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Abstract— With respect to automotive safety, the driver plays
a crucial role. Stress level, tiredness, and distraction of the
driver are therefore of high interest. In this paper, a driver
state detection system based on cellular neural networks (CNNs)
to monitor the driver’s stress level is presented. We propose to
include a capacitive-based wireless hand detection (position and
touch) sensor for a steering wheel utilizing ink-jet printed sensor
mats as an input sensor in order to improve the performance.
A driving simulator platform providing a realistic virtual traffic
environment is utilized to conduct a study with 22 participants
for the evaluation of the proposed system. Each participant is
driving in two different scenarios, each representing one of the
two no-stress/stress driver states. A “threefold” cross validation
is applied to evaluate our concept. The subject dependence is
considered carefully by separating the training and testing data.
Furthermore, the CNN approach is benchmarked against other
state-of-the-art machine learning techniques. The results show a
significant improvement combining sensor inputs from different
driver inherent domains, giving a total related detection accuracy
of 92%. Besides that, this paper shows that in case of including
the capacitive hand detection sensor, the accuracy increases by
10%. These findings indicate that adding a subject-independent
sensor, such as the proposed capacitive hand detection sensor,
can significantly improve the detection performance.

Index Terms— Artificial neural networks, automotive applica-
tions, capacitive sensors, cellular neural networks (CNNs), ink-jet
printing.

I. INTRODUCTION

A. Motivation

THE detection and the monitoring of a driver state play
an important role in automotive safety. The driver’s

inattention is a major cause of traffic accidents as reported
in [1]. Also, in highly automated driving (e.g., traffic jam
assistant/automation [2]), the driver still plays an important
role when it gets to the point, where the vehicle relinquishes
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control.Besides this, the Vienna Convention on Road Traffic
states that the driver must be able to take back control of the
vehicle at any time and as long as the driver is involved in
operating the vehicle, the driver has a major influence on its
safe operation.

In [3], the proposed driver state system gets its input
data from different domains, i.e., driver inherent (biometrics,
emotion, driving behavior, and visual attention) and external
demands (environmental conditions). The biometric sensors
obtain the data of the physical condition of the driver, e.g., the
heart rate, ElectroEncephaloGraphy (EEG), blood pressure,
and so on. The driving behavior domain, for instance, contains
the speed, following distance, and so on. In this sense, not
only monitoring whenever the hand touches the steering wheel,
but also to monitor its position on the steering wheel while
driving might be important as additional input to characterize
the driver state in many cases including, e.g., psychological
studies.

Therefore, a sensor is needed, which fulfills the following
requirements:

1) simultanous touch and position sensing;
2) capability to be integrated into an electrical control unit

(ECU);
3) rapidly and efficiently adaptable;
4) easy retrofit to be suitable for in-car use and driving

simulator platforms [4].

To evaluate the usability of the proposed sensor, a suitable
driver state detection system is necessary, which is able to
incorporate and process all input data from different domains,
i.e., biometrics and driving behavior domain. The driver state
detection is a machine learning task that can be realized
through one of the common pattern recognition techniques,
such as support vector machine (SVM) [5], [6], Bayesian
method [7], [8], or Artificial neural network (ANN) [9], [10].
ANNs have shown several useful features that include the
following:

1) ability of modeling both, linear and nonlinear data;
2) nonparametric, i.e., ANNs do not need an explicit under-

lying model;
3) can be used for complex data structures/models due to

their flexibility and universality [11].

The flexibility of ANNs motivated the researchers to develop
various architectures such as nonlinear autoregressive net-
work, long short-term memory (LSTM), or cellular neural
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networks (CNNs). CNN is a continuous recurrent neural
network (RNN) that has been utilized successfully in various
classification cases [12]–[14]. However, a more powerful CNN
requires a high number of cells/neurons, which leads to a
higher training complexity when using CNN traditional learn-
ing methods [15]–[17]. Recently, the echo state network (ESN)
has emerged as a promising learning technique for RNN [18].
In this paper, we use the ESN paradigm to train the proposed
CNN. In the following, we summarize the advantages of
a CNN.

1) The task of emotion recognition is done using a highly
nonlinear dynamical system, in which the history of
inputs has impact on the output. This implies that the
utilized model should have a memory that considers the
history of its inputs. As Jaeger presented in [19], RNNs
involving ESN insure a LSTM feature, when a large
number of neurons are used and/or modeled as a con-
tinuous RNN.

2) Due to its huge parallelism capability, CNN is a
real-time processor that can be realized/implemented
either in hardware and thereby either in dedicated
analog circuits [20], [21] or in software. It can
also be emulated on top of digital platforms, such
as Field Programmable Gate Array (FPGA). and
GPU [22], [23].

3) CNN applications in classification show a remark-
able performance according to published related
work [13], [14], [24].

B. Related Work

Capacitive sensing is widely used in the automotive indus-
try [25] for the detection of humans, e.g., seat occupancy [26]
or smart car trunk opener [27]. Common human hands ON/OFF

detection sensor systems [28] utilize sensors integrated in the
steering wheel rim. Such devices exploit various sensing tech-
nologies, such as capacitive, resistive and others. Patents for
hand position sensing devices including a feedback device [29]
and patents for hands ON/OFF detection including an emer-
gency response system [30] exist. The proposed capacitive
hand detection sensor (CHDS) combines both position and
touch detection simultaneously.

Energy management plays a major role in wireless sensor
networks (WSNs). Since sensor nodes are limited in size, their
energy sources are limited in many applications. Frequent
replacement of batteries due to energy drain can impair the
benefit of wireless sensing. Usually, the wireless data commu-
nication module consumes the majority of the power supplied
to the system. Data compression is therefore implemented as a
mean to reduce energy consumption. Reference [31] outlines
how a swinging door compression algorithm can be employed
as a mean to reduce the amount of data necessary to be trans-
mitted, and therefore, it improves the energy performances of
nodes in WSN.

Processes of the category of additive manufacturing, such as
3-D and ink-jet printing, promise easy integration in existing
production lines due to their versatility. They enable manufac-
turing of different designs on the same production line with
little down time [32]. Ink-jet printing provides great potential

for electronics manufacturing and rapid prototyping in general
as well as sensor construction (e.g., [33], [34], or [35]) and
fabrication of antennas and RFID tags [36], [37]. It further
enables manufacturing of application specific sensor front
ends at comparably low costs. Additionally, the suitability of
printed sensors for usage in automotive applications has been
demonstrated [38].

The detection of a driver state is a critical task that has been
studied by several researchers. In [39], it is demonstrated that
physiological sensors can be used successfully in a driver state
detection. They have carried out a study with 24 drivers who
were asked to drive in three different driving scenarios, which
represent three stress levels (low, medium, and high). The
obtained detection accuracy is equal to 97%, the evaluation
is done by utilizing the “leave one out” cross validation
technique. A technique that is subject-dependent, since, at least
two states of the tested driver are used in the training process.
A discussion of the difference between subject dependence and
subject independence is provided in [40]. The conclusion was
that the subject-dependent (train and test on the same driver)
emotion detection performance (95%) is much higher than
the subject-independent (train and test on different drivers)
emotion detection (70%), which is discussed in this paper.

In [41], a detection system for a driver’s emotions (engage-
ment, enjoyment, frustration, and boredom) is presented. The
drivers were asked to use a driving simulator platform while
accomplishing a variety of driving assignments, e.g., following
the route of a navigation system while not violating any traffic
rules. The emotion is assessed then by a therapist who is
monitoring the driver’s behavior. A “tenfold” cross valida-
tion method is used, which considers subject independence.
Different classification methods (SVM, BayesNet, multilayer
perceptron, decision tree, and random forest) are evaluated.
The highest presented accuracy of the four emotions: engage-
ment, enjoyment, frustration, and boredom is 77.78%, 79.63%,
79.63%, and 81.48%, respectively.

In [42], a hybrid driver distraction detection system utilizing
subject-independent sensors in combination with SVM is
introduced, where an average detection accuracy of 81.1%
is obtained. Recent investigations [43] show an improvement
of the accuracy to 88% and 90% for Bayesian network and
SVM approaches for the detection of the cognitive driver
distraction. In [44], it was found that cognitive distraction
has an impact on the steering behavior of the driver, leading
to a decrease of the steering smoothness. The benefit of
combining subject-dependent and subject-independent sensors
is investigated in [45] and shows an improvement of the
accuracy. A review of driver inattention monitoring systems
can be found in [46].

Generally, the main drawback of the earlier methods con-
sidering only physical sensors is the low accuracy due to their
subject dependence. Consequently, the CHDS is suggested
to be combined with a promising neurocomputing model to
reduce the subject dependence problem.

C. Contribution

To evaluate the CHDS, we present a driver state detection
system based on CNN to monitor the stress level of the driver.
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Fig. 1. Driving simulator platform used for the experiments with the
capacitive sensor equipped steering wheel [4].

The system takes the data of physiological sensors and the
proposed wireless CHDS for a steering wheel and extracts
additional input data in comparison to other driver detection
systems [39], in order to reduce the subject dependence. The
front end of the capacitive sensor is realized using ink-jet-
printed electrodes on a bendable substrate. These sensor mats
are more flexible than the state-of-the-art flex prints and are
used to detect, where the hand of the driver touches the
steering wheel. Due to the implemented energy management,
wireless data transmission, and different available power sup-
plies (USB and battery), the CHDS is ready to be integrated
into a steering wheel. In addition, the proposed CHDS enables
also retrofitting of any car to run a study in real traffic
environment. In this setup, the sensor is fully integrated on an
original equipment manufacturer steering wheel for the driving
simulator platform shown in Fig. 1. The driving simulator
platform provides a realistic virtual test scenario to conduct
a study to detect the driver state and validate the proposed
concept.

The remainder of this paper is structured as follows.
In Section II, we describe the proposed sensor system, and
in Section III, the driver state detection concept is presented.
The experimental setup, the study, and the obtained results
are described in detail in Section IV. Finally, the conclusion
is given in Section V.

II. SENSOR SYSTEM DESCRIPTION

A. Capacitive Sensor

The measurement principle is based on the interaction of a
human with an electric field while approaching/touching the
sensor front end (electrodes). In this paper, a capacitance-to-
digital converter (CDC) operating in single-ended measure-
ment mode [47], where the capacitance between a transmitter
and the distant ground is measured is used, as shown in Fig. 2.

An excitation signal with fexc = 250 kHz and an ampli-
tude of Vexc = 3.3 V is applied on the transmitter elec-
trode. The human hand approaching the electrode distorts
the electric field. The resulting change of the capacitance
between the transmitter electrode and the distant ground is
measured. We want to detect the position as well as how

Fig. 2. Single-ended measurement mode of a CDC comprising the transmitter
(TX) electrode, a spacer, and a shield layer at the bottom [48].

Fig. 3. Geometry model of the finite-element method simulation of the
electrode structure configured for the single-ended measurement mode. The
geometry model comprises the transmitter electrode Tx (blue) wrapped around
the steering wheel rim approximated by a cylinder and a finger. The electrode
in the middle E1 (green) is only used in the setup of [4].

intense a hand/finger of a driver touches/grasps the steer-
ing wheel. These actions can result in a capacitance change
as small as several femtofarads according to our simula-
tions (see Section II-A1). Consequently, we decided to use
a 16-b high resolution (in the range of femtofarad) sigma-
delta CDC providing a good tradeoff between resolution,
conversation speed, and power consumption (it should be
noted that the raw measurement data of the CDC are used as
input features of the CNN, see Section II-A4). Furthermore,
the CDC should be fully qualified for automotive applications
and capable to be integrated into an ECU.

1) Simulations: A simulation model is setup to determine
a feasible electrode structure usable for both single-ended
and differential measurement mode [4], which is mountable
on the steering wheel (see Fig. 5). A snapshot of the used
geometry for the simulation is shown in Fig. 3. The finger
is approximated as a torus with diameter d = 1.4 cm that is
well coupled to ground (same as a human) and the electrodes
are wrapped around a cylinder with the same diameter as
the steering wheel rim. In this illustration, the single-ended
measurement mode becomes clear, where the capacitance CT X

between the transmitter electrode (Tx) and distant ground is
determined. In comparison with [4], the electrodes that are not
used in the single-ended measurement setup are set to active
guard (see Fig. 3).
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Fig. 4. FEM simulation results of the geometry model, where one and two
fingers touch and compressing the synthetic material up to 400 μm.

In Fig. 4, the simulation results for one and two fingers
touching the surface of the covered electrodes, compressing
the synthetic material up to 0.4 mm, are shown. The resolution
of the CDC is chosen according to the obtained average change
of capacitance per micrometer compression for one finger of
the simulation results, which is ≈3 (fF/μm).

2) Sensor Node: The sensor node is based on an ultralow
power wireless system on a chip from Nordic Semiconduc-
tors (nRF51822 [49]) suited for wireless applications. It is
composed of a 16-b CDC AD7147 [50] with 13 inputs.
The chosen CDC has a current consumption of 1 mA
[or 77 (μA/channel)] in the full power mode and 21.5 μA [or
1.65 (μA/channel)] in the low power mode, with an update
rate of at least 107 Hz for all 13 input channels. Furthermore,
the CDC fulfills all requirements for automotive applications.
The single-ended measurement CDC was chosen, because the
results in Section IV show a more robust performance than the
results presented in [4]. Comparing the single-ended measure-
ment with the differential measurement CDC, the maximum
obtained signal amplitude is eight times higher while grasping
the steering wheel. Furthermore, no shielding effect occurs in
the single-ended measurement mode and the dynamic range
increases up to DR = 20 log((Cmax)/(Cnoise)) = 19 dB. The
sensor node can be powered via USB, battery, or the steering
wheel’s power supply. The sensor node electronics fulfill the
space requirements to place it inside the chassis of the steering
wheel. Up to two sensor mats consisting of six electrodes can
be connected to the sensor node and can be attached on the
left and right sides of the steering wheel to monitor a driver’s
hand position [4].

3) Sensor Mat: The electrodes of a sensor mat have an
interdigital design as obtained from the simulations with a
finger length of dl = 70 mm and a spacing of up to ds =
4 mm between each finger. The electrode structure is shown
exemplary in Fig. 5.

Each sensor mat has a four layer structure, where the
electrodes are sandwiched by isolation layers and placed on
top of the bottom shielding layer. Manufacturing the electrode
layer utilizing ink-jet printing results in a height of a printed
conductive layer of approximately de = 200 nm. Due to the
design process, the sensor mat is highly bendable and can

Fig. 5. Structure for one out of six inter digital electrodes of a sensor mat,
e.g., the transmitter (Tx1) covering an area (A1) of the steering wheel rim [4].

Fig. 6. Illustration of the compression approach, where the signal is not
transmitted as long as the signal change is not greater than 2� [4].

be easily wrapped around the steering wheel rim. It can be
mounted underneath or on top of the steering wheel rim cover.
The sensor mats can be used either with the sensor node with
the differential measurement CDC of [4] or with the single-
ended measurement CDC as presented in this paper.

4) Energy Efficient Data Transmission: In [51], it was
proposed to use an energy efficient data transmission technique
for transmitter and receiver side (see Fig. 6), which omits the
transmission of redundant data leading to a reduced amount of
data to be transmitted, while at the same time, no information
is lost at the receiver side. The technique is implemented on the
transmitting sensor node to minimize its power consumption,
which is an important factor for automotive applications. The
minimum valid transmission rate for the sensor is the heartbeat
rate. This rate is maintained even if the change of the signal
is smaller than 2�. In this paper, the heartbeat rate of the
sensor is set to thb = 2 s. This leads to a measured average
power consumption for the data transmission of the sensor
node of Phb = 2.85 mW, while only heartbeat signals are
transmitted. In comparison, in continuous transmission, the
measured average power consumption for data transmission
increases to Pavg = 5.79 mW. Depending on the measured
signal, the power consumption for the data transmission of the
sensor node can be reduced up to 49.3% without loss of any
information on the receiver side in the full power mode [4].

The sensor node is placed in the center of the steering wheel,
transmitting the data via a 2.4-GHz radio link to a receiver
dongle connected to a PC providing full flexibility [4].

5) Calibration and Detection: An offset calibration is done
since we are only interested in the signal change, while a
human hand is grasping the steering wheel. In this respect, the
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Fig. 7. Position of different physiological sensors on a human body. (a) Placement of EDA sensors [52]. (b) Position of the four ECG electrodes [53].
(c) Placement of 14 EEG channels and 2 references channels [54].

mean value of the raw sensor signal Craw (human hand is not
touching the steering wheel nor approaching it) is subtracted
from the current measurement signal Ccur at each time

�C = Craw − Ccur. (1)

A raise of a sensor signal above a predefined threshold value
�Cth triggers the detection of a human hand in a dedicated
area [A1–A12, see Fig. 12(b)] grasping the steering wheel
rim [4].

B. Physiological Sensors

We consider the following physiological sensors for the
driver state estimation study. It should be noted that no
cameras are used, e.g., for face recognition, due to privacy
protection of the participating subjects of the study.

1) ElectroDermal Activity: The electrodermal activity
(EDA) sensor measures skin’s ability to conduct electricity,
which increases if the skin is sweaty. The EDA signals are
measured with a sampling rate of fsEDA = 4 Hz using a
wearable wireless device (Empatica-E4 [52]). Fig. 7(a) shows
the placement of the EDA sensor on the human wrist.

2) ElectroCardioGram: The electrocardiogram (ECG) sen-
sor measures the electrical activity of the heart over a period of
time using electrodes placed on a human body. The wearable
wireless Bioradio device [53] is used to measure the ECG
signal with three electrodes (plus one ground electrode) placed
on the body [see Fig. 7(a)] at a sampling rate of fsECG =
500 Hz.

3) EEG: The EEG sensor measures the brain waves using
electrodes attached to the scalp. A wireless 14 channel (elec-
trodes) EEG measurement device Emotiv Epoc [54] is used
with a sampling rate of fsEEG = 128 Hz to obtain the EEG
signals. The location of the 14 electrodes on the head is based
on the International 10- 20 system [55] [see Fig. 7(c)].

To further reduce the complexity and increase the usability
of the system for the driver, in [56], physiological sensors, e.g.,
to measure the heart rate, are presented, which are integrated
in the driver seat.

III. DRIVER STATE ESTIMATION CONCEPT

The estimation of the driver state is done using a neurocom-
puting framework that uses a CNN as core concept. In order
to realize the framework, two aspects need to be considered.
First, the state of a driver does not change immediately, and
it is rather subject to a transient phase between the states.
Thus, the system needs to observe the history of the sensor
measurements before making a decision about the driver
state [41]. The second aspect is the expected complexity
of the system training. This complexity is caused by the
amount of high-dimensional sensor data. Sections III-A–III-F
present our CNN framework, including the raw data pre-
processing, features extractions, and the learning process of the
framework.

A. Feature Extraction

From each of the physiological signals, we have extracted
12 EDA features, 8 ECG features (per-channel), 25 EEG fea-
tures (per-channel), and 12 CHDS raw features, respectively,
with the time windows of tw = 10 s length, from various
analysis domains including time and frequency.

1) EDA Features: The EDA signal consists of the skin
conductance level (SCL) as slow changing part and the skin
conductance responses (SCRs) as phase components, which
are the short-term conductance changes. Conventional statis-
tics obtained from the SCL analysis have been found to be well
correlated with emotion [57]. Different statistic measurements
are calculated, including the following: the mean, the standard
deviation, the maximum, the minimum, the root mean square,
the mean of the first derivation, the mean of the second
derivation, and the mean of the negative slope. Moving to the
SCR analysis, we calculate the rate of SCR occurrences from
the very low frequency band (0–0.1 Hz), the response latency
of the first significant SCR, the sum of SCR amplitudes, and
the sum of SCR areas [57].

2) ECG Features: The ECG features are separated into
two different types. First, the statistical time-domain features



MÜHLBACHER-KARRER et al.: DRIVER STATE DETECTION SYSTEM 629

include the following: the mean and the standard deviation
of the beat-to-beat interval (NN interval), the root mean
square of differences of successive NN intervals, the number
of successive differences that are greater than 50 ms, and
the percentage of total intervals that successively differ by
more than 50 ms, which is a standard threshold. Second, the
frequency domain features, we extract the average power of the
low frequency range (0.04–0.15 Hz) and the high frequency
band (0.15–0.4 Hz), as well as the ratio of power within
the low frequency band to that within the high frequency
band [58].

3) EEG Features: Discrete wavelet transform is used to
analyze the EEG signals. We have selected Daubechies wavelet
because of its smoothing features, which gives the ability of
detecting the EEG changes [59]. The number of the wavelet’s
decomposition levels are determined depending on the dom-
inant frequency components of the signals [60]. Here, the
sampling rate of EEG signals is fsEEG = 128 Hz. Therefore,
five levels Daubechies wavelet of order 4 (db4) are used to
extract the subbands of brain waves delta (0.1–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma
(30–64 Hz) [61]. Moreover, from these subbands, we extract
the following features: the mean, the standard deviation, the
root mean squared logarithmic, the wavelet energy, and the
wavelet entropy [62], [63]. In general, 25 features are extracted
from each EEG channel.

4) CHDS Features: In the case of CHDS, we do not extract
any extra features. The measurement raw data are used as raw
features. This is done to additionally detect if the driver is
slightly touching or sliding his hand on the steering wheel.
The average sampling rate of CHDS is fsCHDS = 20 Hz.

B. Data Synchronization

The physiological and CHDS signals have different sam-
pling rates. For that, all signals have to be synchronized using
a reference timestamp. In this paper, we are using the starting
time of the EEG signals as a start point of each session and
we synchronize the other signals according to this starting
point. After the synchronization, we sample the signals with
fs = 2 Hz.

C. Cellular Neural Network

CNN was suggested by Chua and Yang [64]. They presented
it as a universal neuro-system framework expressed by a sys-
tem of differential equations that demonstrates the relationship
between nonlinear units/cells. CNN combines the advantages
of ordinary ANN and cellular automata (CA) in one platform.
However, it differs from CA and ANN by its nonlinear
dynamical representation of the interconnection between the
adjacent cells. The generally proposed state equation of a CNN
cell is given in

dxi (t)

dt
= −xi(t) +

n∑

j=1

ω1i, j y j (t) +
m∑

j=1

ω2i, j u j (t) + εi (2)

yi (t) = 1

2
(|xi + 1| − |xi − 1|) (3)

Fig. 8. Simulink CNN model (SimModel1).

where xi (t) and yi (t) represent the system state and the local
output of the CNNs ith cell, respectively, ui (t) is the ith input,
W1 = (ω11,1 . . .ω1n,n ) is the CNN feedback template; W 2 =
(ω21,1 . . .ω2n,m ) is the CNN control template, εi is a bias, and
n and m are the number of cells and inputs, respectively. CNN
is a system of differential equations, where (2) and (3) have
to be solved in order to generate the related CNN output. This
done using MATLAB Simulink [65]. In Fig. 8, the Simulink
scheme of the CNN model is presented. Since the studied data
are delivered from four types of sensors, representing different
physical actions, we use a CNN model for each sensor type.
Then, the local output of each CNN is connected to the final
platform output through a linear regressor

ĝ(t) = WglobalY(t) (4)

where Y = (yeeg-cnn
1 . . . yeeg-cnn

n , yecg-cnn
1 . . .

yecg-cnn
n , yeda-cnn

1 . . . yeda-cnn
n , andychds-cnn

1 . . . ychds-cnn
n , 1)

is a vector of all four CNNs outputs. Wglobal is the output
linear regression template. In Fig. 9, the related Simulink
scheme of the multimodal driver state estimation is illustrated.
All input signals are first mapped using principle components
analysis (PCA) [66] to reduce the dimensionality of the inputs
by selecting the most significant features. This is done with
the MATLAB PRTools toolbox for pattern recognition [67].
The output of PCA mapping is then connected to four CNN
blocks (one block for each sensor type). Each CNN block
contains the same scheme (with different templates), as
shown in Fig. 8. The CNN outputs are multiplexed and biased
(linear regressor) with a constant to a single vector. The
output of the multiplexer is either used to identify the linear
regression template W global during the training phase (Y) or
further processes according to (4), which gives the estimated
driver state that is used for the operating/testing phase.

D. Learning Technique

The goal of training a CNN is the identification of the
feedback templates, the control templates, and the biases and,
hence, configures the CNN state equation. In this regard,
many methods have been proposed. One group uses gradient-
based methods such as the backpropagation proposed in [15].
Another group of methods follows evolutionary computation,
where a genetic algorithm is most common to design CNN
templates [16], [17]. Another more recent method is parti-
cle swarm optimization [68], [69]. The main challenge of
the classical learning techniques is the time-consumption in
which they may increase tremendously when dealing with the
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Fig. 9. CNN driver state estimation Simulink model (SimModel2).

highly dimensional CNN (i.e., with a large number of cells).
To overcome this issue, we train CNN as an ESN. ESN is
an innovative approach of training RNN that has presented
excellent performance in the forecasting of either nonlinear or
non-Gaussian dynamical sequences and classification. Origi-
nally, ESN was proposed by Jaeger back in the year 2001 [18].
In ESN, the state feedback templates, the control templates,
and biases templates are randomly generated. The random
generation approach when it is associated with a high number
of neurons extract high level features from the inputs. The
random generation process is done as follows.

1) W1 (n × n matrix) is generated as sparse matrix from
N (0, 1) and a sparseness measure of 0.5. The resultant
matrix is then divided by its own largest absolute eigen-
value. These generating constrains are important for the
stability of the network as suggested in [70].

2) W2 (n × m matrix) and ε (n × 1 vector) are generated
randomly from N (0, 1) and scaled by a factor equal
to 0.1.

After the four (EEG-CNN, ECG-CNN, EDA-CNN, and
CHDS-CNN) CNN templates are generated, finally a global
output linear regressor is trained using the ridge regres-
sion (RR) [70]

W global = g(t)Y (t)T (Y(t)Y (t)T + β I)−1 (5)

where g(t) is the desired output, I is the identity matrix, and
β is the regularization coefficient, which is determined using
cross validation technique. It is necessary to add β in the RR to
avoid an ill-conditioned problem of the regular least squares,
which may occur if Y (t)Y (t)T is singular or nearly singular.

E. Learning Algorithm for CNN

As it is explained in Section III-D, the model training is
done using two steps: first an unsupervised step using the
ESN approach and then a supervised step to identify the
linear regressor template W global. By investigating the goal
of the proposed model, which is estimating the driver state,
we consider the following key points.

1) A comprehensive training (in-sample) data set that con-
tains sensors data associated with a known driver state
must be provided.

Fig. 10. Square driver state transition (red) versus the smooth driver state
transition (blue).

Fig. 11. Simulink driver state signal transformation (SimModel3).

TABLE I

SIMULINK CONFIGURATION PARAMETERS

2) The driver state is an accumulated state (transition
between two states is not immediate and is subject to
a transient phase). Considering this fact, Fig. 10 shows
the used driver state smooth and sharp transition. The
transformation between the sharp transition signal into
the smooth one is done using the Simulink model in
Fig. 11, which represents the second-order low-pass
filter. In this paper, we consider a phase of 2 min (120 s)
for transition and 3 min (240 s) for convergence at each
state.

3) The synchronized sensor data (see Section III-B) are
taken as input to the driver state estimation Simulink
model.

4) Simulink is configured as indicated in Table I.
5) We use the following accuracy metric:

Accuracy = Number of correctly classified samples

Total number of test samples
.

(6)

6) Following cross validation strategy, we divide the in-
sample data set into ten sets (nine sets for learning and
one set for validation).

7) The training process is done as described in Algorithm 1.
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Algorithm 1 Driver Estimation System Learning Algorithm
Input: Synchronized sensor data,
Output: CNN templates, W global

Generate CNNs Templates following Echo state network
rules in Sec. III-D
Set W global to 0
for n = 50, 100, 150, 1000, 2000 do

for β = 0.1, 0.01, 0.001, 0.0001, 0.00001 do
for i = 1, ..10 do

Using the i th learning dataset
Run SimModel2
Read Y from SimModel2
Using Y AND g (smooth driver state signal)
Estimate W global using Eq. (5)
Using the i th validation dataset and the estimated
W global

Run SimModel2
Read Driver_State from SimModel2
Calculate the system accuracy using Eq. (6)
Set Accuracy to Cross_V alidation_Per f (i)

end for
Set System_Parameters_Per f (n, β) = average
value of Cross_V alidation_Per f

end for
end for
Select best CNNs system configuration that corresponds to
the minimum System_Parameters_Per f

Algorithm 2 Driver Estimation System Operation Algorithm
Input: Synchronized sensor data,
Output: Driver State

Using the testing dataset (out-of-sample dataset)
Using trained CNN (from Algorithm 1)
Run SimModel2
Read Y from SimModel2
Read Driver_State from SimModel2
Calculate the system accuracy using Eq. (6)

F. Operation Algorithm for CNN

After the computation of CNN templates and W global, we
use Algorithm 2 to evaluate our model on testing (out-of-
sample) data set.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Capacitive Sensor Evaluation

Various setups are considered for the sensor evaluation. The
steering wheel is equipped with two sensor mats (on the left
and right sides) covered with a bend and stretchable synthetic
material with an approximate thickness of hc = 1 mm. This is
done to demonstrate the functionality of the sensor mats even
when they are mounted below the surface of the steering wheel
rim [see Fig. 12(a)]. In the first setup (A), the driver grasps
and releases the steering wheel three times without moving it.
In the second setup (B), the steering wheel is used in combina-
tion with a driving simulator platform [see Fig. 1], where the

driver is placed in a virtual traffic environment. A snapshot of
the online visualization of the hand position for demonstration
purposes is shown in Fig. 12(b). The area, where a hand
can be detected is subdivided into the 12 regions A1–A12.
These regions are directly related to the transmitter electrodes
Tx1–Tx12 of both sensor mats. The detection threshold value
is set to �Cth = 1.66 pF. The threshold value 2� for the
energy efficient data transmission is set to 0.06 pF.

1) Setup A: In Fig. 13, the results for a human grasping
the steering wheel three times at different areas are presented.
After touching the surface of the steering wheel, the coupling
effect prevails and �C increases immediately at time t =
18.5 s at transmitter Tx5–Tx8 detecting a touch at areas
A5–A8. While grasping, the measurement signals stay stable
and drop to zero when the steering wheel is released at
t = 20.5 s. The detection results clearly show the grasping
positions at area A5 and A6 and A7 and A8 for the right and
left hands, respectively. After each release, all sensor signals
stay stable around zero. During the second grasp, the hands
are detected at areas A3 and A4 and A9 and A10. Finally, the
steering wheel is grasped during the time interval t = 25–27 s
at areas A1 and A2 and A11 and A12.

2) Setup B: Fig. 14 shows the results when a driver grasps
the steering wheel, moves it to the left and right sides, and
releases it three times at different areas A1–A12. In compar-
ison with the results in Fig. 13, the sensor signals are not
as stable as in the static case due to the slight movement
of the hands on the steering wheel while steering to the left
and right sides. In addition, during the second grasp, the left
and right thumbs are slightly lifted around t = 19 s and
t = 21 s, where the sensor signals Tx9 and Tx3 drop slightly,
respectively. Moreover, it can be seen that the left hand of the
driver partially touches area A8 and A2 as well.

In Fig. 15, the results while a test person is driving on a
track in a virtual traffic environment are presented. The sensor
signals stay stable even if the driver is steering heavily and
the hand position can be clearly detected throughout the entire
driving simulation. The driver removes his left hand between
t = 237–245 s completely from the rim followed by a smooth
steering with both hands till t = 275 s. Afterward, the driver
starts to steer heavily again and his hands are sliding around
on the steering wheel.

The experimental results of both setups demonstrate the
sensor’s capabilities to reliably detect the position of the hands
on a steering wheel. In Section (IV-B), the sensor is used as an
input for a driver state detection system for further analysis.

B. Driver State Estimation Study

The experimental setup to collect the data for the driver
state system to estimate the stress level is defined as follows:
each participant has to drive in two different scenarios. In Sce-
nario I, the participants are driving for 5 min in a virtual traffic
environment without any restrictions. In scenario II, the partic-
ipants are driving in the same environment for 5 min but shall
keep the vehicle within a certain speed limit v = 60–100 km/h
and answer questions, simultaneously. Each time the driver is
not answering the question properly or does not stay within
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Fig. 12. (a) Steering wheel fully equipped with two sensor mats. The orange and brown strips show the position of the sensor mats on the left and right
sides, respectively. (b) Visualization of the hand position detection. The green LEDs show the covered area (A1–A12), where a human hand, touching the
rim of the steering wheel, can be detected.

Fig. 13. Raw sensor signals and detection results when two hands grasping
the steering wheel rim three times. The sensor mats are covered by a synthetic
material. It should be noted that the detection results are shown at different
levels for each area for visualization purposes only.

Fig. 14. Raw sensor signals and detection results for two hands grasping the
steering wheel rim and move it 90◦ to the left and right sides, three times. The
sensor mats are covered by a synthetic material. It should be noted that the
detection results are shown at different levels for each area for visualization
purposes only.

the defined speed limit, and two different acoustics signal
as feedback are given. The two scenarios are considered to
represent two driver states, which are nondistracted/relaxed
and distracted/stressed. These two states are the targets of our
study. A total of 22 drivers with previous driving experience
and no health problems participated in this paper.

As it is mentioned in Section III-C, the main challenge
of the related work is subject dependence. This challenge is
mainly considered in our evaluation by testing the performance
on unexperienced/untrained subjects (participants). Therefore,
the evaluation is done using “threefold” cross validation over
the 22 participants. For each step of the three validations,
the data of 15 participants are used to train the model (in-
sample data set). Then, the test is done on data of the
remaining seven participants (out-of-sample data set). In this
case, the evaluation treats the subject-independent case, since
the test participants data for the two studied scenarios are not
considered in the training. For each scenario, the first 2 min are
considered as a transient phase and not included in the training
or testing process. This transient phase represents the supposed
time delay until the driver gets into the nondistracted/relaxed
or the distracted/stressed phase. Considering the sampling rate
fs = 2 Hz, the three remaining minutes in each scenario
give 360 (3 × 60 × 2) data samples to be used. For two
scenarios per participant and 22 participants, this results in
15 840 samples. At each cross validation step, data are split
into 10 800 training and 5840 testing samples. Each sample
is a vector of 623 features, combining data from all sensors.
Before applying the feature vector to the system, we reduce the
dimensionality using PCA. The PCA is applied on each sensor
signal individual with a fraction of cumulative variance equal
to σc = 0.9, which represents how significant the selected
features are.

To benchmark our CNN model, we select the following four
well known classification concepts: 1) SVM with radial basis
function SVM with radial basis function (RBSVM) [5], [6];
2) naive Bayes classifier [71]; 3) decision tree classifier [72];
and 4) ANN [73]. We use Weka data mining software [74]
to train and test the selected classifiers with the configuration
parameters given in Table II. Furthermore, it includes the CNN
configuration parameters obtained using Algorithm 1.

The evaluation is addressed based on different combinations
of sensors. The related results are presented in Table III. The
accuracy of all considered classifiers is calculated using 6.
We summarize the results as follows.
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Fig. 15. Sensor signals and detection results for a human driving around in a virtual traffic environment. The sensor mats are covered by a synthetic material.
It should be noted that the detection results are shown at different levels for each area for visualization purposes only.

TABLE II

USED CLASSIFIERS CONFIGURATION PARAMETERS

TABLE III

DETECTION ACCURACY WITH RESPECT TO THE SENSORS

DATA COMBINATION

1) The detection accuracy using all available sensors is
92%, which is a very promising result if we consider that
the evaluation is based on a subject-independent case.

2) The CHDS increases the performance significantly by
10% when it is combined with multiple physiological
sensors. A small improvement is observed even if
CHDS is combined with only a single physiological
sensor. The advantage of the CHDS is its ability to
remove the negative effect of subject dependence.

3) Overall, for this case study, our proposed CNN classifier
outperforms all the other benchmarking classifiers.

4) ECG cannot be used in this setup as a single sensor
and needs to be combined with EEG, EDA, or CHDS
sensors.

5) EEG yields the most information with respect to stress
detection, since it improves the results significantly
when it is combined with other sensors.

V. CONCLUSION

We present a CNN-based driver state detection system to
monitor the stress level of a driver. It combines the input
of both the state-of-the-art physiological sensors and a novel
capacitive touch and position detection sensor. First, the CHDS
for steering wheels with wireless and energy efficient data
transmissions is presented and evaluated. Second, the proposed
driver state detection system is evaluated by conducting a
study with 22 participants on a driving simulator platform.
The classification results of the CNN (benchmarked with other
state-of-the-art machine learning methods) show a significant
improvement of the accuracy, whenever the physiological
sensor(s) are combined with information of the CHDS. In case
of taking all available sensor inputs into account, the CHDS
improves the accuracy by 10%. In addition, the CHDS is ready
for easy retrofit of any car due to the wireless data transmission
for further applications, e.g., conducting further studies in a
real traffic environment on the road. A considerable aspect for
the future is the measurement of the physiological signals with
a sensor embedded in the driver seat, which is more convenient
for the driver.
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