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Abstract— A robust leader–slave cooperative navigation (CN)
algorithm for autonomous underwater vehicles (AUVs) based
on the Student’s t extended Kalman filter (SEKF) is proposed.
Compared with the conventional EKF based on a Gaussian
distributed noise assumption, which has been widely used in
the field of CN, the Student’s t-based filtering algorithms
show an improved robustness against outliers existing in the
process and measurement noises. The utilization of the Student’s
t distribution can minimize the negative effect induced by the
outliers existing in the underwater acoustic communication
system and the cheap but unreliable dead reckoning sensors
equipped on the slave AUVs. After a detailed derivation of the
robust CN algorithm based on the SEKF, two approximation
methods that are required in the Student’s t-based filter are dis-
cussed and compared. Simulation results show the efficiency and
superiority of the robust SEKF-based leader–slave CN algorithm
as compared with the conventional EKF-based CN algorithm.
The validity of the proposed CN algorithm is also evaluated
on field trial data, and the performance of different degrees of
freedom (DOF) values, which determine the tail behavior of the
Student’s t distribution is compared and analyzed, and then the
link between the DOF value and the robust effect of the Student’s
t distribution is revealed, which will act as a guide when applying
the Student’s t-based filter in the field of CN.

Index Terms— Autonomous underwater vehicle (AUV),
cooperative navigation (CN), filtering, outlier, Student’s t dis-
tribution, underwater acoustic communication.

I. INTRODUCTION

ACCURATE autonomous underwater vehicle (AUV) nav-
igation is a vital enabler for AUV autonomy, and it is
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also essential to improve the efficiency of AUV missions.
Without a global navigation satellite system (GNSS) signal
as an external reference underwater, an AUV has to rely
on proprioceptive information, obtained through a compass,
a Doppler velocity log (DVL) or an inertial navigation system,
and a pressure depth sensor to calculate a dead reckoning (DR)
navigation solution by integrating velocities, attitude, and
pressure depth [1]. Unfortunately, the positioning errors grow
unbounded with time based on DR information, independent
of the accuracy of the equipped sensors [2], [3]. In order to
achieve bounded-error positioning, additional information to
correct the positioning error is necessary from an absolute
georeferenced source. The most common position correc-
tion method underwater is a time-of-flight (TOF) acoustic
positioning system, such as an ultrashort baseline (USBL),
an SBL, or a long baseline (LBL) approach [4]. Although
these systems can localize an AUV underwater, they do not
always scale well. For example, the LBL system provides
the highest accuracy, but it requires external fixed reference
transponders that limit the navigable range of the AUV to
5–10 km. Moreover, it requires a substantial deployment effort
before operations, especially in deep water, which is costly and
time-consuming.

Recently, multiple AUVs deployment is becoming more
common as the technologies upon which the individual AUV
relies become more stable and the underwater acoustic com-
munication technique that they use to share commands and
information is standardized [5]. Aiming at the deployment
of multiple AUVs, cooperative navigation (CN) is a viable
option for high-accuracy underwater navigation of multiple
AUVs. In a CN system, a fleet of AUVs exchange relative
position measurements from their exteroceptive sensors and
their motion information from proprioceptive sensors to col-
lectively estimate their states. In [6], it is shown that the
rate at which positioning uncertainty increases in a fleet of
vehicles is constant, and is identical for all the vehicles in
the absence of absolute position measurements. The rate of
uncertainty increase is smaller than the best rate any single
vehicle would attain, if it was localizing on its own. The study
indicates that the exchange of positioning information benefits
all vehicles. Furthermore, if absolute georeference information
could be provided to one of the vehicles, the states of vehicles
performing CN are observable in a connected relative position
measurement graph [7]. That is to say, if one vehicle functions
similar to a beacon of an acoustic positioning system, the rate
at which positioning uncertainty increases in the fleet of AUVs
is low or even bounded. More importantly, this vehicle is not
static and does not require a substantial deployment effort
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before operating as the static beacon in the acoustic positioning
system. In addition, this vehicle could be either a mobile
surface vehicle with permanent access to a GNSS signal, or an
AUV with a very expensive and accurate navigation suite.
Therefore, this kind of AUV or mobile surface vehicle can be
regarded as a leader or master. Once the other AUVs equipped
with low-accuracy DR sensors receive information from the
leader or master AUV, they combine the information with
their own DR information within an estimation framework to
improve their position estimates. Such increase in navigation
accuracy is a major benefit to a CN system, and its advantages
also include sensor coverage, robustness, efficiency, and flex-
ibility, and thus it remains an active area of research [8], [9].

CN algorithms for multiple AUVs fall within the broader
problem of multirobot cooperative localization which has
been studied in great depth, and many CN algorithms that
could make a consistent and accurate estimation of the posi-
tions for a group of robots have been proposed [10]–[13].
Estimation algorithms and techniques, such as the extended
Kalman filter (EKF) [14], minimum mean-square esti-
mator [15], maximum likelihood estimator [16], particle
filter [17], and maximum a posteriori estimator [18], have
been used to enhance CN. No matter whether they are used
in a centralized [19] or in a decentralized manner [14], these
algorithms inevitably face unique constraints in a CN system
for multiple AUVs, such as the problem of low data rates
and high latency induced by underwater acoustic commu-
nication. Some CN algorithms have been proposed to cope
with the problem of low data rates and high latency in the
CN system for multiple AVUs [20]–[22]. However, most CN
algorithms proposed for an AUV CN system assume that
the states and measurements are distributed normally around
the true mean, namely, a Gaussian distribution. In practical
engineering, the underwater acoustic communication system
and the cheap but unreliable DR sensors present on slave
AUVs could both induce some outliers, which are far away
from the true mean [23], [24]. Therefore, the Gaussian distrib-
ution assumptions of the process and measurement noises are
violated by these outliers. Correspondingly, even a single occa-
sional outlier will potentially introduce a significant bias in a
Gaussian distributed filter, such as a conventional KF or EKF
estimate, leading to an unacceptably long period of time for
reconvergence of the estimated AUV position. Some different
variations of the KF have been proposed to deal with outliers
in the field of integrated navigation. The most common way
to remove outliers is setting a rejection threshold. In [25],
two different approaches are presented to reject outliers of
the LBL range data: travel time rejection and fix rejection.
In [23], the approach proposed for identifying outliers in the
range measurement is to represent a set of measurements as
a graph, and apply graph partitioning algorithms to identify
sets of consistent measurements. However, simply using a
rejection threshold is not a good way to eliminate them,
since this method can cause the measurement weights to
jump from the original value to zero if the measurement
errors are located near both sides of the threshold. Moreover,
this method requires manual parameter tuning or heuristic
parameter estimation procedures [26].

In fact, such outliers can be modeled by a distribution that
has heavier tails. Olson et al. [23] have shown that the noise
in the TOF ranging measurements does not have a Gaussian
distribution and signal reflections from the surface of the water
as well as from temperature or salinity discontinuities within
the water column itself lead to a distribution which is heavy-
tailed [27]. Therefore, applying the Student’s t distribution
that has heavier tails to model the noise in the CN system for
multiple AUVs to mitigate the outliers is reasonable. Some
Student’s t-based filtering algorithms have been proposed for
coping with heavy-tailed noise including outliers in the signal
processing community. Earlier efforts to derive filters based
on the Student’s t distribution are represented in [28] and [29]
but did not receive much attention. Some linear approaches
for realizing filters have been derived based on the variational
Bayesian approach to solve the filtering problems of linear
systems with heavy-tailed measurement noise [26], [30], [31].
In addition, nonlinear systems with additive noise, Gaussian
state transition, and Student’s t measurement noise are studied
in [32] and [33] where a variational Bayesian approach is
also employed. However, these filtering algorithms are not
suitable for the case of heavy-tailed process noise since they
are all based on the assumption of well-behaved process noise
admitting a Gaussian distribution.

With the assumption that both the process noise and mea-
surement noise admit a Student’s t distribution, a robust Stu-
dent’s t filter for a linear system is derived by approximating
the posterior probability density function (pdf) as a Student’s
t distribution, and the process noise and measurement noise
are both assumed to have Student’s t distributions [34].
Huang et al. [35] proposed a third-degree Student’s t spherical-
radial cubature rule and developed a new robust Student’s
t-based cubature filter to perform nonlinear estimation when
the outliers exist in both process and measurement noises.
In [36], an approximate smoother for the case with additive
process and measurement noises both adopting a Student’s t
distribution is also developed using variational Bayes. In [24],
a sigma-point method for filtering nonlinear systems where
Student’s t distributed process and measurement noises enter
the system nonadditively is developed in an analogous manner
to the unscented KF (UKF). Similar to [24], an unscented
transform is used to compute the Student’s t weighted integrals
to solve the nonlinear filtering problem when the process
noise and measurement noise both admit a Student’s t dis-
tribution [37]. It is evident that Student’s t-based filtering
algorithms have to some extent already been investigated well.
However, to the best of our knowledge, there are few studies
about using the Student’s t distribution to cope with the
outliers induced by the underwater acoustic communication
system and unreliable DR sensors equipped on the slave
AUVs in a CN system for multiple AUVs. Especially, some
details including the approximation step and DOF parameter
selection in the Student’s t-based filter which will impact the
performance of the filter are absent up to now.

Due to the stability issue and the heavy calculation burden
as well as other limitations of some advanced nonlinear
filters [38], such as UKF and particle filter, EKF-based CN
algorithm is more appropriate in practical engineering, and it
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has been widely used in the field of CN and many commercial
navigation products [39]. Therefore, our objective for this
paper is to explore a more practical CN algorithm similar to
EKF-based CN algorithm, and it also has an improved robust-
ness against outliers existing in the process and measurement
noises. In this paper, therefore, the process and measurement
noises contaminated by the outliers from the underwater
acoustic communication system and unreliable DR sensors are
modeled by a Student’s t distribution, and a robust leader–
slave CN algorithm for multiple AUVs based on a Student’s
t EKF (SEKF) is proposed. Both the simulation evaluation
and the field trial are performed to demonstrate the feasibility
and practicability of this robust SEKF-based CN algorithm.
Beyond the development of a robust CN algorithm based on
Student’s t distribution, the second contribution of this paper
is to discuss the two approximation methods required in the
Student’s t-based filters and to provide a quantitative per-
formance comparison of these two approximation methods.
This paper also contributes a discussion of the importance
of degrees of freedom (DOF) selection in the practical engi-
neering, then the link between the DOF value and the robust
effect of the Student’s t-based filtering algorithm is revealed.
All in all, this paper can be regarded as a stepping stone
in the development of Student’s t-based filters, especially for
applying in the field of CN.

II. PROBLEM FORMULATION

In this paper, we define the navigation reference frame
(x, y, z) as a local-level frame with three axes pointing east,
north, and up, respectively. In a CN system for multiple
AUVs, an accurate on-board depth sensor is usually equipped
on the salve AUVs, and the depth sensor measurement is
an excellent correction source for the z-dimension of the
position estimate [4]. Therefore, the 3-D navigation problem
is converted into the 2-D navigation problem.

A. System Model

First, we consider a fleet of AUVs formed by m slave AUVs
which are all equipped with a low cost but low-accuracy
velocity sensor and an orientation sensor, and the velocity
and orientation measured by these proprioceptive sensors are
propagated periodically to maintain a DR navigation solution.
Specifically, the discrete-time kinematic equation on the xy
horizontal plane for the i th AUV of the fleet of AUVs can be
written as follows:

xi
k = xi

k−1 + t · v̂ i
k · cos θ̂ i

k + t · ω̂i
k · sin θ̂ i

k

yi
k = yi

k−1 + t · v̂ i
k · sin θ̂ i

k − t · ω̂i
k · cos θ̂ i

k

θ i
k = θ̂ i

k (1)

where the elements of xi
k = [xi

k, yi
k, θ

i
k]T denote the east and

north components of the i th AUV position together with its
heading angle at time step k, respectively. The parameter t is
the DR sampling period. In addition, v̂ i

k and ω̂i
k , respectively,

denote the forward velocity and the starboard velocity of the
i th AUV, and the symbol (·̂) denotes the measured value.
Generally, the forward velocity and the starboard velocity

Fig. 1. Configuration of leader–slave CN system for AUVs. Left: one
leader AUV and one slave AUV. Right: one mobile surface vehicle and one
slave AUV.

together with the heading angle, which constitute the control
input vector ui

k = (v̂ i
k, ω̂

i
k , θ̂

i
k)

T are usually measured by a
DVL or an electromagnetic log (EM log) and a compass [2].

To bound the accumulated positioning error of the DR
solution in the slave AUVs, one or more leader AUVs that are
equipped with high-accuracy navigation suites should support
the fleet of slave AUVs. To facilitate the discussion, a classic
configuration of two AUVs for CN is shown in Fig. 1.
In Fig. 1 (left), there is a slave AUV, which is equipped with
a low cost but low-accuracy compass and a DVL or an EM
log in the CN system. Typical positioning error with this kind
of DR sensors is 20 Nmile/h or even more. To bound the
accumulated positioning error of the slave AUV, a leader AUV
with a very expensive and accurate navigation suite is included
in the CN system as shown in Fig. 1 (left). With the range
measurement to the leader AUV and the accurate position of
the leader AUV, the unbounded positioning error of the slave
AUV can be corrected by a filtering technique. This is a typical
framework of leader–slave CN system for AUVs [40]. It is
worth mentioning that the leader AUV could be replaced with
a mobile surface vehicle with a permanent access to a GNSS
signal as shown in Fig. 1 (right), and the function of the mobile
surface vehicle is similar to the leader AUV.

Considering the discrete-time kinematic equation for the
slave AUV, the process equation of the CN system can be
written as follows:

xk = f(xk−1, uk, wk) (2)

where xk = [xk, yk, θk]T is the state vector and wk is the
process noise.

It can be found that the process function f (·) in (2) is non-
linear according to the discrete-time kinematic equation (1).
Therefore, it is necessary to provide the partial derivative
matrix to be applied in the SEKF-based CN algorithm pro-
posed in Section III. The partial derivative matrix of the
process function is as follows:

Fxk =
⎡
⎣

1 0 −t · v̂k · sin θ̂k + t · ω̂k · cos θ̂k

0 1 t · v̂k · cos θ̂k + t · ω̂k · sin θ̂k

0 0 1

⎤
⎦ (3)

Fwk =
⎡
⎣

t · cos θ̂k t · sin θ̂k 0
t · sin θ̂k −t · cos θ̂k 0

0 0 1

⎤
⎦. (4)
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The measurement vector is the range between the leader
AUV and the slave AUV, which is represented as follows:

zk =
√(

xl
k − xs

k

)2 + (
yl

k − ys
k

)2 + vk (5)

where the superscript s and l represent the slave AUV and the
leader AUV, respectively. In addition, vk is the measurement
noise.

Similarly, the measurement equation is nonlinear and its
partial derivative matrix is given as

Hk =
[

x̃ s
k − x̂ l

k

rls

ỹs
k − ŷl

k

rls
0

]
(6)

where rls = ((x̂ l
k − x̃ s

k)
2 + (ŷl

k − ỹs
k)

2)1/2 is the predicted
range and x̃ s

k and ỹs
k are the predicted positions of the

slave AUV. In addition, x̂ l
k, ŷl

k are the measured position of
the leader AUV transmitted to the slave AUV through the
underwater acoustic communication system, and it is regarded
as to be accurate.

Equations (2) and (5) constitute the system model of the
leader–slave CN system for AUVs.

B. Distribution of Process and Measurement Noises

Now, let us recall the process noise wk and the measurement
noise vk existing in (2) and (5). Most CN algorithms for
AUVs assume that the states and measurements are distributed
normally around the true mean, namely, the Gaussian distri-
bution. However, for the underwater acoustic communication
system, which is the main communication method underwater,
this is most certainly not the case. Signal reflections from the
surface of the water as well as from temperature or salinity
discontinuities within the water column itself lead to outliers
existing in the acoustic measurement data. In addition to
the outliers existing in the measurement data, due to the
unreliability of the DR sensors equipped on the slave AUVs,
the process noise may also include outliers. These outliers
also violate the Gaussian assumption of the process noise. The
outliers existing in the process noise and measurement noise
lead to a heavy-tailed distributed noise, rather than a Gaussian
distributed noise.

To be more in line with the heavy-tailed behavior induced by
the outliers in the process and measurement noises, we intro-
duce the multivariate Student’s t distribution to describe
the process noise wk and the measurement noise vk as
follows [41]:

St(x; x̂,�, ν) = �
( ν+ndx

2

)

�
(

ν
2

) 1

(πν)
ndx

2
√|�|

×
(

1 + 1

ν
(x−x̂)T �−1(x−x̂)

)− ndx +ν
2

(7)

where �(r) = ∫ ∞
0 e−t tr−1dr is the Gamma function, x =

[x1, . . . , xndx ]T is an ndx -D random vector, ν is the DOF,
x̂ is the mean vector, � is the symmetric matrix, and | · |
represents the determinant operator. Note that the symmetric
matrix � is not the covariance matrix of the random vector x,

Fig. 2. Comparison of Gaussian distribution (green dotted line) and Student’s
t distribution with different DOF values (ν = 3, 5, 50).

and its covariance matrix is related with � for ν > 2 as in the
following equation [35]:

E[(x − x̂)(x − x̂)T ] = ν

ν − 2
�. (8)

The DOF ν that determines the tail behavior of the Student’s
t distribution is an important parameter. When ν = 1,
the Student’s t distribution reduces to the Cauchy distribution,
while in the limit ν → ∞, the Student’s t distribution becomes
a Gaussian distribution N (x̂,�). In Fig. 2, the posterior pdf
of several Student’s t distributions with different DOF values
are drawn and compared. It can be seen from Fig. 2 that
the Student’s t distribution becomes closer to the Gaussian
distribution (green dotted line) as the DOF value ν increases,
and the tail becomes heavier as the DOF value ν decreases.
Therefore, a Student’s t distribution with an appropriate DOF
value is more in tune with the heavy-tailed behavior of the
noise.

In fact, the Student’s t distribution can be seen as adding up
an infinite number of Gaussian distributions having the same
mean but different variances [42]. This distribution, in general,
has heavier tails than a Gaussian as a result. This should give
algorithms derived on the basis of the Student’s t distribution
an important property called robustness, which means that
they are much less sensitive than those based on a Gaussian
assumption to the presence of a few outlier values. In addition,
to facilitate the discussion later, another form of Student’s t
distribution is given here. Let random vector m ∼ Gam(α, β)
and y ∼ N (0,�) [42], then x = x̂ + m−(1/2)y admits a
Student’s t distribution with density as [41]

St

(
x; x̂,

β

α
�, 2α

)

= �
(
α + ndx

2

)

�(α)

1

(2βπ)
ndx

2
√|�|

(
1 + 	2

2β

)− ndx
2 −α

(9)

where 	2 = (
x − x̂

)T
�−1(x − x̂), and it is straightforward to

show that (9) turns into (7) for α = β = ν/2. The density of
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a Gamma distribution Gam(α, β) is represented as follows:

Gam(x; α, β) =
⎧⎨
⎩

βα

�(α)
xα−1e−βx , x > 0

0, otherwise
(10)

where α > 0 is the shape parameter and β > 0 is the rate
parameter.

III. COOPERATIVE NAVIGATION ALGORITHM

BASED ON STUDENT’S t DISTRIBUTION

As mentioned in Section II, we use the heavy-tailed
Student’s t distribution to model the process noise and mea-
surement noise in the CN system for AUVs. Thus, an effective
robust CN algorithm should also be designed based on a
Student’s t distribution.

In this section, we propose a robust CN algorithm based on
the SEKF. For a CN system for multiple AUVs, a nonlinear
process equation and a measurement equation are usually
involved as presented in (2) and (5). Thus, directly porting
the linear Student’s t filtering algorithm to the CN case is
not straightforward. Fortunately, both the Gaussian distribution
and the Student’s t distribution are closed under linear trans-
formation, thus the framework of linear Student’s t filtering
algorithm can be extended to nonlinear systems in a manner
similar to the development of the EKF for Gaussian systems.
Thus, an SEKF that combines the advantage of EKF with the
Student’s t distribution not only can cope with the outliers
but also meets the requirement of computational burden in
practical engineering.

A. Student’s t Extended Kalman Filtering Algorithm

First, we rewrite the nonlinear process equation and the
measurement equation as follows:

xk = f(xk−1, uk, wk)

zk = h(xk, vk) (11)

where k denotes the kth time step, x ∈ R
ndx is the state

vector, z ∈ R
ndz is the measurement vector, f(·) and h(·)

are, respectively, nonlinear process function and measurement
function, w ∈ R

ndx is the heavy-tailed process noise, and
v ∈ R

ndz is the heavy-tailed measurement noise. In addition,
the process and measurement noises are considered as to be
additive.

The initial state and the process and measurement noises
are mutually uncorrelated and Student’s t distributed with
marginal densities as

p(x0) = St(x0; x̂0,�0, η0)

p(wk) = St(wk; 0, Qk, γ )

p(vk) = St(vk; 0, Rk, δ) (12)

where the DOF values η0, γ , andδ determine the tail behavior
of the related densities.

Similar to the conventional EKF, the SEKF also includes a
time update and a measurement update. In the time update,
we first assume the DOF for p(xk−1|z1:k−1) is ηk−1, and

ηk−1 = γ for all k, then we can formulate a joint Student’s t
density because of the common DOF, i.e., ηk−1 = γ as

p(xk−1, wk−1|z1:k−1)

= St

([
xk−1
wk−1

]
;
[

x̂+
k−1
0

]
,

[
�+

k−1 0
0 Qk−1

]
, ηk−1 = γ

)

(13)

where the superscript + denotes the estimated value after see-
ing the measurement. Thus, x̂+

k−1 and �+
k−1 are the estimated

state and symmetric matrices, respectively, at time step k − 1.
Then, we assume that the prediction density is also a

Student’s t distribution and the DOF ηk−1 is not changed after
nonlinear transformation f(·). The prediction density can be
represented as the following equation:

p(xk|z1:k−1) = St
(
xk; x̂−

k ,�−
k , ηk−1 = γ

)
(14)

where the subscript − denotes the predicted value before
seeing the measurement.

To calculate the prediction parameters x̂−
k and �−

k in (14),
we perform a linearization to the process equation in a manner
similar to the development of the EKF for Gaussian systems to
obtain the Jacobian matrices of the process equation Fxk−1 =
∂f/∂xk−1 and Fwk−1 = ∂f/∂wk−1 as shown in (3) and (4).
Thus, we can perform the time update of the predicted state
and symmetric matrices as follows:

x̂−
k = f

(
x̂+

k−1, uk, 0
)

�−
k = Fxk−1�

+
k−1FT

xk−1
+ Fwk−1Qk−1FT

wk−1
. (15)

The result in (15) is guaranteed by the property of the
Student’s t distributed random vector as follows [41].

Remark 1: If x has the ndx -variate Student’s t distribution
with DOF ν, mean vector x̂, and symmetric matrix �, then,
for any nonsingular scalar matrix C and for any a, Cx + a
has the ndx -variate Student’s t distribution with DOF ν, mean
vector Cx̂ + a, and symmetric matrix C�CT .

This property is of importance in applications and is similar
to the corresponding result for the multivariate Gaussian
distribution. It is straightforward to find that the time update
of the SEKF algorithm is similar to that for the conventional
EKF time update.

In the measurement update, we make assumptions on the
DOF in the same fashion. For ηk−1 = δ, then we can formulate
a joint Student’s t density for the predicted state and the
measurement noises as follows:

p(xk, vk |z1:k−1)

= St

([
xk

vk

]
;
[

x̂−
k
0

]
,

[
�−

k 0
0 Rk

]
, ηk−1 = δ

)
. (16)

Similarly, we linearize the measurement equation h(·) by
performing a Taylor series expansion. Then, the joint Student’s
t density of the state and the measurement vectors is written as

p(xk, zk |z1:k−1)

= St

([
xk

zk

]
;
[

x̂−
k

h
(
x̂−

k , 0
)
]
,

[
�−

k �−
k HT

k
Hk�

−
k Hk�

−
k HT

k + Rk

]
, ηk−1

)

(17)
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where the linearized measurement matrix Hk = ∂h/∂xk is the
Jacobian matrix of the measurement equation as shown in (6).

Then, the conditional density of the estimated state given
all measurements z1:k can be also expressed as a Student’s
t distribution as follows:

p(xk|z1:k) = St
(
xk; x̂+

k ,�+
k , ηk

)
. (18)

To obtain the posterior parameters of (18), we can calculate
the conditional density (18) using (9) as follows:

p(xk|zk)

= p(xk, zk)

p(zk)
= �

(
α + n

2

)

�(α)

1

(2βπ)
n
2

× 1√|�|
(

1 + 	2

2β

)− n
2 −α

×
⎛
⎝�

(
α + ndz

2

)

�(α)

1

(2βπ)
ndz

2

1√|�22|

(
1 + 	2

z

2β

)− ndz
2 −α

⎞
⎠

−1

(19)

where n = ndx + ndz , � is the symmetric matrix of the
joint density of the state and the measurement in (17), and
�i j (i, j = 1, 2) is the i th row and j th column elements of
the block matrix �. In addition, the quadratic form 	2

z is
defined as

	2
z = (

zk − h
(
x̂−

k , 0
))T

�−1
22

(
zk − h

(
x̂−

k , 0
))

. (20)

After derivation, the conditional density p(xk|zk) can be
represented as the following equation:

p
(
xk |zk

)

= �
(
α̃ + ndx

2

)

�(α̃)

1

(2β̃π) ndx
2

1√
|�̃|

(
1 + 	2

x

2β̃

)− ndx
2 −α̃

(21)

where α̃ = α + (ndz/2), β̃ = (1/2)(2β + 	2
z ), �̃ = �11 −

�12�
−1
22 �T

12, and 	2
x = (xk − x̂+

k )T �̃
−1

(xk − x̂+
k ).

The derivation result (21) reveals that the conditional den-
sity of the state p (xk|zk) is also a Student’s t distribution,
and parameterized in terms of α̃ and β̃. Then, considering
(15) and (17), and converting them back to the ν parameteri-
zation (7), we obtain

ηk = 2α̃ = ηk−1 + ndz

x̂+
k = x̂−

k + �−
k HT

k

(
Hk�

−
k HT

k + Rk
)−1(zk − h

(
x̂−

k , 0
))

�+
k = β̃

α̃
�̃ = ηk−1 + 	2

z

ηk−1 + ndz

×(
�−

k − �−
k HT

k

(
Hk�

−
k HT

k + Rk
)−1Hk�

−
k

)

P+
k = ηk

ηk − 2
�+

k , (22)

where 	2
z = (zk − h(x̂−

k , 0))T (Hk�
−
k HT

k + Rk)
−1

(zk − h(x̂−
k , 0)).

The derivation result (22) can be summarized as follows.

Remark 2: Suppose that the random vectors x and z with
dimensions ndx and ndz , respectively, are jointly distributed
according to a multivariate Student’s t distribution as

p(x, z) = St

([
x
z

]
;
[

x̂
ẑ

]
,

[
�x x �xz

�zx �zz

]
, ν

)
(23)

with ν > 2. Then, the conditional density for x given the
measurement z is also a Student’s t distribution

p(x|z) = St(x; μ,�, ν + ndz) (24)

where

μ = x̂ + �xz�
−1
zz (z − ẑ)

	2
z = (z − ẑ)T �−1

zz (z − ẑ)

� = ν + 	2
z

ν + ndz

(
�x x − �xz�

−1
zz �T

xz

)
. (25)

The details of the derivation of Remark 2 are presented in
the Appendix.

B. Some Discussions About SEKF

An important assumption in Section III-A is that the predic-
tion density is also a Student’s t distribution and the DOF ηk−1
is not changed by nonlinear transformation. Strictly speaking,
the transformed density does not remain a standard Student’s
t distribution. However, the same problem exists in the EKF,
and the prediction distribution is approximated as a Gaussian
distribution after nonlinear transformation. Here, we adopt the
same approximation strategy and this approximation is mild
and commonly accepted [24].

According to the first equation of (22), it is not hard to
establish that the DOF ηk increases with the filter recursion.
However, the most important postulation in the SEKF algo-
rithm is that the state and process/measurement noises are
jointly Student’s t distributed with a common DOF as shown
in (13) and (16), namely, ηk−1 = γ = δ. To validate the
assumption, it is clearly required that the noise DOF values
γ and δ increase with the recursion process, which will lead
to a conventional EKF after a few time steps. It can also be
observed when letting the DOF ηk → ∞, we can recover the
Gaussian conditional covariance according to (22) as

lim
ηk→∞ �+

k = �−
k − �−

k HT
k

(
Hk�

−
k HT

k + Rk
)−1Hk�

−
k . (26)

Thus, the growth of the DOF should be prevented and a
heavy-tailed posterior density can thereby be retained through-
out time. To bound the DOF, we first select a common DOF
at time step k − 1 for the jointly Student’s t distribution of
state x̂+

k−1 and process noise wk−1 as

η′
k−1 = min(ηk−1, γ ). (27)

Generally, it follows that ηk−1 > γ (because ηk−1 =
ηk−2 + ndz) and then η′

k−1 = γ . Consequently, the marginal
density p(xk−1) should be adjusted given the new DOF η′

k−1.
This problem is formulated as finding a scalar factor c such
that the densities

p(xk−1) = St
(
xk−1; x̂+

k−1,�
+
k−1, ηk−1

)

p̃(xk−1) = St
(
xk−1; x̂+

k−1, c�+
k−1, η

′
k−1

)
(28)
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are similar in some sense to the specified one. This approx-
imation step is important to the performance of a Student’s
t-based filter. To find the scalar factor c, we can use
the moment matching (MM) method [43]. Considering (8),
there is

ηk−1

ηk−1 − 2
�+

k−1 = η′
k−1

η′
k−1 − 2

c�+
k−1 (29)

for ηk−1 > 2 and η′
k−1 > 2. The resulting scale factor c is

then calculated as

c = ηk−1
(
η′

k−1 − 2
)

(ηk−1 − 2)η′
k−1

. (30)

Then, the adjusted symmetric matrix �̃
+
k−1 = c�+

k−1 is used
to update the predicted symmetric matrix as

�−
k = Fxk−1�̃

+
k−1FT

xk−1
+ Fwk−1Qk−1FT

wk−1
. (31)

Similarly, this approximation step should be performed
again before the measurement update step as

η′′
k−1 = min

(
η′

k−1, δ
)

if η′
k−1 > δ

⎧⎪⎨
⎪⎩

d = η′
k−1(δ − 2)(
η′

k−1 − 2
)
δ

�̃
−
k = d�−

k

if η′
k−1 < δ

⎧⎪⎨
⎪⎩

e = δ
(
η′

k−1 − 2
)

(δ − 2)η′
k−1

R̃k = eRk

(32)

where d and e are the scale factors, �̃
−
k and R̃k are the

predicted symmetric matrix of state and measurement noises,
respectively, and δ is the DOF value of the measurement noise.
Note that if η′

k−1 = δ, the approximation step (32) can be
omitted.

In addition to the MM method, an alternative method
to finding the scale factor is by minimization of the
Kullback–Leibler divergence (KLD). KLD is a measure of
how one probability distribution diverges from a second
expected probability distribution, such as the observed dis-
tribution and the considered model. Taking the two densities
as shown in (28) represented as p(x) = St(x; 0,�, ν) and
q(x) = St(x; 0, c�, ν′) as an example, the KLD is defined
as [42]

DKL(p ‖ q) = −
∫

St(x; 0,�, ν)ln

(
St(x; 0, c�, ν′)
St(x; 0,�, ν)

)
dx

= −
∫

St(x̃; 0, I, ν)ln

(
St(x̃; 0, cI, ν′)
St(x̃; 0, I, ν)

)
d x̃

(33)

where the stochastic decoupling technique is used to simplify
the calculation of KLD. It is easy to find that the KLD is only
related to the DOF values ν and ν′ together with ndx , without
depending on the symmetric matrix �. Furthermore, (33) can

TABLE I

OPTIMAL SCALAR FACTOR c WHEN ndx = 3

TABLE II

OPTIMAL SCALAR FACTOR c WHEN ndx = 10

be written as

DKL(p ‖ q) = −
∫

St(x̃; 0, I, ν)ln

(
St(x̃; 0, cI, ν′)
St(x̃; 0, I, ν)

)
d x̃

= −
∫

St(x̃; 0, I, ν)ln(St(x̃; 0, cI, ν′))d x̃

+
∫

St(x̃; 0, I, ν)ln(St(x̃; 0, I, ν))d x̃. (34)

It can be seen that the second term of (34) is not related to
the scale factor c, thereby we only need to minimize the first
term of (34) to find the scale factor c. The objective function
J (c) can be written in the following equation:

J (c) = min

(
−

∫
St(x̃; 0, I, ν)ln(St(x̃; 0, cI, ν′))d x̃

)
. (35)

Obviously, we can use the Monte Carlo integration method
to solve this optimization problem offline. The results for
scale facttor c with different DOF values when ndx = 3 and
ndx = 10 are shown in Tables I and II.

Note that the result in the parentheses is the scalar factor c
calculated by the MM method. It can be found that the
scalar factor c calculated by the two approximation methods
is different, and the MM method does not rely on the dimen-
sion ndx . On the contrary, the scalar factor c calculated by the
KLD method is related to the dimension ndx , and the larger
dimension ndx , the smaller the difference in the calculated
scalar factor c between the MM method and the KLD method.
The performance of these two approximation methods will be
discussed in Section V.

Considering the approximation step (take the MM approxi-
mation method as example), the complete Student’s t extended
Kalman filtering algorithm is summarized in Section IV.

IV. SIMULATION STUDIES

In this section, we present the simulation test results that
demonstrate the validity of the robust CN algorithm for
multiple AUVs based on the Student’s t distribution.
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Algorithm 1 SEKF Algorithm

Inputs: Initialize x̂0, �0, Qk , Rk , z1:T, η0, γ , δ
For k = 1:T Perform the following:
a. Perform the approximation of the common DOF and cal-
culate the scale factor c using the MM method as (27), (30).

η′
k−1 = min(ηk−1, γ )

c = ηk−1
(
η′

k−1 − 2
)

(ηk−1 − 2)η′
k−1

.

b. Adjust the corresponding symmetric matrix.

�+
k−1 → c�+

k−1.

c. Compute the Jacobian matrices of process equation Fxk−1 ,
Fwk−1 , and perform the time update of the predicted state x̂−

k
and symmetric matrix �−

k as (15).

x̂−
k = f

(
x̂+

k−1, uk, 0
)

�−
k = Fxk−1�

+
k−1FT

xk−1
+ Fwk−1Qk−1FT

wk−1
.

d. Perform the approximation of the common DOF and cor-
responding adjustment of symmetric matrix for the predicted
state x̂−

k and the measurement noise Rk , if γ 	= δ.
e. Compute the Jacobian matrix of measurement equa-
tion Hk , and perform the measurement update of the esti-
mated state x̂+

k and symmetric matrix �+
k as (22).

x̂+
k = x̂−

k + �−
k HT

k

(
Hk�

−
k HT

k + Rk
)−1(zk − h

(
x̂−

k , 0
))

,�+
k

= ηk−1 + 	2
z

ηk−1 + ndz

×(
�−

k − �−
k HT

k

(
Hk�

−
k HT

k + Rk
)−1Hk�

−
k

)
.

f. Update the dof and calculate the estimation-error
covariance.

ηk−1 → ηk

P+
k = ηk

ηk − 2
�+

k .

Outputs:
{
x̂+

k ,�+
k 0 ≤ k ≤ T

}

In the simulation test, the slave AUV received the accu-
rate position of the leader AUV and the range measurement
between the leader AUV and the slave AUV periodically.
The conventional EKF is widely used in the field of CN
because of its appropriate filtering accuracy and computational
burden, and it has been verified fully in practical engineering.
Therefore, the conventional EKF-based CN algorithm and the
proposed SEKF-based CN algorithm are both used to estimate
all the states of the slave AUV and their performances are
compared in this section. In addition, the performance of
EKF with threshold (threshold EKF, for short) is also given
to validate the superiority of the proposed SEKF-based CN
algorithm. In the threshold EKF, we employ the well-known
Mahalanobis distance to gate the outliers, and this is a common
and simple method to detect and reject outliers in actual
projects [44]. On the receipt of a new measurement at time
step k, the following expression is employed to compute the

Fig. 3. Measurement noise of range between the leader AUV and the slave
AUV, and the dots marked by black squares are some outliers.

Mahalanobis distance as:
χ2 = (

zk − h
(
x̂−

k , 0
))T S−1

k

(
zk − h

(
x̂−

k , 0
))

(36)

where Sk = HkP−
k HT

k + Rk .
A probabilistic threshold γ on this distance is used

to specify whether the measurement can be used or not.
A validated measurement is then used in the estimation step
of the threshold EKF to correct the predicted states. On the
contrary, a measurement that does not pass this test is regarded
as an outlier, and the previous measurement at time step k −1
is retained to replace this outlier. Note that the control inputs
v̂k , ω̂k , and θ̂k are also pretreated by the threshold setting to
detect and reject the outliers, and the same replacing strategy
is also adopted.

To improve the observability of the CN system, the leader
AUV sails in a zigzag maneuvering pattern [40]. The forward
velocity vk and the starboard velocity ωk of the slave AUV
are set as vk = ωk = 3 m/s. The heading angle of the slave
AUV changes as a sinusoid function

θk = 1◦ · sin(3 · π · k/nlength) (37)

where the symbol k denotes the kth time step, and we consider
nlength = 600 time steps for each simulation test.

The process noise wk and measurement noise vk are both set
to follow a Student’s t distribution, and the outlier corrupted
process noise and measurement noise that are uncorrelated
white processes are generated according to the following
equation:

wk ∼
{
N (0, Q) w.p. 0.95

N (0, 50Q) w.p. 0.05
(38)

vk ∼
{
N (0, R) w.p. 0.90

N (0, 5R) w.p. 0.10
(39)

where w.p. denotes “with probability.” Q and R are nominal
process noise and measurement noise covariance matrices,
and they are set as Q = diag([0.5 m/s, 0.5 m/s, 1°]2) and
R = diag([10 m]2). The process noise and measurement noise,
which are generated according to (38) and (39), have heavy
tails and approximatively follow a Student’s t distribution.



1770 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 67, NO. 8, AUGUST 2018

Fig. 4. PDF of the measurement noise, and the partial enlarged figures
highlight the presence of the heavy tail of the noise distribution.

Fig. 5. Position estimation error along the x-axis with the conventional
EKF-based CN algorithm (blue dashed and dotted line), the threshold
EKF-based CN algorithm (red dashed line), and the proposed SEKF-based
CN algorithm (black solid line).

For instance, the measurement noise (range between the leader
AUV and the slave AUV) is drawn in Fig. 3, and its pdf is
shown in Fig. 4. It can be seen that some outliers, which
are marked by black squares, exist in the measurement noise
which lead to the heavy-tailed distribution in Fig. 4.

In order to preserve as heavy tails as possible in the
Student’s t distribution, the DOF value for the SEKF-based CN
algorithm is chosen as 3 [36]. The simulation tests were carried
out in MATLAB on a computer with an Intel(R) Core(TM)
i5-4300U CPU 1.90 GHz and 8 GB of RAM.

The position estimation errors along the x-axis and y-axis
are drawn in Figs. 5 and 6. It is shown that the outliers
existing in the process and measurement noises lead to a
significant bias and a long period of time for reconvergence
to the correct position estimate in the conventional EKF-based
CN algorithm. In the threshold EKF, the bias induced by the
outliers can be decreased. Although the influence of outliers
can be eliminated by the threshold checking technology to
some extent, the performance of the threshold EKF is not
satisfactory. When outliers arise in the high maneuver, such
as the zigzag maneuver, the replacement of an outlier with the
previous measurement or control input, which usually changes

Fig. 6. Position estimation error along the y-axis with the conventional
EKF-based CN algorithm (blue dashed and dotted line), the threshold
EKF-based CN algorithm (red dashed line), and the proposed SEKF-based
CN algorithm (black solid line).

Fig. 7. Positioning error with the conventional EKF-based CN algorithm
(blue dashed and dotted line), the threshold EKF-based CN algorithm
(red dashed line), and the proposed SEKF-based CN algorithm (black
solid line).

Fig. 8. CDF of positioning error.

rapidly between two time steps, will cause large positioning
errors. In addition, an unreasonable manual threshold setting,
which is usually not easy to choose without prior information,
will also lead to a poor performance of the filter. Compared
with the conventional EKF and the threshold EKF-based
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Fig. 9. Average positioning error with the conventional EKF-based CN algo-
rithm (blue dashed and dotted line), the threshold EKF-based CN algorithm
(red dashed line), and the proposed SEKF-based CN algorithm (black solid
line) for 50 Monte Carlo runs.

CN algorithm, the SEKF-based CN algorithm can adjust
quickly after a peak in the position estimation error.

In addition, the positioning error and its cumulative dis-
tribution function (CDF) of the slave AUV are drawn
in Figs. 7 and 8. The average positioning error of the slave
AUV is 57.87 m using the conventional EKF-based CN
algorithm. Estimated by the threshold EKF, the performance
of position estimation is improved with respect to the conven-
tional EKF-based CN algorithm, and the average positioning
error of the slave AUV is reduced to be 36.81 m. Correspond-
ingly, the positioning accuracy is improved by 36.4%. Using
the SEKF-based CN algorithm, the average positioning error
is reduced to be 20.65 m, and the positioning accuracy is,
respectively, improved by 64.32% and 43.91% with respect to
the conventional EKF and threshold EKF-based CN algorithm.
It can be found that the proposed SEKF-based CN algorithm
outperformed the conventional EKF and threshold EKF-based
CN algorithm in terms of the positioning error when outliers
exist in the process noise and measurement noise.

Furthermore, the performance of the conventional EKF and
the threshold EKF-based CN algorithm together with the
proposed SEKF-based CN algorithm are compared in terms of
execution time. A total of 50 Monte Carlo runs are performed,
and the positioning error of the slave AUV is drawn in Fig. 9
for 50 Monte Carlo runs. In addition, the corresponding
average positioning error and the average execution time are
shown in Table III. It can be seen that the execution time
of the conventional EKF and the threshold EKF-based CN
algorithm is nearly the same, and the proposed SEKF-based
CN algorithm is a little longer than that of the conventional
EKF-based CN algorithm. This phenomenon is reasonable
because of the additional step of approximation of common
DOF parameters and the adjustment of a symmetric matrix, but
such an increase in execution time can be considered negligible
for many real-time applications.

V. FIELD TRIAL RESULTS

To evaluate the performance of the proposed SEKF-based
CN algorithm, the proposed scheme is applied by postprocess-
ing the off-line data collected in a field trial.

TABLE III

AVERAGE POSITIONING ERROR AND THE AVERAGE
EXECUTION TIME FOR 50 MONTE CARLO RUNS

TABLE IV

PERFORMANCE PARAMETERS OF SENSORS

The field trial was conducted in October 2014 in Lake Thai
where the average depth is about 6.5 ft. Due to the limitations
of the field trial conditions, we used two survey vessels to
replace the AUVs. In the field trial, one survey vessel (denoted
as vessel A) acted as the leader AUV and another survey vessel
(denoted as vessel B) is the slaver AUV. Two survey vessels
are both equipped with an underwater acoustic modem S2CR
7/17 produced by Evologics, and thereby anyone of them can
broadcast information to another through the two-way acoustic
communication technique.

On the vessel A, a GPS is equipped to provide accurate
positioning information. Through the acoustic communication
equipment, acoustic data packets including the range measure-
ment and accurate position of vessel A are transmitted to the
vessel B every 10 s. On the vessel B, a magnetic compass
is equipped to measure the heading angle of the vessel B,
and a DVL that works in the mode of bottom track is used
to supply the velocity of the vessel B. The data collected by
the magnetic compass and the DVL are used to calculate a
DR navigation solution for the vessel B. The performance
parameters of the magnetic compass and the DVL are listed
in Table IV. In addition, a PHINS produced by iXBlue
works in the integrated mode and it is also equipped on the
vessel B to provide the benchmark for position, velocity, and
attitude.

The trajectories of the vessel A and the vessel B together
with the DR solution of vessel B are drawn in Fig. 10. It can
be seen that the DR solution of the vessel B (blue solid line)
gradually diverges from the true trajectory (red dashed line)
because of the accumulated positioning error from the DR
solution. In addition, the velocity of the vessel B is projected
on the navigation reference frame by the heading angle from
the magnetic compass and they are drawn in Fig. 11 (top).
To evaluate the robustness of the proposed SEKF-based CN
algorithm against outliers existing in the process noise, some
outliers are added artificially in the velocity control input col-
lected by the DVL as shown in Fig. 11 (top). Similarly, we add
some large outliers in the range measurement from underwater
acoustic communication system to simulate the stringent con-
ditions existing in the shallow water with low-quality acoustic
communication equipments, thereby we can see some outliers
in the range measurement noise in Fig. 11 (bottom).
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Fig. 10. Paths taken by the vessel A and the vessel B during the field trial,
together with the DR solution of the vessel B.

Fig. 11. Velocity of vessel B and measurement noise of range between
vessel A and vessel B with some artificial outliers. The fore-and-aft velocity
of vessel B is projected on the navigation reference frame by the heading
angle.

TABLE V

AVERAGE POSITIONING ERROR WITH DIFFERENT DOF VALUES
IN THE SEKF-BASED CN ALGORITHM

The field trial results are shown in Table V and Figs. 12–14.
In the field trial, the performance of the conventional EKF,
the threshold EKF, and the SEKF-based CN algorithm is
compared. The threshold is set as γ = 15 in the threshold
EKF-based CN algorithm. In the SEKF-based CN algorithm,
the MM approximation method is adopted to find the scalar
factor c. In addition, the DOF value that determines the tail
behavior of the Student’s t distribution in the SEKF-based
CN algorithm is related to the properties of the outliers, and
the performance of the Student’s t-based filter is inconsistent
as the DOF varies. However, the outliers are usually time-
varying and unpredictable in practical engineering, and it is

Fig. 12. x-axis position estimation error of three different CN algorithms.
The threshold of threshold EKF is γ = 15 and the DOF value of SEKF is
ν = 7.

Fig. 13. y-axis position estimation error of three different CN algorithms.
The threshold of threshold EKF is γ = 15 and the DOF value of SEKF is
ν = 7.

hard to determine a fixed DOF in advance. Therefore, we use
the SEKF-based CN algorithm with different DOF values
(ν = 3, 4, . . . , 12) to postprocess the data collected in the
field trial, and the average positioning error is regarded as the
measure of performance, as shown in Table V. The average
positioning error is defined in the following equation:

RMSE = 1

T
�T

k=1

√
(xk − x̂k)2 + (yk − ŷk)2 (40)

where (xk, yk) and (x̂k, ŷk) are the true position and estimated
position, respectively, at time step k, and T is the time length.

From Table V, it can be seen that the optimal DOF value
is ν = 7 in terms of the average positioning error. On the
contrary, the DOF value ν = 3, which is usually recommended
in most works [35], [36], performs poorly here. Therefore,
it is very important to choose an appropriate DOF value for
the Student’s t-based CN algorithm in practical engineering.
Note that if not specified the DOF value of SEKF-based CN
algorithm is chosen as ν = 7 in the following.

The x-axis and y-axis position estimation errors of the
conventional EKF, the threshold EKF, and the SEKF-based
CN algorithm are shown in Figs. 12 and 13. It is shown
that the outliers existing in the process and measurement
noises have a significant negative effect on the performance
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Fig. 14. DR solution and the positioning error of the conventional EKF,
the threshold EKF, and the SEKF-based CN algorithm.

of the conventional EKF-based CN algorithm, leading to a
significant bias and a long period of time for reconvergence
to the correct position estimate. Especially, upon receipt of the
outliers between the 2000 and 2200 s, the position estimation
error jumps highly for the conventional EKF-based CN algo-
rithm. In the threshold EKF-based CN algorithm, the influence
of the outliers can be decreased, and the performance of
threshold EKF even outperformed the SEKF on the receipt
of several certain outliers. However, due to the approximation
error induced by replacing strategy and the threshold setting
error, the overall performance of the threshold EKF-based CN
algorithm is worse than that of the SEKF-based CN algorithm.
It can be seen that the SEKF-based CN algorithm can mini-
mize the negative effect induced by all outliers existing in the
control input and measurement, and it adjusts quickly after a
peak in the position estimation error. Therefore, the proposed
SEKF-based CN algorithm shows a better robustness against
outliers existing in process and measurement noises, compared
with the conventional EKF and the threshold EKF-based CN
algorithm with a Gaussian distributed noise assumption.

Furthermore, Fig. 14 shows the positioning error of the DR
solution, the conventional EKF and the threshold EKF-based
CN algorithms together with the SEKF-based CN algorithm.
The positioning error is defined in the following equation:

Positioning Error(k) =
√

(xk − x̂k)2 + (yk − ŷk)2 (41)

where (xk, yk) and (x̂k, ŷk) are the true position and estimated
position, respectively, at time step k.

It can be seen that the DR solution is unbounded with
time, and the maximum positioning error is 433 m. In the
CN scheme, the positioning error can be bounded effectively.
The average positioning errors of the conventional EKF-based
CN algorithm is 32.46 m. Estimated by the threshold EKF,
the average positioning error is reduced to be 26.43 m, and
the positioning accuracy is improved by 18.57%. Using the
SEKF-based CN algorithm, the average positioning error is
further reduced to be 16.09 m, and the positioning accuracy
is correspondingly improved by 50.43%.

In addition, the average positioning error of SEKF-based
CN algorithm (ν = 3) is 32.01 m as shown in Table V, and
the positioning accuracy is not improved much with respect to

Fig. 15. Scalar parameter λ with different DOF values ν = 3 and ν = 7.

the conventional EKF-based CN algorithm. The main reason
is that the DOF value ν = 3 is inappropriate in terms of
the added outliers. Although the DOF value ν = 3 can cope
with the extreme level heavy tailed distributed noise, the actual
tail behavior of the Student’s t distributed noise in practical
engineering maybe at the intermediate level. In addition,
we can conclude that the SEKF-based CN algorithm is close
to the conventional EKF-based CN algorithm from the table
of the SEKF algorithm, and the only time when it makes a
difference is when the residual is large, and the estimation-
error covariance P+

k will be scaled in the following equation:
P+

k = ηk

ηk − 2
· �̃

+
k = ηk

ηk − 2
· λk · �+

k (42)

where �̃
+
k is the symmetric matrix of SEKF and �+

k =
�−

k − �−
k HT

k (Hk�
−
k HT

k + Rk)
−1Hk�

−
k which is the same

as the estimation-error covariance in the conventional EKF.
In addition, λk = (ηk−1 + 	2

z/ηk−1 + ndz) can be seen as
a scale parameter which will enlarge the estimation-error
covariance P+

k when outliers occur. With different DOF values
(ν = 3, 7), the value of scale parameter λk is shown in Fig. 15.
It can be seen that the scalar parameter λ will become
larger when outlier appears. In addition, the smaller the DOF
value ν, the larger will be the scale parameter λ. If the scale
parameter λ is too large, the estimation-error covariance P+

k
will be greatly enlarged, which will degrade the performance
of the SEKF-based CN algorithm. On the contrary, if the
selected DOF value is appropriate (ν = 7), the estimation-
error covariance P+

k will be suitably enlarged to minimize the
negative effect induced by the outliers. This is the main reason
that the Student’s t distribution-based filter shows an improved
robustness against outliers by adjusting the DOF ν, compared
with the Gaussian distribution-based filters. In conclusion,
an appropriate DOF is the guarantee of the performance of
SEKF-based CN algorithm. An effective way to select an
appropriate DOF for Student’s t distribution is to evaluate
the noise characteristics with prior information in advance.
If the noise is distributed by an extreme level heavy-tailed
distribution, the SEKF-based CN algorithm with ν = 3
can cope with the outliers well. Instead of an extreme level
heavy-tailed distributed noise, the filter with 3 < ν < 15
can cope with the intermediate level heavy tailed distributed
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Fig. 16. Comparison of KLD approximation method and MM approximation
method in terms of positioning error. The scale factor calculated by the KLD
approximation method is c = 0.89 and the scale factor calculated by the MM
approximation method is c = 0.95.

noise [45]. Furthermore, to cope with different kinds of
outliers, an ensemble of SEKFs using different DOF values
can be used, and we can select either a single “best” SEKF as
the outlier varies, or combine the output from all SEKFs in a
single solution.

In addition, the performances of the different approximation
methods, namely, the KLD approximation method and MM
approximation method discussed in Section III-B are com-
pared in Fig. 16. The corresponding scale factors in terms
of different approximation methods can be found in Table I.
When the outlier appears, it can be seen that the peak of
the positioning error based on the MM approximation method
(scale factor c = 0.95) is higher than that of the positioning
error based on the KLD approximation method (scale factor
c = 0.89). Therefore, the KLD approximation method is better
than the MM approximation method in terms of the stability
and smoothness. However, the average positioning error of the
KLD approximation-based CN algorithm is 17.02 m, so the
performance of the MM approximation method is better than
that of the KLD approximation method in terms of average
positioning error. Therefore, it is reasonable to choose an
appropriate approximation method in practical engineering
according to specific requirements.

VI. CONCLUSION

In this paper, a robust Student’s t extended Kalman filtering
algorithm for a leader–slave CN system for AUVs is proposed.
The heavy-tailed process and measurement noises induced
by outliers from cheap but low-accuracy DR sensors and
underwater acoustic communication system are modeled by
a Student’s t distribution, and the Student’s t EKF for the
nonlinear system was derived to estimate the states of the
slave AUV with range information between slave AUV and
leader AUV, which bounds the accumulated positioning error
of the CN system. Two approximation methods, namely,
the MM method and KLD method, which are required in the
Student’s t-based filter are discussed, and an optimal scalar
factor calculated by these two approximation methods is given.
The resulting algorithm was compared with a conventional

EKF-based CN algorithm in a simulation evaluation. It was
found that the proposed SEKF-based CN algorithm outper-
formed the conventional EKF-based CN algorithm in terms
of positioning error when the process and measurement noise
had heavy-tailed behavior. In the field trial, the performance
of different DOF values is compared, and an optimal DOF
value was chosen in terms of the positioning error. A link
between the DOF value and the robust effect of the Student’s
t distribution is revealed. In addition, it is worth noting that
this robust Student’s t filter-based CN algorithm can be used
either in a centralized or decentralized manner.

As mentioned in the field trial, the DOF value ν = 3,
which is usually recommended in most works, is not always
optimal in practical engineering. An appropriate DOF should
be selected according to the actual properties of the outliers.
Thus, in the future work, we will study more about the
relationship between the performance of the Student’s t-based
filter and the DOF, and investigate robust Student’s t-based
filters with a DOF automatically selected by itself.

APPENDIX

To calculate the conditional pdf p(x|z), we use the α, β
parameterized form of joint pdf p(x, z) and marginal pdf
p(z) as

p (x|z) = p (x, z)
p (z)

= �
(
α + n

2

)

� (α)

1

(2βπ)
n
2

× 1√
|�̃|

(
1 + 	2

2β

)− n
2 −α

×
⎛
⎝�

(
α + ndz

2

)

� (α)

1

(2βπ)
ndz

2

1√|�zz|

×
(

1 + 	2
z

2β

)− ndz
2 −α

⎞
⎠

−1

(43)

where x is an ndx -vector, z is an ndz-vector, and
n = ndx + ndz . �̃ is the symmetric matrix of the joint density
p(x, z), �zz is the symmetric matrix of the marginal pdf p(z),
and α = β = (ν/2). In addition, the quadratic form 	2

z is
defined in the following equation:

	2
z = (z − ẑ)T �−1

zz (z − ẑ). (44)

Then, the fourth term in (43) is rewritten as
(

1 + 	2

2β

)− n
2 −α

=
(

1 + 	2
z

2β
+ 	2

x

2β

)− n
2 −α

=
(

1 + 	2
z

2β

)− n
2 −α (

1 + 	2
x

2β + 	2
z

)− n
2 −α

.

(45)

In (45), 	2
x is introduced to turn (43) into the form of a

Student’s t distribution. The quantity 	2
x is defined in (46),

and 	2 = 	2
x +	2

z , the derivation of which is straightforward
and omitted [46], and given as

	2
x = (x − μ)T (

�x x − �xz�
−1
zz �T

xz

)−1
(x − μ) (46)
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where μ = x̂ + �xz�
−1
zz

(
z − ẑ

)
and �i j (i, j = x, z) is the

corresponding element of the block matrix �̃.
Considering (45), the exponential terms in (43) can be

rewritten as
(

1 + 	2
z

2β

)− n
2 −α (

1 + 	2
x

2β + 	2
z

)− n
2 −α

(
1 + 	2

z

2β

) ndz
2 +α

=
(

1 + 	2
z

2β

)− ndx
2 (

1 + 	2
x

2β + 	2
z

)− n
2 −α

. (47)

The remaining terms of (43) can be written as

�
(
α + n

2

)

�
(
α + ndz

2

) (2βπ)
ndz

2

(2βπ)
n
2

√|�zz|√
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(
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2

)

�
(
α + ndz

2

) 1

(2βπ)
ndx

2

√
| (�x x −�xz�

−1
zz �T

xz

)−1 |.
(48)

Combining (47) and (48) gives the transformation of (43)

p (x|z) = �
(
α + ndz

2 + ndx
2

)

�
(
α + ndz

2

)
(

1 + 	2
x

2β + 	2
z

)− n
2 −α
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√

| (�x x − �xz�
−1
zz �T

xz

)−1 |
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2
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2
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)
ndx
2

1√
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(
1 + 	2

x

2β̃
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(49)

where α̃ = α + (ndz/2), β̃ = (1/2)(2β + 	2
z ), and

�̂ = �x x − �xz�
−1
zz �T

xz .
It is clear that the conditional pdf p(x|z) also admits a

Student’s t distribution according to (49). Moreover, there is

ν = 2α̃ = ν + ndz

μ = x̂ + �xz�
−1
zz (z − ẑ)

� = β̃

α̃
�̂ = ν + 	2

z

ν + ndz

(
�x x − �xz�

−1
zz �T

xz

)
. (50)

REFERENCES

[1] L. Paull, S. Saeedi, M. Seto, and H. Li, “AUV navigation and local-
ization: A review,” IEEE J. Ocean. Eng., vol. 39, no. 1, pp. 131–149,
Jan. 2014.

[2] A. Bahr, J. J. Leonard, and M. F. Fallon, “Cooperative localization for
autonomous underwater vehicles,” Int. J. Robot. Res., vol. 28, no. 6,
pp. 714–728, 2009.

[3] J. Xu, H. He, F. Qin, and L. Chang, “A novel autonomous initial
alignment method for strapdown inertial navigation system,” IEEE
Trans. Instrum. Meas., vol. 69, no. 9, pp. 2274–2282, Sep. 2017.

[4] Z. J. Harris and L. L. Whitcomb, “Preliminary study of cooperative
navigation of underwater vehicles without a DVL utilizing range and
range-rate observations,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA),
May 2016, pp. 2618–2624.

[5] E. Fiorelli, N. E. Leonard, P. Bhatta, D. A. Paley, R. Bachmayer,
and D. M. Fratantoni, “Multi-AUV control and adaptive sampling in
Monterey bay,” IEEE J. Ocean. Eng., vol. 31, no. 4, pp. 935–948,
Oct. 2006.

[6] A. I. Mourikis and S. I. Roumeliotis, “Performance analysis of mul-
tirobot Cooperative localization,” IEEE Trans. Robot., vol. 22, no. 4,
pp. 666–681, Aug. 2006.

[7] R. Sharma, R. Beard, C. Taylor, and S. Quebe, “Graph-based observ-
ability analysis of bearing-only cooperative localization,” IEEE Trans.
Robot., vol. 28, no. 2, pp. 522–529, Apr. 2012.

[8] R. G. Lins, S. N. Givigi, and P. G. Kurka, “Vision-based measurement
for localization of objects in 3-D for robotic applications,” IEEE Trans.
Instrum. Meas., vol. 64, no. 11, pp. 2950–2958, Nov. 2015.

[9] G. Xiao, B. Wang, Z. Deng, M. Fu, and Y. Ling, “An acoustic
communication time delays compensation approach for master–slave
AUV cooperative navigation,” IEEE Sensors J., vol. 17, no. 2,
pp. 504–513, Jan. 2016.

[10] A. R. Vetrella, G. Fasano, A. Renga, and D. Accardo, “Cooperative UAV
navigation based on distributed multi-antenna GNSS, vision, and MEMS
sensors,” in Proc. IEEE Int. Conf. Unmanned Aircraft Syst. (ICUAS),
Jun. 2015, pp. 1128–1137.

[11] N. Alam, A. Kealy, and A. G. Dempster, “Cooperative inertial naviga-
tion for GNSS-challenged vehicular environments,” IEEE Trans. Intell.
Transp. Syst., vol. 14, no. 3, pp. 1370–1379, Sep. 2013.

[12] N. Alam and A. G. Dempster, “Cooperative positioning for vehicular
networks: Facts and future,” IEEE Trans. Intell. Transp. Syst., vol. 14,
no. 4, pp. 1708–1717, Dec. 2013.

[13] H. Hlavacs and K. A. Hummel, “Cooperative positioning when using
local position information: Theoretical framework and error analysis,”
IEEE Trans. Mobile Comput., vol. 12, no. 10, pp. 2091–2104, Oct. 2013.

[14] S. I. Roumeliotis and G. A. Bekey, “Distributed multirobot localization,”
IEEE Trans. Robot. Autom., vol. 18, no. 5, pp. 781–795, Oct. 2002.

[15] A. C. Sanderson, “A distributed algorithm for cooperative naviga-
tion among multiple mobile robots,” Adv. Robot., vol. 12, no. 4,
pp. 335–349, 1997.

[16] A. Howard, M. J. Matark, and G. S. Sukhatme, “Localization for mobile
robot teams using maximum likelihood estimation,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst., Sep./Oct. 2002, pp. 434–439.

[17] D. Fox, W. Burgard, H. Kruppa, and S. Thrun, “A probabilistic approach
to collaborative multi-robot localization,” Auto. Robots, vol. 8, no. 3,
pp. 325–344, 2000.

[18] E. D. Nerurkar, S. I. Roumeliotis, and A. Martinelli, “Distributed max-
imum a posteriori estimation for multi-robot cooperative localization,”
in Proc. IEEE Int. Conf. Robot. Autom., May 2009, pp. 1402–1409.

[19] I. M. Rekleitis, G. Dudek, and E. E. Milios, “Multi-robot cooperative
localization: A study of trade-offs between efficiency and accuracy,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep./Oct. 2002,
pp. 2690–2695.

[20] S. E. Webster, L. L. Whitcomb, and R. M. Eustice, “Advances in
decentralized single-beacon acoustic navigation for underwater vehicles:
Theory and simulation,” in Proc. IEEE/OES Auto. Underwater Vehicles,
Sep. 2010, pp. 1–8.

[21] S. Wang, L. Chen, D. Gu, and H. Hu, “Cooperative localization of AUVs
using moving horizon estimation,” IEEE/CAA J. Autom. Sinica, vol. 1,
no. 1, pp. 68–76, Jan. 2014.

[22] W. Gao, J. Yang, J. Liu, H. Shi, and B. Xu, “Moving horizon estimation
for cooperative localisation with communication delay,” J. Navigat.,
vol. 68, no. 3, pp. 493–510, 2015.

[23] E. Olson, J. J. Leonard, and S. Teller, “Robust range-only beacon local-
ization,” IEEE J. Ocean. Eng., vol. 31, no. 4, pp. 949–958, Oct. 2006.

[24] F. Tronarp, R. Hostettler, and S. Särkkä, “Sigma-point filtering for
nonlinear systems with non-additive heavy-tailed noise,” in Proc. Int.
Conf. Inf. Fusion (FUSION), Jul. 2016, pp. 1859–1866.

[25] J. Vaganay, J. J. Leonard, and J. G. Bellingham, “Outlier rejection
for autonomous acoustic navigation,” in Proc. IEEE Int. Conf. Robot.
Autom., Apr. 1996, pp. 2174–2181.

[26] G. Agamennoni, J. I. Nieto, and E. M. Nebot, “An outlier-robust Kalman
filter,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2011,
pp. 1551–1558.

[27] T. W. Vaneck, C. D. Rodriguez-ortiz, M. C. Schmidt, and J. E. Manley,
“Automated bathymetry using an autonomous surface craft,” Navigation,
vol. 43, no. 4, pp. 407–419, 1996.

[28] R. J. Meinhold and N. D. Singpurwalla, “Robustification of Kalman
filter models,” J. Amer. Statist. Assoc., vol. 84, no. 406, pp. 479–486,
Jun. 1989.

[29] F. J. Girón and J. C. Rojano, “Bayesian Kalman filtering with elliptically
contoured errors,” Biometrika, vol. 81, no. 2, pp. 390–395, 1994.

[30] G. Agamennoni, J. I. Nieto, and E. M. Nebot, “Approximate inference
in state-space models with heavy-tailed noise,” IEEE Trans. Signal
Process., vol. 60, no. 10, pp. 5024–5037, Oct. 2012.



1776 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 67, NO. 8, AUGUST 2018

[31] H. Nurminen, T. Ardeshiri, R. Piche, and F. Gustafsson, “Robust
inference for state-space models with skewed measurement noise,” IEEE
Signal Process. Lett., vol. 22, no. 11, pp. 1898–1902, Nov. 2015.

[32] D. Xu, C. Shen, and F. Shen, “A robust particle filtering algorithm with
non-Gaussian measurement noise using student-t distribution,” IEEE
Signal Process. Lett., vol. 21, no. 1, pp. 30–34, Jan. 2014.
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