation length controls
the horizontal variation of the rough surface. If the correlation

length is much smaller than the wavelength, then there can
be many changes in the surface height over the size of the
beam (assuming that the beam is a few wavelengths in size
as is common for most transducers) and effects can average
out. However, if the correlation length is of the order of the
wavelength or longer, then there are only a few variations
over the whole beam and the roughness will considerably
distort the resulting signal. For a 1-MHz shear wave in steel,
the wavelength is around 3 mm; therefore, the rms values
and correlation length of the simulated surfaces are likely to
introduce changes into the ultrasonic signals. It also happens
to be that these surface roughness values are likely to be
representative of the in-service pipes.

The standard deviation of the estimated flow velocity
reaches approximately 2% for a moderately corroded pipe with
rms 0.2 mm and correlation length 5 mm. This means that if
clamp-on UFM on the pipe with these roughness parameters is
used, the systematic errors that result purely from the rough-
ness at the location of installation can be of the order of 2%.
This is a large part of the uncertainties that are commonly
attributed to clamp-on flowmeters by manufacturers (1%—-5%).

V. DISCUSSION AND CONCLUSION

The main objective of this paper is to determine the nonflow
related effect of pipe wall roughness on uncertainties of clamp-
on UFM. To achieve this, a reference simulation method based
on reasonable assumptions was presented and experimentally
verified. This method keeps the complexity of waves but
simplifies the effect of flow. In this way, not only the compu-
tational burden is reduced but also the independent effect of
pipe roughness on the uncertainties can be determined.

In this paper, only the internal pipe wall roughness was
investigated as this parameter cannot be easily changed during
the field measurement. The standard deviation of systematic
errors caused by roughness (in this case, 2% for pipe with
rms 0.2 mm and correlation length 5 mm) depends on the
individual surface profile; however, the range of probable
errors can clearly be identified by the results of this paper.

Experimental results for the uncertainty study of horizontal
separation distance showed good agreement with the simula-
tions. Therefore, it is believed that the additional complexity
of the 3-D results will not affect the conceptual conclusion;
however, it might affect the magnitude of the error that is to
be expected.

Since manufacturers quote installation errors to be of the
order of 1%—-5%, these results show that surface roughness
is an important parameter to consider in clamp-on UFM
installation.
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