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ADC Standard IEC 60748-4-3: Precision
Measurement of Alternative ENOB

Without a Sine Wave
R. Allan Belcher, Senior Member, IEEE

Abstract— A practical analog-to-digital converter (ADC)
introduces quantization error in excess of the ideal value and
one way of expressing this is by comparing the value of this
error with that of an ideal ADC. This comparison is known as
the effective number of bits (ENOBs). It is accepted practice to
measure ENOB using the signal-to-noise and distortion (SINAD)
ratio of a sine-wave input. This paper extends ENOB theory to
any arbitrary waveform by including the crest factor of the input
signal. It is now possible to apply the ENOB concept to wideband
systems. Measuring the SINAD of an arbitrary or multitone
waveform with precision normally requires the use of laboratory
standard test equipment. However, International Electrotechnical
Commission standard 60748-4-3 specifies an alternative method
for wideband SINAD measurements that may also be suitable
for built-in test. It is essentially a multitone test using
two pseudorandom signal sources and is sometimes known as
the double comb-filter (DCF) method. This paper demonstrates
the requirements for a practical implementation of a DCF-based
system for measuring an ENOB of up to 24 bits. It is shown that in
a practical application, DCF ENOB and sine-wave ENOB results
have similar levels of accuracy, but in the presence of amplitude
nonlinearity the differing test signal amplitude weightings cannot
fundamentally produce the same ENOB figure. It is shown that
DCF ENOB is more representative of communications system
performance and therefore extends the use of ENOB to wideband
applications.

Index Terms— Analog–digital integrated circuits, built-in
self-test, International Electrotechnical Commission (IEC)
standards, quantization.

I. INTRODUCTION

APURE sine wave or tone is commonly used for testing
the linearity and resolution of Analog-to-digital con-

verter (ADC) circuits as it can be made close to ideal using
suitable filtering and has the advantage that harmonic measure-
ment equipment is available commercially to check the purity
of the source. It also has the advantage that it can be described
analytically with ease. As the ADC output signal is a sequence
of digital words further analysis can be undertaken using well-
known algorithms such as the fast Fourier transform (FFT).
Although the FFT facilitates measurement of sine-wave signal-
to-noise and distortion (SINAD) ratio, a wider range of tests
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are required to ensure that an ADC will be suitable for
particular applications. Unfortunately, variations in the method
used to measure SINAD can change the result so it was not
easy to compare the performance of one manufacturer’s ADC
with that from a different manufacturer. This obviously can
cause a problem for the system designer. For this reason, it
became necessary to define and standardize internationally a
range of ADC test methods. This paper is concerned with
wideband effective number of bits (ENOBs).

In essence, ENOB compares the performance of a practical
ADC with that of perfect ADC of the same resolution in bits.
ENOB is a measure of the rms error between the input–output
transfer characteristics of an ideal ADC and a practical ADC
of the same resolution. This comparison could, in principle, be
measured simply using a test signal with a uniform amplitude
probability distribution function (APDF) such as a ramp signal.
However, the linearity of a ramp waveform is limited by
the linearity of analogue circuits and unlike a sine wave its
APDF cannot be improved by filtering. In practice, ENOB
is measured with a sine wave as its APDF is known and
reproducible, but it will not necessarily produce the same rms
error and ENOB as a ramp waveform. As the APDFs are
different, amplitude nonlinearity can result in a sine-wave-
based ENOB being worse than a ramp-based ENOB when
the signal peaks are distorted. It is therefore important to
take this APDF dependency of ENOB into account when
comparing a sine-wave-based ENOB with one measured using
an alternative test signal.

In 2006, the publication of the International Electrotechnical
Commission (IEC) standard IEC 60748-4-3 [1] provided for
wideband measurement of ENOB with an alternative test
signal. It includes input from IEEE [2] and the national
standards bodies of IEC member countries worldwide. It is
important to note that IEC standards are industry led. As IEC
standards are world standards they may be adopted in leg-
islation, enabling potential barriers to trade to be overcome.
In contrast, other standards, though in use worldwide may be
voluntary. It may be useful here to compare how IEEE and
IEC standards are written. IEC standards conform to ISO/IEC
Directives governing the drafting and structure of international
standards [3], [4] and IEEE standards are written to conform
to the IEEE standards organization style manual. Both IEEE
and IEC standards contain normative elements which define
what must be done to comply with regulatory requirements.
Guidance as to how to understand the concepts presented is
provided by informative elements. IEC provides guidance or
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informative detail through its technical report route which
requires only the approval of an IEC technical committee.
An IEEE standards committee may choose to write a standard
that contains a significant amount of detail of an informative
nature. In contrast, an IEC standards committee might instead
decide to publish detailed informative text as an IEC technical
report. For anyone who is not aware of this difference in policy,
an IEEE standard may often have more informative text and
therefore appear to be more detailed than an IEC standard.

IEEE has been represented at IEC through IEEE members
being nominated by their national standards organization; this
is the process for new IEC standards work to be started.
Organizations such as IEEE can apply to IEC for liaison status.
This enables a member of an IEEE standards committee to
be an observer at an IEC meeting. As in IEEE 1241,
IEC 60748-4-3 defines the dynamic performance of an ADC
by evaluating its performance with reference waveforms such
as linear ramp, square, and one or more sine waves. However,
the IEC working group also considered documents from other
IEC countries and arrived at a consensus.

For wideband measurements it specifies a test signal of two
pseudorandom signal sources which in effect is a multitone
test signal. This is sometimes known as the double comb-
filter (DCF) method. As the method can be implemented using
a small number of logic elements and does not require FFT
analysis, it is particularly suitable for built-in-test applications.
This section of the standard specifies results that relate only to
the wideband noise-like test signal. At the time this standard
was written, there was no evidence to indicate that measure-
ments made with this DCF test system could be directly related
to the ENOBs of a sine wave, and for that reason the test was
intended for routine rather than type-approval use.

A. Type-Approval Testing

When the performance of an ADC is determined using
commercial test equipment that meets the requirements of
a standards laboratory the cost, accuracy, and repeatability
required makes this a time consuming and expensive process.
Measurements such as these are usually only performed to
ensure that the type of ADC, when performing correctly,
is able to meet stringent performance requirements of the
manufacturer or customer.

B. Routine Testing

Manufacturing faults can occur that result in the perfor-
mance of the ADC to be grossly in error and it is this type
of low cost measurement that may be made routinely in a
production test environment or for health monitoring of a
system. A routine test method has significantly shorter test
duration and lower precision than a type approval test as it
need only be sufficient to detect gross faults.

What is required is a test of short duration that does not
require expensive components but has the potential to be used
for type-approval testing. This is the application area of the
DCF test method. It has long been understood that nonlinearity
measured with a sine wave may not be a true indication of the
performance with real signals as these have a different APDF

and is closer to Gaussian noise. It is therefore unlikely that they
will both generate the same rms nonlinearity error. There is a
need to establish situations where sine and DCF ENOB may be
expected to be in close agreement and when this is not likely.
This will assist in deciding which ENOB is a better indicator
of system performance. This standard [1] does not make a
specific recommendation for the most appropriate configura-
tion of pseudorandom signal generator or the required digital
filters. The theoretical analysis and practical design choices
for a DCF test system presented in this paper will show how
this DCF method can be implemented in practice with the
key factors that limit measurement precision established. This
will enable the DCF method to be used for both routine and
type-approval purposes.

A demonstration of this DCF method was provided for
the IEC working group in the form of .wav format stereo
audio files. These audio files were employed in the test and
simulation results described in this paper and are available on
request. The following sections in this paper present the case
for using the DCF method in applications where a precision
measurement of ENOB is required but where it is impractical
to use a sine-wave-based method or where a sine wave is
not a good representation of performance with real wideband
signals. The case is presented progressively in the following
sections.

Section II uses the test waveform independent definition [2]
of ENOB to compare sine-wave ENOB accuracy with ENOB
from other test waveforms. The noise and distortion (NAD)
concept in the ENOB definition is refined to cover parame-
ters in the measurement of ENOB that limit precision or
add uncertainly in measurement. NAD is shown to include
ideal quantizing noise power, additional error power due to
imperfect quantization, and power added by random noise
sources and sources of measurement uncertainty. Insufficient
code occurrence density can produce uncertainty in the mea-
surement of ideal quantizing noise. The concept of this being
represented by ENOB is introduced. A general equation for
ENOB is derived based on the SINAD and crest factor or
peak-to-rms ratio of an arbitrary test waveform. The impor-
tance and difficulties in generating and using a test signal
representative of a real communications signal is discussed.

Section III describes the DCF method and presents two
practical implementations of the test signal generator. The
key practical limitations and advantages of these generators
are described. Central to the DCF method is the concept
that, with appropriate choices of DAC sampling frequency
and comb base frequency, all intermodulation and harmonic
products of a nonlinear DAC can be aliased back on to the
comb spectrum so are hidden. Nonlinearity in any following
amplifier will generate products that simply fall onto the test
signal frequency locations so are hidden or are outside the
test bandwidth. These can be removed by suitable low-pass
filtering. Sensitivity to amplitude nonlinearity occurs only after
the two interleaved comb spectra are summed.

As the power loss through a comb filter varies with the
power spectral density of the input signal, a precision measure-
ment of ideal quantization noise is required. Gain correction
factors were calculated for each filter, based on the assumption
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that the power loss experienced by a white noise input signal
would be a good approximation. The following questions are
also addressed concerning the rms ideal quantizing noise Q.
Is the crest factor of aliased quantizing noise 4.77 dB and
what crest factor should be expected for Q at the output
of the DCF measurement filter chain? In the following text,
this chain will simply be referred to as a measurement filter
and is comprised of comb and low-pass filters (LPFs) and is
described in Section III-A2. It was possible that insufficient
code density in the test signal could alter the crest factor of
Q and it could also be changed by the measurement filter.
This problem was investigated by simulation and generation
of the true ideal quantizing error waveform by an approach
similar to curve fitting. This gave the ideal quantizing noise
waveform present at the input to the comb filters and its
measured crest factor was 4.77 dB. When this Q waveform
was passed through the DCF measurement filter its crest factor
was increased to the same value as in a DCF measurement
of Q, confirming that the measurement filter alone caused
the increase in crest factor. As this waveform may not be
true noise (i.e., random) or white (i.e., uniform power spectral
density), the calculated white noise loss (see Section III-A2)
of each filter element may not be accurate. Power loss of
the quantizing error through the comb and LPFs was instead
measured directly with the real quantizing error signal and a
gain correction value determined.

Section IV presents a simulation of potential sources of
ENOB measurement error with ideal and practical ADCs.
It includes ideal ADCs of 24–8 bits, two practical ADC
characteristics of 8 bits with segment boundary transition
errors and 10 bits with a low-order polynomial error, both
with added noise. Routine tests are usually of short duration.
Some insight into the comparative sensitivity of the accuracy
of DCF and sine results to test duration was obtained using
no more than 2 s of test signal. Results indicate that the
DCF ENOB is more sensitive to segment boundary transition
errors than a sine wave, but is less sensitive to low-order
polynomial error than a sine wave. This supports the view
that a DCF measurement of ENOB is a better representation
of ADC performance in a practical application.

Section V presents the results of applying sine and DCF
test methods to a professional quality 24-bit ADC–DAC audio
interface. Results demonstrate that in a practical 24-bit system
where no external filtering is used between audio outputs and
audio inputs, random noise is the dominant source of error;
sine and DCF methods then measure SNR with equal precision
but the sine-based ENOB is less than the DCF-based ENOB.

II. MEASURING EFFECTIVE NUMBER OF BITS

The precision or degree of accuracy of a measurement of
ENOB for an ADC is ultimately limited by imperfections in
the test signal source and inaccuracy or uncertainty in the
method of measurement. A sine wave is the test signal of
choice for type-approval testing. Although most audio signal
sources provide total harmonic distortion (THD) in the range
−100 to −120 dB, the need for increased performance has
driven commercial innovation and an increase to better than

−140 dB is now available through a harmonic cancellation
method [5]. European Metrology Institutes have approached
this problem by employing superconducting techniques to
produce a Josephson Junction based DAC through the Q-wave
project [6]. Publically available results so far indicate that the
theoretical limit of an ideal low-order delta sigma DAC may
have been achieved [7], [8]. Superconducting bandpass filters
are used in mobile communications base stations and offer a
further way to reduce THD [9]. With all this recent activity in
parallel areas of research and development one might wonder
where the true limit of THD could be 10 years from now.

However, it has long been recognized that a sine wave
is not representative of real wideband signals present in
communication systems [10]. Modern communication systems
have real signals with well-defined peak-to-rms power ratios
or crest factors. Typically, these crest factors are at least
9 dB so the 3 dB of a sine wave is not a good match
and may over value the importance of nonlinearity at signal
peaks and undervalue it elsewhere. It is important to note that
dB crest factor is numerically the same as decibel peak-to-
average power ratio (PAPR). PAPR is a key parameter for
wideband digital communication systems [11]. The ENOB
figure is influenced by the APDF of the particular test signal
but signals with similar crest factors do not necessary have
the same APDF. It is possible, when amplitude nonlinearity is
present, that two signals with the same PAPR but differing
APDFs could give different ENOB figures. It is therefore
important to be able to describe the APDF of the ENOB
test signal with sufficient accuracy to ensure repeatability.
The dual pseudorandom binary sequence (PRBS) waveform
reported here addresses this issue as it has a reproducible
APDF [12] which, although close to a truncated Gaussian
distribution, can be modeled by a five harmonic Fourier series.
With 95 000 samples and 16-bit quantization the residual rms
fitting error was equivalent to 13 bits. This wideband ADC
nonlinearity testing problem has also been addressed by others
using statistical and curve fitting methods to both random and
standard pseudorandom signals with limited success [13], [14].

For routine testing, the noise power ratio (NPR) test method
has long been specified for communications systems [15], [16].
It uses band limited random noise with measurements made
using a spectral notch in the test signal [17]. The fundamental
assumption made with this NPR test is that all the noise
and nonlinearity products are spread uniformly across the
bandwidth of the test signal so that the total error power
can be estimated from the ratio of measurement bandwidth
to total bandwidth. In practice, the difficulty in generating a
deep enough spectral notch in the random noise test signal
has restricted it to routine tests of low-resolution ADCs. NPR
is useful from the point of view of it being a wideband test
with an APDF closer to that of real communication signals.
Pseudorandom noise is periodic but if the sequence length
is sufficiently long, it will approach a truncated Gaussian
APDF as the number of samples is increased but there is
then a tradeoff between test time and accuracy of the APDF.
As the distribution is truncated it will have a well-defined peak
value so the risk of unexpected overload can be minimized.
The availability of low-cost programmable arbitrary waveform
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generators offers an alternative way of generating noise like
test signals. Digital signal processing algorithms can find a
solution where a relatively small number of harmonically sine
waves can, through changing the phase relationship of each
sine wave, generate a waveform that has APDFs that approxi-
mate to either truncated normal or uniform characteristics [18].
This technique may be particularly useful when it is necessary
to minimize the crest factor of a multitone test signal [19].

A bandpass version of a multisine test signal is a preferred
test signal for nonlinear model testing of microwave amplifiers
as its APDF can be adjusted to be a good representation of the
near Gaussian APDF of real signals in microwave communi-
cations systems [10]. The generation process is similar to that
described in [18] where a comb of equally spaced frequencies
is generated but [10] has a precise mathematical analysis of
the APDF and a prediction of the power spectral density of out
of band products generated by amplitude nonlinearity. Often
the out of band products may be removed by channel filters so
are not available. In that case an alternative multitone approach
is employed for in-band measurements and is known as the
multitone power ratio (MTPR) method [2]. Typically, this is
used to test bandpass signal transmission modems that have a
real signal made up of multitones. The test signal may have up
to 256 equally spaced tones chosen to model the real signal.
Some of the tones will be eliminated to give an opportunity for
in-band intermodulation products to appear at those positions.
Unfortunately, the sensitivity of the measurement is limited by
the amount of distortion power that can be generated in the
empty positions so measurements require DFT-based noised
measurements rather than notch filters. The dynamic range
is limited by the linearity and resolution of the AWG as the
missing tones required in the harmonic sequence can be added
by the AWG limiting ADC measurement dynamic range [20].
This limitation has restricted this method to routine testing and
it provides a figure of merit rather than a SINAD or ENOB.
The use of equally spaced multitones for NPR measurement
has been proposed for the measurement of in-band nonlinearity
in RF circuits [21]. This is essentially the same as multiple
measurements of MTPR: a sequence of measurements is made
with the position of the missing tone changed. A sequence
of DFT measurements calculates the power in each slot.
However, the practical results presented indicate that this is not
a high-resolution method and is intended for RF systems where
third-order nonlinearity is dominant. The main differences
between multitone NPR (as in [21]) and MTPR are: in [21],
a smaller number of tones are used, the preferred APDF is
closer to Gaussian, and the position of the missing tone is
moved across the passband with NPR measurements made at
each new position.

A. Error Sources in the Measurement of ENOB
With an Arbitrary Waveform

Routine tests simply indicate the presence of error power
due nonlinearity and noise and are useful in indicating the
onset of a fault. However, each method of measurement has
practical limitations. The following puts forward a relationship
that will enable the significance of potential error sources to be

evaluated in measuring ENOB with any arbitrary waveform.
The basic definition of ENOB [2] is reproduced in

ENOB = N − log2{PENOB/Q} (1)

where

N specified number of bits in the ADC;
PENOB total rms error;
Q rms ideal quantization error.

Practical measurements of ENOB require measurements of
amplitude nonlinearity represented by integral nonlinearity
error, noise due to differential nonlinearity and quantizing
error, and random or thermal noise due to clock jitter or active
components. We will define amplitude nonlinearity by first
fitting a polynomial to the ADC input–output characteristic.
The rms error between this polynomial and a best fit straight
line we will define as PINL. This error will be an indication of
the component of integral nonlinearity that generates products
that are highly correlated with the test signal. PINL will
therefore be related to harmonic and intermodulation products.
We will define PDNL as the rms error left after subtracting the
best fit polynomial from the ADC transfer characteristic as
this will represent products that are not highly correlated with
the test signal. For the purpose of illustrating limits to ENOB
test methods, we will assume the various error sources are
independent and define PENOB as

PENOB = PINL + PDNL + Pr + Pm + Q (2)

where Pr is the added noise due to random sources such
as amplifiers and jitter. Pm is the rms error inherent in the
method of measuring the other parameter values, e.g., due to
insufficient number of samples causing missing codes or the
test signal amplitude not exercising the full-coding range of
the ADC.

In a simulation of a practical ADC with unwanted noise
and quantization errors, the total rms error can be determined
simply by subtracting an ideal floating point version of the
arbitrary waveform from the output of the practical ADC.
Care must be taken to ensure that gain and offset of this
ideal test waveform is adjusted so that only the true error
PENOB remains. Error measurements based on the need to
precisely subtract a reference waveform from a quantized
waveform can present difficulties as illustrated by the number
of solutions published to overcome problems with sine-wave
curve fitting [22]. Imperfect sine-wave fitting increases the
rms residual error and therefore provides an incorrect ENOB.
If an ideal ADC is simulated with quantizing interval δ then
the subtraction process will result in the actual quantizing
error waveform being produced; its mean square value should
be δ2/12 if the approximation [23] that the quantizing noise
waveform can be represented by a variable slope sawtooth
holds. As the peak amplitude of this ideal quantizing error
waveform is δ/2 and its rms amplitude is δ/

√
12 it follows

that its crest factor is
√

12/2 or as a decibel ratio,
20 log10(

√
12/2) = 4.77 dB. This result will be referred to

later in deriving a relationship for the ENOB of an arbitrary
waveform.
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All these sources of error are present in a sine-wave-based
ENOB as well as an ENOB based on an arbitrary waveform.
The error Pm may be more significant for ENOB based on
coherent measurements. For a given number of samples and
ADC bits, it is well known that the number of missing codes
can be minimized by choosing a relatively prime ratio of test
signal frequency to the number of samples [24]. A correct
choice will result in the code occurrence histogram having
a distribution similar to that of an ideal waveform, but will
have missing codes if the number of samples is not sufficient
to hit each code at least once. This effect can be seen with
any arbitrary waveform by generating sets of code occurrence
histograms where the number of ADC bits is varied.

In principle, any arbitrary periodic waveform could be
used to measure wideband ENOB, provided the method of
measurement is able to measure all the individual components
of PENOB. In the limit, the method must be able to measure the
quantizing error of an ideal ADC with the same precision as
a sine-wave curve fit. For any arbitrary multitone waveform,
this can be achieved in a simulation by adjusting gain and
offset to obtain a residual error waveform. However, in a
practical wideband test situation frequency dependent gain,
offset, and phase errors make this subtraction process inaccu-
rate. Frequency-domain analysis can to some extent overcome
this limit using a DFT-based SINAD measurement but unless
the multifrequency test signal captured has complete cycles
of each frequency component, leakage will occur. This can
be compensated for by windowing but this also introduces
inaccuracy in the measurement of both signal frequencies and
power. If the test signal generation method suffers from these
sources of error then they must be low enough not to affect
the measurement of ADC ENOB.

For a sine wave, leakage can be avoided by using a test
frequency that is synchronous with the sampling frequency
and passive bandpass filtering at the input to the ADC can
minimize the amplitude of harmonics and noise. If the sine
wave is digitally synthesized then noise due to jitter in the
DAC clock can be minimized by locking the ADC and
DAC clocks to a low noise common clock. Noise within the
passband of the filter must be minimized by ensuring that
the noise due to differential nonlinearity and quantizing is
sufficiently low. Having addressed the potential sources of
error in a measurement of ENOB the next step is to derive
a simple relationship for the ideal signal to quantizing noise
ratio (SQNR) that applies to any arbitrary waveform and from
this define the ENOB of any waveform in terms of SINAD and
crest factor. The crest factor or PAPR of a waveform is a key
parameter in a communications system [19] as it determines
the maximum system signal to noise ratio and therefore the bit
error rate and service area. The equation derived next widens
the scope of ENOB by making it easier to apply to wideband
communication systems.

B. Calculation of SQNR of Any Arbitrary Waveform

The aim of the next part of this analysis is to derive an
equation for quantizing error in a linear n-bit ADC based
on the crest factor of the test signal. Amplitude and power

are related by the crest factor K or peak-to-rms amplitude
ratio. For an n-bit ADC with linear quantization and quantizing
interval δ, the maximum peak signal A is

A = δ · 2n−1. (3)

The mean square value P of an input signal of
peak amplitude A with crest factor K is

P = (A/K )2. (4)

If q is the mean square amplitude of the quantizing error then

q = [δ2/12]. (5)

Equation 5 is an approximation based on the assumption that
the quantizing error can be represented by a variable slope
sawtooth [23]. It also requires that the signal amplitude is
much larger than δ. As the quantizing error is the only source
of NAD in an ideal linear ADC this allows us to produce an
equation for SQNR in terms of n

SQNR = P/q = ((δ · 2n−1)/K )2/(δ2/12).

Next, δ cancels out so

= (22n−2 + K −2) · 12. (6)

In decibels

SQNR(dB) = 10 log10((2
2n−2 + K −2) · 12)

= n · 20 log10 2 − 20 log10 2

− 20 log10 K + 10 log10 12.

Let

C = 20 log10 K

= 6.02n − 6.02 − C + 10.79.

Hence, for an arbitrary waveform of crest factor C in decibels
the SQNR in decibels is given by

SQNR = 6.02n + 4.77 − C. (7)

It is interesting to note that 4.77 dB was shown earlier to be
the crest factor of quantizing error.

As C = 3.01 dB for a sine wave, substituting in (7) we
have the well-known result

SQNR = 6.02n + 1.76 dB.

When imperfections in the ADC are included SQNR is
replaced by SINAD then ENOB ne is related to SINAD by

SINAD = 6.02ne+1.76 dB. Or ne = (SINAD−1.76)/6.02.

(8)

Hence, for any arbitrary waveform

ne = (SINAD + C − 4.77)/6.02. (9)

However, to apply this equation it is first necessary to devise
a measurement method that can, as a minimum, measure with
accuracy the value of the ideal SQNR of an arbitrary wave-
form. This aim has so far proved impossible to achieve (with
well-known test signals) with the same precision as a sine
wave. With a sine wave, the total harmonic power indicates
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the value of PINL and therefore harmonic distortion in the
test signal source limits the threshold of this measurement
and contributes to Pm . Nonlinearity and quantizing error in
the DAC therefore limits Pm for sine-wave testing but can
be determined by spectral analysis. Random or spurious noise
sources will also increase Pm . On the measurement side sine-
wave curve fitting algorithms and DFT power measurement
algorithms are potential sources of Pm .

C. Potential Sources of Measurement Error in Making
ENOB Measurements With an Arbitrary Waveform

Practical implementations of the DCF method are described
in Section III but the potential sources of Pm are as follows.

In the test signal generator they include the following.
1) Noise in the test signal source: this can be minimized

using low noise amplifiers and low jitter clocks.
2) Aliasing of out of band harmonics, intermodulation

products, and quantizing error of the test signal
into the spectral gaps between the teeth of the test
signal.

The analog dual PRBS generation method described in
Section III avoids this problem completely as the harmonic
relationship between 1-bit DAC sampling frequency and PRBS
base frequency ensures that all products of DAC nonlinearity
are aliased back on to the test signal comb of frequencies and
not to values that fall between the teeth of the test signal.
Nonlinearity in circuits that follow the DAC will produce in
band products that are hidden by the test signal and out of
band products that can be removed by low-pass filtering. The
mathematical proof for this is given in Section III. Sensitivity
to amplitude nonlinearity starts only when the two PRBS
waveforms are summed. A dual multibit DAC solution has
the advantage that a digital LPF eases the requirements of
the analog filter design. It may be impractical to operate a
multibit DAC at the PRBS effective sampling rate so subsam-
pling is required to lower the sampling rate of each DAC.
However, unless the clock rate of each DAC is a harmonic
of its associated PRBS base frequency, insufficient stop band
attenuation of the digital filter, and DAC nonlinearity will
cause aliased products of the test signal to appear between
the teeth of the test signal. When the same sampling rate is
used for each DAC it may not be easy to arrange for both
PRBS base frequencies to be subharmonics of the sampling
rate. However, the effect of DAC and amplifier nonlinearity
can be determined by comparing measurements with both test
signals. This will then indicate if it is necessary to hide these
aliased products by using different subsampling frequencies
for each DAC. In some configurations, such as the audio one
described in Section V, it is not possible to clock each DAC at
nonstandard rates so the linearity performance of each DAC
will contribute to Pm and its significance must be determined.
However, if it is less than the noise level it may not be a
significant contribution to a SINAD result. The first step is to
set the PRBS base frequency to a subharmonic of 48 kHz. This
will cause all products of DAC nonlinearity to appear on the
test signal teeth and so be hidden. A comparison of the power
between the teeth of the test signal with the two PRBS base

frequencies will reveal the contribution of DAC nonlinearity,
noise and quantizing error to Pm .

3) Linearity of the network that sums the PRBS signals
is an ultimate limit to the performance. This can be
achieved using a passive network with sufficient isola-
tion between each path to reduce nonlinear cross talk
(caused if the output impedance of an amplifier is
changed when the output is driven from another source)
to an acceptable level. If the ADC under test has a
balanced input then this may be used instead to combine
two unbalanced PRBS test signals.

In the test signal analyzer the main sources of Pm are the
following.

4) The assumption that intermodulation products, quantiz-
ing error, and random noise have equal net power loss
through the measurement filter.

5) Aliasing of error signals above the stop band of the
20 kHz digital LPF.

DCF waveform measurements of power and crest factor
require an accurate baseband waveform. Aliased signals above
the digital filter cutoff frequency can appear in the baseband.
The out of band attenuation of this filter ultimately limits
measurement precision and for 24-bit precision it has been
determined that this should be at least 160 dB: although this
figure may seem high this performance was easily achieved
using a standard digital filter design program. Section III
describes practical implementations of the DCF method. It will
be shown that by careful selection of the base frequencies and
number of PRBS signals it is possible to estimate Pm and
measure (Q + PDNL + Pr ), and Pr with accuracy comparable
with that of a sine wave. The PINL rms value for a sine-wave
PENOB is influenced by highest code density at the end points
of the ADC characteristic. In contrast the PINL rms value of
DCF ENOB is influenced by highest code density at the center
of the ADC characteristic. It is therefore most unlikely that
these PINL rms values will agree and is a fundament reason
why practical measurements of ENOB with the DCF method
may not give the same ENOB as a sine wave.

D. Possible Alternative Arrangements for Arbitrary
Waveform Generation

The investigations described in the following sections of this
paper are restricted to a particular set of PRBS test signals.
However, other choices of base frequency and sequence
lengths may also be considered. PRBS base frequencies must
be chosen to maximize the power recovered by the comb filters
and to minimize the number of spectral lines common to the
set of PRBS test signals. A single and a dual PRBS test signal
has been chosen as this arrangement can be implemented in
a dual DAC system or in a dual channel arbitrary waveform
generator or simply as a shift register arrangement. The PRBS
test signal upper bandwidth is limited mainly by the maximum
clock rate of a shift register so is easily more than 10 GHz
with discrete components and an integrated circuit 80 GHz
PRBS has been reported [25]. Although in principle, more
than two PRBS signals could be used, multichannel DACs
and arbitrary waveform generators are not routinely available.
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Fig. 1. Analog synchronous DCF test signal generator. Notes: block numbers (1) and (2) amplify the analog two-level waveform from each shift register
and sets the peak-to-peak value of each, (3) and (4) are LPFs with bandwidths of approximately 0.1 fcA and 0.1 fcB, and (5) is an LPF with a bandwidth
of half the ADC Nyquist sampling frequency fs .

Increasing the number of PRBS generators may offer advan-
tages such as enabling the frequency of the common clock
to be reduced. Other issues to be investigated in the future
could include modifying the comb response so that it has a
more uniform passband. White noise loss in the measurement
filter is approximately 3 dB for each comb filter so increasing
the number of PRBS signals will increase spectral shaping of
the quantization and nonlinearity error, change the crest factor
of the test signal and perhaps result in a loss of sensitivity to
some type of nonlinearity. The main problem to consider is the
need to minimize the number of harmonics of base frequencies
that coincide as this can create peaks in the spectrum. This
could increase the crest factor to a point where the test signal
duration would have to be increased to maintain a minimum
code density at the peaks.

III. DCF METHOD

The DCF method was devised in 1977 at the Engineering
Research Department of the British Broadcasting Corpora-
tion (BBC) [26]. Its aim was to solve a long standing problem
in broadcasting: how to make a measurement of audio circuit
nonlinearity that could predict with accuracy the audible
impairment of sound program signals. This DCF test system
achieved estimates of audible impairment much superior to
those of sine-wave-based measurements. However, it used dig-
ital circuitry which at the time was much more expensive than
analogue circuitry so was essentially a research tool. It was
also used to measure quantizing distortion and quantizing
error [27] in the evolving BBC digital audio systems. This
application is described in more detail elsewhere [28]. Both
the audio and ADC applications can be now implemented
using just the hardware of a personal computer and application
software. However, this paper is concerned only with the
measurement of ENOB through precision measurement of the
independent error signals that makeup this figure. If an ideal
ADC is considered then the error is referred to as quantizing
noise [23].

There are several design problems to address when
implementing a practical DCF test system. These have been
outlined in Section II and this section will describe two
practical methods for implementing the test and give a set
of parameter values suitable for testing the highest resolution
ADCs available at present, i.e., 24 bits.

A. Practical Implementation of DCF Test System

1) Test Signal Generation: A simplified block diagram for a
digital implementation of the DCF test signal is given in Fig. 1.
In Fig. 1 (and later in Fig. 2), more than one arrangement
is possible for the block generate PRBS clocks synchronous
with ADC fs . The details depend on whether the ADC and
test signal generator are synchronized by means of a common
clock or by phase locking independent clocks. These details
are omitted for clarity. PRBS clock frequencies fcA and fcB
must be synchronous with the ADC sampling frequency fs .

Each PRBS requires a shift register and exclusive-OR gate
to produce a maximum length or m-sequence. The exclusive-
OR gate is connected to specific taps on the linear shift register
and these positions uniquely define the phase, frequency,
and relative amplitude of each spectral line. A generator
polynomial [29] defines the length of the linear shift register
and positions of the exclusive-OR taps required to produce
the sequence. The generator polynomial is sufficient to enable
the PRBS signal to be reproduced in hardware or firmware.
An m-sequence, with an appropriate generator polynomial,
can produce a comb spectrum with harmonics all of equal
amplitude and multiples of a common base frequency [29].
The spacing fm of the comb of frequencies generated by an
m bit shift register with clock frequency fc, is

fm = fc/(2m − 1). (10)

When a PRBS is applied to an LPF with a bandwidth of less
than 0.1 fc it reconstructs a multilevel waveform that is noise-
like and the number of frequency components is set by the
ratio of PRBS clock frequency to LPF bandwidth. The crest
factor of an arbitrary waveform is set by the number of fre-
quency components and relative phase and amplitude of each.
Relative phase and amplitudes of the spectral components of a
PRBS waveform are set by the generator polynomial described
in Section III-A1a. The crest factor of a PRBS waveform is
therefore predictable and repeatable.

For coherent testing, PRBS generators A and B have
a common clock that is an integer multiple of the ADC
sampling rate. To illustrate the practical issues involved an
ADC sampling rate of 48 kHz will be assumed. As the base
frequencies of A and B are each subharmonics of the common
clock any nonlinearity in the amplification of each PRBS will
simply generate new harmonics or intermodulation products
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Fig. 2. Dual DAC-based synchronous DCF generator. Notes: the Nyquist sampling frequency is fs and block numbers are: (1) digital signal processing,
(2) digital-to-analog converter, (3) analog LPF with bandwidth fs /2, and (4) optional antialiasing LPF with bandwidth fs /2.

that fall on the same spectral positions as the PRBS. This
enables a reference amplitude pulse generator (or digital
amplifier or any nonlinear amplifier) shown as (1) and (2)
in Fig. 1 to be employed at that point. Noise in the amplifier
or jitter on the clocks will produce an error that will appear
between the spectral teeth of the test signal so must be mini-
mized. LPFs (3) and (4) can be active if noise is low enough
but passive if the output signal amplitude is sufficient. These
filters convert the two level PRBS waveform into a smooth
analog waveform with harmonics of equal amplitude. Passive
summing ensures that this is not a source of nonlinearity.
Finally, if the ADC under test does not include an antialias-
ing filter, a passive LPF (5) removes harmonics of the test
signal above the ADC half sampling frequency. We will next
consider the design choices to be made with the dual multibit
DAC solution.

Fig. 2 depicts a practical DCF test signal generator using
two DACs that operate at digital audio clock frequencies,
for example 48 kHz. This is typical of DACs intended for
stereo audio reproduction. However, as described in Section II,
superior performance can be obtained if each DAC, (2) can
be operated at sample rates harmonically related to the PRBS
base frequency. Signal processing block (1) starts with a digital
LPF operating at the common clock rate of 11 232 kHz.
The low-pass cutoff frequency of this filter is half the ADC
sampling rate and provides an output word length that must
be truncated to the word length of the DAC. Digital audio
systems employ 24-bit DACs but these do not operate at a
clock rate of 11 232 kHz. It is therefore necessary to complete
block (1) by subsampling the digital filter output to a frequency
suitable for the DAC. Stopband attenuation of this filter is a
critical consideration. When the filter output is down sampled
to 48 kHz any PRBS harmonics in the stopband will be aliased
and appear as unwanted signals between the teeth of the test
signal and limit the measurement precision.

As explained in Section II, in principle, carefully chosen
PRBS lengths that have integer submultiples close to 48
KHz can avoid this aliasing problem but will require each

DAC to operate independently and at nonstandard sampling
rates.

a) Selection of generator polynomials: One of the main
challenges in designing the test signal generator is to select
two PRBS base frequencies that minimize the number of
harmonics that are common to both spectra. As the BBC
work arrived at test signal base frequencies that achieved this
aim, it was decided to choose frequencies close to these and
implement the same PRBS generator polynomials [26], [27].

The m-sequence generator polynomials are G12(X)
and G11(X)

G12(X) = X12 + X11 + X8 + X6 + 1 (11)
G11(X) = X11 + X9 + X8 + X4 + 1. (12)

Referring to Fig. 2, an ADC/DAC sampling rate fs of 48 kHz
was selected with a passband of 20 kHz. Base frequencies
of 152.4 and 109.7 Hz approximately were selected for the
PRBS generators. These figures are close to those used by
the BBC [26] but were chosen so that they were synchronous
with 48 kHz but not exact integer submultiples. This provided
more than 300 spectral lines and ensured that most of the
quantizing error and intermodulation products fell between
the test signal components as harmonics are hidden by the
test signal and have been predicted to be at least two orders
of magnitude less in power [30]. A master clock frequency
of 11 252 kHz was selected (234 times 48 kHz) for both
test signal generator and DCF measurement system. This was
divided by 36 to clock the 11-bit PRBS and divided by 25 to
clock the 12-bit PRBS. If the 12-bit PRBS clock divider ratio
is changed from 25 to 24 this generates a base frequency of
approximately 114 Hz. As 48 kHz is the 420th harmonic of
this base frequency this satisfies the test condition described
in Section II and causes all nonlinearity products to be hidden
by the test signal.

Simulations revealed that the minimum stopband attenuation
of each LPF should be at least 160 dB. This ensured that PRBS
aliased harmonics are at least 20 dB below the expected level
of 24-bit quantizing error.
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b) Selection of PRBS base frequencies and multibit DAC
sampling frequencies to hide nonlinearity products: The aim
is to select PRBS base frequencies and DAC sampling fre-
quencies that cause all aliased products of nonlinearity to
appear on harmonics of the PRBS base frequency. As has been
mentioned in Section II, a Fourier series can generate a digital
version of a multifrequency waveform where all components
are harmonics of a common base frequency. We will refer
to this as a comb spectrum with a sampling frequency fdac.
If the DAC sampling is fdac and comb base frequency fcomb
are harmonically related then nonlinearity products are aliased
to the same frequencies as the test signal so are hidden. The
following defines this condition in more detail.

The harmonic relationship required is

fdac = 2 · N · fcomb (13)

where N is the number of spectral lines up to and
including fdac/2.

Consider the i th spectral line within the baseband frequency
range up to fdac/2, its frequency fi is i · fcomb where
N ≤ i > 0.

Next consider the r th harmonic product rh of this i th
spectral line

rh = r · i · fcomb (14)

if r · i > N then rh becomes aliased to fdac − rh .
Substituting (13) and (14), we have the aliased values of rh

= 2 · N · fcomb − r · i · fcomb = (2N − r · i) fcomb (15)

as N , r , and i are all integer the result is an integer so aliased
rh falls on the in-band spectral lines of the test signal.

Next consider the general case where there is a frequency
difference � f between the N th spectral line and half sampling
frequency

0.5 fdac = � f + N · fcomb (16)

the first harmonic rh� to occur above half sampling frequency
is therefore rh� = fcomb + N · fcomb and this becomes aliased
to

fdac − rh� = 2 · (� f + N · fcomb) − ( fcomb + N · fcomb)

= 2 · � f + (N − 1) · fcomb. (17)

In order for this result to be integer, � f must be 0 or a
multiple of 0.5 fcomb otherwise the aliased harmonics will
fall back into positions between the teeth of the comb.

We have therefore identified three conditions which result
in the comb spectrum hiding aliased nonlinearity products

fdac = 2 · N · fcomb; fdac = (N − 1) fcomb

fdac = N · fcomb. (18)

Although a comb spectrum can be generated with a Fourier
series in an arbitrary waveform generator it is easier to
generate it using an m stage linear shift register with feedback.
This produces a PRBS. With a shift register clock frequency
of fdac a comb spectrum is generate with the following
relationship:

fdac = fcomb(2m − 1). (19)

As (19) meets the conditions in (18) it follows that harmonic
and intermodulation products are aliased back on to the comb
spectrum so are hidden.

If this waveform is sub-sampled to a new frequency fs then
comb frequencies that occur above fs /2 will be aliased. If there
are M spectral lines below fs /2 and the Mth is � f below
fs /2 then the first spectral line above fs /2 will be aliased to
2 · � f + (M − 1) · fcomb. Hence, for these products to be
hidden, � f must be 0 or a multiple of 0.5 fcomb.

If � f = 0 then fs/2 = (M − 1) · fcomb and as
fcomb = fdac/(2m − 1)

fs = fdac2 · (M − 1)/(2m − 1) or fdac2 · M/(2m − 1). (20)

For simplicity, fs should be generated by dividing fdac by
an integer value. This restricts division ratios to those where
M and (2m − 1) have common factors. However, other design
options that give more flexibility in choosing fs are available
and are presented in the following design example. The details
in Fig. 2 are the basis for the following example.

c) Optimum choice of PRBS base frequencies: It is
required to generate a PRBS waveform with a frequency
spacing that can be reproduced in a comb filter. It is therefore
necessary to have the clock rate of the comb filter synchronous
with the PRBS base frequency. As the ADC sampling rate
is 48 kHz, it follows that the comb filter clock rate must be a
multiple of this. In this example, we choose this multiple to
be 234. From (20), it follows that the PRBS clock rate must
be an integer submultiple of 234 × 48 kHz. We have selected
a clock rate of (234 × 48)/25 kHz for the 12-bit PRBS and
(234 × 48)/36 kHz for the 11-bit PRBS. The comb spacings
are therefore

Comb1 = ((234 × 48)/25)/(212 − 1) (21)

Comb2 = ((234 × 48)/36)/(211 − 1). (22)

To hide all nonlinearity products, we need a DAC clock
frequency that is close to 48 kHz but is also a harmonic of the
comb frequency. We therefore need to find the nearest integer
to N where N ·Comb1 ≈ 48 kHz, so rearranging (21) we have
48 ≈ N · ((234 × 48)/25)/(212 − 1) or N ≈ (4095 · 25)/
234 = 437.5 so N = 437 or N = 438 are solutions.

Taking N = 438, the DAC clock frequency required for
Comb1is 438((234 × 48)/25)/(4095) ≈ 48.054 kHz.

For Comb2, 48 ≈ N · ((234 × 48)/36)/(211 − 1) or N ≈
(2047 · 36)/234 = 314.92 so N = 315 is a solution.

Taking N = 315, the DAC clock frequency required for
Comb2 is 315((234 × 48)/36)/(2047) ≈ 48.011 kHz.

As the comb spectrum generated by each PRBS includes
a component at the required DAC clock frequency all that is
required is a digital phase-locked loop to select this frequency.
As an alternative, if the PRBS length can be factorized into
prime numbers a higher DAC clock frequency will avoid the
need for a phase-locked loop.

For example, 4095 = 32 · 5 · 7 · 13 and the nearest
number greater than 438 that uses a selection of these factors
is 455 = 5·7·13, and hence, the DAC clock frequency required
is ((48 × 234)/25))/9 = 49.92 kHz

This option is not available for comb2 as 2047 is
prime so we must instead use a DAC clock frequency of
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Fig. 3. DCF signal processing required to measure ENOB including specifications for each element of the measurement filter. Notes: block diagram
numbers (1)–(4) comprise the signal processing elements of the measurement filter required to produce the nonlinearity error waveform and include the
calculated white noise loss of each element on its own. (5) Value for white noise correction factor W was estimated to be 0.3 dB (see WM in Fig. 5). W is
required to compensate for the fact that elements (3) and (4) do not have a white noise input.

(48 × 234/36) = 312 kHz or select a different shift register
clock frequency and sequence length for comb2 that results
in a lower DAC sampling frequency. We next consider the
problem of generating a comb spectrum that is harmonically
related to 48 kHz. This can be achieved simply by changing
the division ration for Comb1 from 25 to 24. We then have

Comb3 = ((234 × 48)/24)/(212 − 1) = 48/420 ≈ 114 Hz.

(23)

As 420 · Comb3 = 48 kHz, we have satisfied the require-
ments of (20) so all nonlinearity products of both DAC,
amplifiers and ADC will be hidden by the test signal. This is a
very powerful test as it provides a measure of interference and
noise only. It will indicate if the system ENOB is dominated
by noise and interference or nonlinearity.

2) Signal Processing and Measurement Filter Specifications
for DCF Measurements: Fig. 3 depicts the individual
filters and signal processing elements that comprise the
measurement filter and also the measurement parameters
required to calculate SINAD, SNR, and ENOB. The spectrum
of each PRBS signal is removed by filtering with a comb
filter rather than with complex high-order notch filters. This
comb filter requires only a delay and subtractor so is easy
to implement. However, comb filters do not have a uniform
passband response so some quantizing error power is lost.
An estimate of this white noise loss can be made by assuming
that the comb filters have white noise as their input signal.
White noise loss (W) for a digital filter with a maximum
passband gain of unity is defined as follows.

1) Pi is the mean squared amplitude of an input white noise
signal of Nyquist bandwidth Bi .

2) Po is the mean squared amplitude of the output signal
in a filter of Nyquist bandwidth Bo.

The white noise loss of this filter is defined only when
Bo = Bi to be

W = Po/Pi .

W is determined by generating a white noise waveform of
bandwidth B and applying it to a digital filter of bandwidth B .
White noise loss is the mean-squared amplitude of output-
filtered noise divided by the mean-squared amplitude of input
white noise. In the particular case of a comb filter the white
noise loss can be calculated as follows. Each comb filter has
a transfer function of 1− z−m where z−1 is one sample period
delay T of fdac i.e., T = 1/ fdac and m is the length of its
complimentary PRBS. The maximum gain of each comb filter
must be 0 dB so the actual transfer function of the comb filter
is 0.5(1 − z−m).

The magnitude-frequency response of a comb filter can be
found by substituting z = e jω.

This gives the result H (e jω) = 1 − e− j (ωmT) and using
Eulers formula, we find that the frequency response is
H (e jω) = [1 − cos(ωmT)]+ j sin(ωmT), and hence the mag-
nitude response is |H (ω)| = √

(2 + 2 cos(ωmT)) substituting
ω = 2π f |H ( f )| = 2| cos(πfmT)| and when adjusted to a
maximum gain of 1 or 0 dB this becomes | cos(πfmT|.

To find the power loss/gain, we find its mean square value
from the mean value theorem

|H ( f )|2 = 1

2π/mT

∫ π/mT

−π/mT
(|cos(πfmT)|)2d f (24)

= mT

2π

∫ π/mT

−π/mT
|cos(πfmT)|2d f = mT

2π
· π

mT
= 0.5.

(25)

As W = 0.5, in decibels this is 10 log10(0.5) = −3.01 dB.
Clearly, filter stopband attenuation is an important limitation

to DCF maximum precision but in practice this difficulty can
be overcome by offline filtering and storage. The generated
waveform file can be replayed and then captured for off line
processing. Conventional finite-impulse response (FIR) filter
design software provided 160-dB stopband attenuation with
an FIR of order 13 352. Comb filters in Fig. 3 had delays
of 102 375 and 73 692 samples at 11 232 kHz. This ensured
that they were perfectly aligned with the test signal spectrum.
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The generator and measurement system clocks must be locked
to each other or a common reference. The measurement
filter is actually a chain of filters: an up–down sampling rate
converter and two comb filters. The sampling rate converter
increases the sampling frequency from the ADC rate of fs

to the signal generator DAC rate of fdac. Sampling rate
up-conversion is achieved by inserting ( fdac/ fs)−1 zero values
after each sample at fs . This results in the total baseband
signal power reducing by 1/R, where R is oversampling
ratio fdac/ fs . To change the sampling frequency from fdac
to fs it is necessary to LPF the ADC data at fdac and select
only one sample every ( fdac/ fs) − 1 samples. This LPF is
defined by its transfer function H (z). It has a unity gain
passband and 160-dB stopband attenuation to prevent aliased
energy above fs /2 from adding too much to the original
ADC signal. Sampling rate conversion is a well-known DSP
problem. Practical sampling rate converters often use multirate
filtering achieve the sampling rate reduction in several stages.
This results in each filter having less demanding stopband
attenuation requirements than one filter alone.

If the length of each sequence is p and r samples then the
transfer function of the comb filters is (1− z−p)(1− z−r ) then
the total transfer function Y (z) of the measurement filter
(for white noise) is

Y (z) = (1 − z−p)(1 − z−r )H (z)K ,

where
K white noise loss correction factor K = k · R/

(kp · kr · kH )
k p white noise loss of the first comb filter;
kr white noise loss the second comb filter;
kH white noise loss the LPF;
k correction factor required to produce a unity

white noise loss for Y (z).

ADC quantizing noise has an aliased white spectrum.
To measure its correct mean-squared value the measurement
filter chain must have 0-dB white noise loss. The white noise
loss of each individual filter can be calculated and a first
estimate of the total white noise loss can be obtained from
the product of these. Clearly, this is not an accurate estimate
as only the first filter in the chain has a white noise input.
Unity white noise loss for the complete measurement filter
is obtained by including the correction factor k. This must
be determined experimentally as kH will vary with the choice
of H (z). Fig. 3 signal processing blocks give the initial values
of gain and loss as presented next.

The overall gain G required to achieve 0-dB white noise
loss through the measurement filter is calculated as follows:

1) each comb filter loss is 20 log10(1/k p) = 3.01 dB;
2) power loss due to sampling rate conversion is

20 log10 234 = 47.38 dB;
3) LPF white noise loss is 20 log10(1/kh) and was mea-

sured to be 0.97 dB but note that this figure will vary
with the actual LPF design.

The assumption that the overall white noise loss is the sum of
each individual filters loss is an approximation that we account
for with a correction factor WM . Hence, the required gain

correction factor G in decibels is

G = 20 log10(1/k) + 3.01 + 3.01 + 47.38 + 0.97
= 20 log10(1/k) + 54.37 = WM + 54.37.

The correct value for G is dependent on both the LPF kh

and on WM . WM can be found by applying true quantizing
noise of known mean-squared amplitude to the measurement
filter input and finding the value of WM that gives the correct
value of quantizing noise at the output. As simulations include
a fixed number of DAC generator bits and a fixed number
of samples, the correct value for WM was determined by a
simulation running over a range of ADC bits sufficient to so
see the effect of these on WM and this paper is reported next.

B. Simulations to Determine Correct Measurement
Filter Gain Factor G

The DCF test signal was applied to a noise free linear
quantizer and with this input, the waveform at the output of
the measurement filter had a crest factor of 11.5 dB. The
crest factor of a waveform can be altered by changing the
phase relationship of each spectral component in a nonlinear
fashion and/or by adding or subtracting other waveforms with
the same spectral content. As the measurement filter has a
nonlinear phase characteristic it is expected to change the crest
factor of any waveform that passes through it. If, for some
unexpected reason, the measurement filter did not remove all
the components of the original test signal this could also
change the crest factor. This possibility was checked in the
simulation by by-passing the measurement filter and instead
subtracting an ideal DCF test signal from its quantized version.
Theory predicts the following:

1) ideal quantizing noise waveform should have a crest
factor of 4.77 dB before sampling;

2) aliasing will produce a white spectrum after sampling
but with an unknown crest factor.

The simulated ideal quantizing noise waveform after sam-
pling had a white spectrum and the unknown crest factor
was actually 4.77 dB. As aliasing had not changed the crest
factor of the quantizing noise it was then likely that the
measurement filter alone was the cause of the increase in
crest factor. The quantizing noise waveform was applied to the
measurement filter as this would then show the filter’s effect
on its crest factor. This test confirmed that the measurement
filter changed the crest factor of the error waveform from
4.77 to 11.5 dB which is equal to the value obtained with
the DCF measurement. The increase in crest factor of the
quantizing noise was therefore due solely to the action of the
measurement filter. As the rms value of quantizing error can be
predicted from theory, the gain of the measurement filter could
be corrected to give the correct rms quantizing noise value.

Simulated ideal DACs and ideal ADCs might be expected
to give an SQNR equal to that predicted by theory. However,
the following sources of measurement error Pm prevent this
being achieved:

1) quantizing noise Q24 of an ideal 24-bit DAC is added
to the ideal ADC quantizing error;

2) -A dB full scale (FS) error in setting the test signal
amplitude to full scale produces an error in SQNR;
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Fig. 4. Sine-wave SINAD measured with ideal ADC compared with theory
based value for SINAD.

3) the limited number of samples in the test signal can
result in missing codes and a measurement error Pn ;

4) the value for WM may not be accurate.

Error sources (a)–(c) affect the measured value of SQNR
for both DCF and sine-wave test methods. Q24 adds to the
ADC quantizing noise increasing the total by 3 dB. This limits
the 24-bit ADC measurement threshold for a sine wave
to 23.5 bits. In contrast, as the DCF method requires summing
two 24-bit DACs, this contributes 3 dB less quantizing noise,
i.e., Q24.5. This will increase the expected value for ideal
24-bit ADC quantizing noise by 1.7 dB, limiting the
measurement threshold to 23.7 bits.

Error (b) in setting the test signal amplitude will affect both
methods equally so must be measured and results adjusted
to give a full-scale range SQNR. This is achieved simply by
increasing the SINAD by this decibel error value. As error
source (c) is dependent on the number of samples for both
methods, a number of samples close to 2 s at 48 kHz was
chosen for both methods. This was to facilitate a comparison
of the accuracy of both methods in a routine test application.
The number of samples for the DCF method was 95 000
but to avoid DFT leakage a whole number of cycles of
(approximately) 997-Hz sine wave was generated with
65 536 samples.

In the comparison, an ideal ADC was simulated from
8 to 24 bits.

Using the definition of ENOB presented in Section II,
(1) and (2), all sources of error should be included when
calculating ENOB but as WM was unknown, the value of G
used for the simulations had this value set to zero. Fig. 4
presents the result for (9) and Fig. 5 the results for (8) and (9).
The decibel SINAD error in Figs. 4 and 5 refers to the
difference between measured and expected results based on (7)
when SQNR is replaced by SINAD. Even though an ideal
ADC is simulated, the result is a SINAD rather than SQNR
as it includes possible measurement error or uncertainty Pm .
Fig. 4 indicates that the test parameter values selected gave
an error of less than ±0.1 dB at 20 bits and below. Above
this the results are believed to be in error partly because
there were insufficient samples in the test waveforms but also

Fig. 5. DCF SINAD measured with ideal ADC compared with two theory
based values for SINAD. Note: W is the value of white noise loss correction
factor. The dashed line applies to W = 0 and the solid line applies to
W = WM = 0.3, where WM is the value estimated to minimize the decibel
SINAD error.

because 24-bit DAC quantizing noise adds measurement error.
Let Qn represent the ideal n-bit quantizing noise mean squared
amplitude and Qt the test signal source quantizing noise mean
squared amplitude. MQ , the measured quantizing noise mean-
squared amplitude is given by

MQ = Qn + Qt .

If MT is the measured test signal mean squared amplitude then
the measured n-bit SINAD Sn is

Sn = MT /MQ

and if SndB is the SINAD in decibel then SFSRndB the SINAD
corrected to full scale range (FSR) is

SFSRndB = SndB + AdB.

The dashed line in Fig. 5 shows that the estimated white
noise correction of G = 54.37 dB for the DCF measurement
filter results in a SINAD error of −0.3 dB ± 0.2 dB. This
potential error (WM ) in the estimate G was highlighted previ-
ously as it takes into account the fact that the white noise loss
approximation over estimates the loss in the complete filter
chain. As the white noise loss of the LPF is design specific
the value for G will change and WM might also change with
other LPF designs. Any new configuration of measurement
filter must go through this simulated gain calibration procedure
to determine the correct value of G. The reduction in SINAD
error by including this systematic error (WM ) as −0.3 dB in
all results is shown by the solid line in Fig. 5. This indicates
the SINAD error for an ideal ADC is within ±0.1 dB of the
predicted value n over the range 8–20 bits

n bit SINAD(DCF) error = [SndB(DCF) + A(DCF) − WM ]
− [6.02n + 4.77 − C] (26)

n bit SINAD(Sine) error = [SndB(Sine) + A(Sine)]
− [6.02n + 1.76]. (27)
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A 0.3-dB attenuation compensates for WM in the final
block diagram of the DCF test system shown in Fig. 3. It is
included in simulations and measurements presented in the
following sections. In the following investigations using this
measurement system, the total white noise correction gain G
is set to 54.07 dB instead of the estimated 54.37 dB.

In the case of an ideal ADC, (9) should give an SQNR equal
to that of a perfect ADC. This enables the precision of
sine-wave- and DCF-based measurements to be compared
directly. As C , the crest factor in dB, is approximately 12 dB
in the DCF test configuration described

ENOB = (SINAD + 7.23)/6.02 bits. (28)

As the DCF SINAD is within ±0.1 dB of the true value,
from (28) this is an ENOB uncertainty of ±0.02 effective
bits over the range 8–20 bits. This is also within the range
measured with a sine wave.

At the start of this section the option of using a single PRBS
harmonically related to the ADC sampling frequency was
discussed. If this configuration is used then all the quantizing
error will appear on the PRBS spectral lines and be hidden.
In that situation clearly (28) will not measure quantizing
error. However, if noise is added to the ideal ADC then as
random noise is not correlated with the test signal it is not
hidden so (28) will give a noise-based ENOB. It will be
demonstrated later that this feature can be used to determine
the DCF SINAD and therefore ENOB when noise exceeds
quantizing error. The practical details for this DCF test system
were determined in the first part of EPSRC funded research
project EP//D04264X/1. The next section presents simulations
to evaluate the effect of added noise and nonlinearity on the
comparative measurements of ENOB with sine and DCF
methods. This is followed with results of measuring a
professional quality audio 24-bit DAC–ADC unit.

IV. SIMULATIONS INCLUDING NOISE AND NONLINEARITY

Section III has established an appropriate gain for the comb-
filter measurement system that provides the same value of Q
as a sine wave. The next stage in this paper is to determine
the degree of agreement between sine and DCF measurements
when Gaussian white noise is added to each test signal before
it is quantized. The first simulation considers an ideal 24-bit
ADC with white noise added at the same rms level as the ideal
quantizing value Q.

A. Ideal ADC

Fig. 6 depicts the configuration used to evaluate the influ-
ence of additive white noise on the ENOB of three quantizers:
an ideal 24 bit, practical 10 bit with a dominant low-order
nonlinearity shown by the integral non linearity (INL) plot
in Fig. 7 and a practical 8 bits with dominant segment
boundary transition errors shown by the INL plot in Fig. 8.
For the practical 8- and 10-bit INL a white noise quantizing
error was added at the Q level of an ideal 8- and 10-bit ADC.
The INL plots were measured using a servo loop method so
the INL threshold values results are noise free. Adding noise
makes the simulated ADC characteristic more realistic.

Fig. 6. Simulation block diagram for additive white noise for ideal
24-bit ADC.

Fig. 7. 10-bit ADC INL.

Fig. 8. 8-bit ADC INL.

Noise is added at an rms level equal to the rms quantizing
error of an ideal ADC with the resolution under test and then
in equal increments above this. Fig. 9 shows the simulated
result of making these measurements with both a 997 Hz
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Fig. 9. Variation of sine and DCF ENOB with ideal ADC and added noise.
Note: ENOB on the left axis applies only to the two plots with the square
and triangle markers and is calculated from SINAD adjusted to full scale
range. The decibel difference between SINAD measured with sine and SINAD
measured with DCF applies only to the plot that has star markers.

sine synchronized to 48 kHz and a DCF test signal with
white noise added. The amplitude of this noise level is then
increased in 6.02 dB increments until the total added Gaussian
noise is 24.08 dB above the value of Q. This aspect of
the simulation is intended to represent Pr to find its the
measurement uncertainty in Pm (2).

At an added noise level of Q(−146.26 dB FS) the DCF
method gives an ENOB close to the predicted value of
23.7 ENOB and then follows an almost linear progression in
ENOB decrease with increasing added noise. Adding 4.5 bits
of white noise to the ideal 24-bit ADC should reduces its
ENOB from 24 to less than 20 bits. Each increment of 6.02 dB
results in an increment in the ENOB closer to 1 bit and after
3.5 added bits both sine and DCF figures increase by the
same amount but with an absolute difference of 1.3 dB or
approximately 0.2 bits. In comparison the sine-wave ENOB
has been reduced to 20 bits. One observation from the dashed
plot with star markers is that the difference between sine and
DCF ENOB measurements is greatest with an rms added noise
value of Q i.e., −146.26 dB FS and the DCF method is better
able to measure this. Increasing this by 6.02 dB is sufficient to
make the two results follow a similar trend but 0.2 bits apart.
A 64-k FFT was undertaken of the sine and PRBS test signal
with 24-dB added noise. The PRBS test signal result is shown
in Fig. 10 and the sine result in Fig. 11.

The net result is that the DCF method overvalues added
band limited Gaussian white noise by about 0.2 bits when
compared with a sine-wave measurement. A comparison of
Figs. 10 and 11 noise floors shows that the spectral distribu-
tions are similar. Passband ripple in the DCF LPF is evident
as is the fact that the Gaussian white noise is band limited
to 20 kHz. If it can be first determined that the dominant source
of error is band limited white noise then the DCF measurement
filter gain can be increased to take this into account. The
correction factor will depend on the bandwidth of the white
noise but for the simulations presented here a value of
1.3 dB is estimated

Pr (sine) = Pr (DCF) − 1.3 dB. (29)

Fig. 10. Dual PRBS ideal 24-bit ADC with Q + 24 dB added noise.

Fig. 11. 24-bit ideal ADC with Q + 24 dB added noise.

As Fig. 9 indicates that Pm is a constant offset error
when measuring Pr . This indicates that the measurement filter
gain for random noise may be different to its gain for ideal
quantizing error. This conclusion supports the simulation in
Section III where a reduction in comb-filter gain (0.3 dB after
the LPF) was required to provide a more accurate estimate of
ideal quantizing noise. Now the comb-filter gain needs to be
increased by 1.3 dB when the sum of quantizing and added
white noise results in white Gaussian white noise dominating
the result. At this point it is important to remember that
the present simulation uses band limited white noise but the
Section III simulation used aliased quantizing noise. This
could account for some of this 1.3 dB difference between
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Fig. 12. 10-bit INL and one Q noise DCF.

Fig. 13. 8-bit INL and one Q noise.

the two simulations. In measurements of a practical ADC it
will always be the case that sources of noise will be closer
to Gaussian than uniform. Fortunately, using a single 114-Hz
PRBS will produce a result only if added random noise is
present. The 1.3-dB correction factor to the DCF measure-
ment filter could be applied if a 114-Hz PRBS measurement
indicates that the ENOB is noise dominated.

B. Simulation of Practical ADCs

Fig. 12 shows the error spectrum between the teeth of the
PRBS signal with the simulated 10-bit INL ADC and Fig. 13
gives the result for the 8-bit ADC. It is interesting to note that
in each case the error has a line spectrum. The peaks in the
error spectrum for the 8-bit INL are more noticeable.

The sine-wave FFT for the 10-bit ADC shown in Fig. 14
indicates that low-order nonlinearity is dominant. Fig. 15
shows that the segment transition errors in the 8-bit ADC
generate high-order harmonics. In most applications of ADCs
the spectrum in Fig. 14 is more likely to give acceptable
wideband results than the spectrum in Fig. 15.

The results for the 8- and 10-bit ADCs with INL error and
added noise of one Q are presented in Table I and apply with

Fig. 14. 10-bit INL and one Q noise.

Fig. 15. 10-bit INL and one Q white noise, full spectrum.

a sine-wave amplitude of −1-dB FS and DCF peak amplitude
of −1-dB FS.

With the 8-bit ADC, the DCF method, the results in Table I
show that it provides an ENOB of 0.47 bits less than a sine.
SINAD measurements with the 114-Hz PRBS indicated that
the SINAD result was not noise dominated so the 1.3-dB
correction factor was not required for 8- or 10-bit ADCs. The
DCF 10-bit result is 0.42 ENOB better than for a sine wave.
It is concluded that the DCF ENOB figure gives a result that
may be more useful for wideband applications as it enables
high-order nonlinearity to be highlighted. Returning to the
error model for ENOB, it has now been demonstrated that the
DCF method provides a fundamentally different rms value
for PINL than a sine wave so there should be no expectation
that this aspect of ENOB should agree in both methods. With
regard to PDNL, it is possible that with the dual PRBS this
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TABLE I

SINE AND DCF RESULTS FOR SIMULATED 8 AND 10-BIT ADCs WITH NOISE

Fig. 16. 24-bit ADC DCF test block diagram.

adds to the total random error so the dual PRBS might provide
(PDNL+ Pr ) similar to a sine wave. If this sum generates noise
then it can be measured using the 114-Hz PRBS.

As measurement filter correction gains have been deter-
mined for Q and (PDNL + Pr ), only PINL prevents ENOB for
sine and DCF measurement methods agreeing. It is therefore
proposed that the DCF method is able to make an accurate
measurement of ENOB but should be used as a wideband
ENOB. This ENOB figure is unlikely to agree with sine-wave
ENOB unless the ADC ENOB figure is noise dominated.

The next section describes results obtained when these three
measurements (sine, dual PRBS, and single PRBS) are applied
to testing a real 24-bit audio ADC.

V. MEASUREMENTS WITH A REAL 24-BIT ADC–DAC

The practical test results reported in this section were
undertaken using part of an experimental setup for measuring
microphone nonlinearity. Fig. 16 shows the main aspect of the
sine and DCF measurements. PC-based software generated 24-
bit 48-kHz .wav files for the 997-Hz sine wave and the single
and dual PRBS test signals. As two of the DACs were required
to generate the DCF test signal the .wav file was set to stereo
format. The E-MU Systems Inc (EMU) 1616 M unit has a
digital signal processor that enables .wav files to be replayed to
generate the test signals and simultaneously captures .wav files
from the ADC. ENOB was calculated by importing the
.wav files into analysis software. Balanced outputs and inputs
were employed to minimize the pick-up of power line inter-
ference. The two PRBS signals were summed in a balanced
resistive network. The 30-dB attenuators provided isolation
between each DAC and this minimized the possibility of

nonlinear crosstalk degrading the results. Fortunately, the
difference in amplitude between the line level outputs and
the microphone input allowed this 30-dB attenuation without
degrading signal-to-noise ratio.

The results for the Creative Labs Professional Audio 24-bit
audio ADC and DAC unit model EMU 1616 M are presented
next. Sine-wave measurements were made at 997 Hz with
an FFT using 64-k samples and DCF measurements used
95 000 samples. The DCF measurement results for the special
case of one 114-Hz PRBS, where the result automatically
excludes amplitude nonlinearity, are shown in bold in Table II.
They indicate that the DCF power is not dominated by
nonlinearity. This can be concluded as the single PRBS DCF
power is close to the power of the dual PRBS and also close
to the SNR and idle noise in the sine-wave measurements.
This situation where all three measurements have a similar
noise figure highlights a further practical issue. Noise may be
a spurious periodic signal that falls in the passband of the
comb filters. The difference between DCF and sine ENOB is
0.83 ENOB and reflects simulation results where low-order
nonlinearity generates a smaller rms error in the DCF result.
As this is a practical test it reveals a further limitation of both
sine and DCF measurements. Power line interference at 50 Hz
and its harmonics appear and increase the noise floor below
2 kHz. A 70-Hz high-pass digital filter was therefore applied
in the sine-wave and DCF measurements. Fig. 17 (right) shows
that the 50-Hz power line interference was at −100-dB FS as
was the third harmonic of 997 Hz. Fig. 17 (left) shows that a
70-Hz high-pass filter (HPF) reduces the power line harmonics
to below 110-dB FS so they no longer dominate the SINAD
figure. However, the power line harmonics are still more than
20 dB above the wideband noise level and degrade the SNR
result. The SNR in the range 12–24 kHz was calculated as this
figure excluded harmonics and the power line interference.
When corrected to full bandwidth and full-scale range the
calculated SNR was 107.3 dB. Table II shows that the SNR
including residual power line harmonics was 103.35 dB, and
therefore, the power line harmonics have degraded the SNR
by 4 dB. Comparing Fig. 17 with Fig. 18, it is clear that both
test methods have measured noise levels that are likely to be
in error as they include power line harmonics.

Hence, noise dominates ENOB for the PRBS test and
harmonic distortion dominates ENOB for the sine test.
The ENOB at FSR was estimated assuming that noise dom-
inated the result so a simple gain correction was included.
However, this would undervalue the rms error that could be
caused by nonlinearity and as the dual PRBS test signal peak
is 1.4 dB less than the sine wave the ENOB may be too high.
This highlights a further experimental issue in comparing sine
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TABLE II

ENOB MEASUREMENTS FOR 24-BIT AUDIO ADC

Fig. 17. EMU FFT (left) 50 Hz removed by HPF and (right) 50 Hz
at −100 dB FS without HPF.

Fig. 18. DCF FFT no HPF.

and DCF ENOB. Ideally, the comparison should be made as
in the simulations, with sine and PRBS at the same peak.
The .wav files had been generated with PRBS and sine signals
but the EMU requires separate gain adjustments to set signal
amplitudes just below overload.

Fig. 19 shows the test setup in operation with the main com-
ponents and interconnections. Ground connections between
the PC and the audio unit were isolated by the digital RJ45
link between the PC interface card and the EMU unit.
In conclusion, the practical results have revealed two aspects
not included in the simulations: periodic interference and

Fig. 19. DCF test setup practical 24-bit ADC testing.

the difficulty in setting peak amplitudes to be equal. The
main difficulty in adjusting the signal levels to be close to
each other was that the level meter in the EMU software
responded correctly to a sine wave but under-valued the
PRBS signal peaks. Wideband ENOB of a practical 24-bit
ADC can therefore be measured using the PRBS test signals
and results support those of simulations but include practical
imperfections of a 24-bit DAC. The rms value of amplitude
nonlinearity is weighted differently by each test signal and the
results have demonstrated that this factor, rather than lack of
precision in the DCF method, is the main reason why sine and
DCF-based ENOB do not give the same figures. It is likely
that, particularly for audio, RF, and microwave communication
systems, the DCF-based ENOB is a better representation of
system performance than a sine-wave ENOB.

VI. CONCLUSION

This paper has shown that the DCF wideband multitone
method specified in IEC standard 60748-4-3 can be better
defined so that appropriate choices of test signal frequencies
and measurement filter can be made. The SINAD or SQNR
of an ideal ADC can be now measured with the DCF system
within 0.1 dB of the SINAD or SQNR of an ideal sine wave.
The IEC standard specifies the use of both a single PRBS and
dual PRBS test signal. A particular form of single PRBS test
signal is able to facilitate a measurement of SNR by excluding
amplitude nonlinearity. The results in this paper have shown
that this separate measurement enables the white noise gain
of the DCF measurement filter to be adjusted to correct the
ENOB figure for ADCs where the ENOB is dominated by
white noise. It does not suffer from the curve-fitting problems
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associated with sine-wave measurements of ENOB. This is
a potentially low-power method suitable for built in test or
for self-test of programmable system on chip devices and
ASICs that have ADCs and DACs available as IP blocks. The
test will use less of the field-programmable gate array real
estate than conventional methods such as FFT, curve-fitting,
or histogram analysis. The results of simulations and practical
measurements have shown that close agreement with the sine-
wave ENOB does not hold when amplitude nonlinearity is
present.

A sine wave will be more sensitive to nonlinearity at
the peaks so when this is dominant it may give a lower
ENOB than the DCF method. Nonlinearity near the center of
the transfer characteristic or where segment matching errors
provide transitions or high-order nonlinearity is likely to give
a lower ENOB with the DCF method than with a sine wave.
In modern communication systems, an ENOB with this feature
is likely to be more useful in indicating the suitability of
the ADC as high-order harmonics generate a wide distortion
spectrum and are more audible in the audio application than
low-order harmonics. An ENOB based on the DCF test may
therefore prove to be of more practical use as it is likely to
be more representative of real world signals. This could avoid
the potential problem of an ADC passing a sine-wave ENOB
specification but failing to meet overall system requirements.
It is recommended that wideband ENOB, based on the results
presented here, should be included as an additional measure-
ment parameter in any future revision of the IEC standard
IEC 60748-4-3.
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