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Abstract—Surface defect detection is one of the most impor-
tant vision-based measurements for intelligent manufacturing.
Existing detection methods mainly require massive numbers of
defect samples to train the model to detect the defects. Nowadays,
inadequate defect samples and labels are inevitably encountered
in industrial data environments due to the highly automated and
stable production lines escalatingly deployed, causing fewer and
fewer defective products to be produced. Consequently, manual
interventions are deeply required to analyze the abnormal sample
once an unseen defect accidentally emerges that significantly
decreases productivity. To this end, this paper proposes a novel
few/zero-shot compatible surface defect detection method without
requiring massive or even any defect samples to detect surface
defects. First, a novel contrastive generator is proposed to use
defects’ text descriptions to synthesize “fake” visual features
for those rare defects. Then, the synthesized visual features
(for support samples) are fused with “real” visual features (for
query samples) into a similarity graph to align the relationships
between support samples and query samples. After, a class
center optimization method is proposed to iteratively update
the similarity matrix of the graph to obtain the classification
probabilities for the query samples. Eventually, the proposed
method solves the problem of the lack of defect samples and the
inability of few-shot learning-based methods to recognize unseen
classes. Massive experiments on eight fine-grained datasets show
that our method gains an average of +8.29% improvements on
few-shot recognition tasks and achieves an average of +8.23%
improvements on zero-shot recognition tasks compared with
the state-of-the-art method. Moreover, the proposed method is
deployed in a real-world prototype system, and the method’s
feasibility is finally demonstrated. The core code of the proposed
method is available at: https://github.com/NDYBSNDY/AsC

Index Terms—Vision-Based Measurement, Surface Recogni-
tion, Few-shot Learning, Zero-shot Learning, Generative learn-
ing, Contrastive Learning, Graph Embedding

I. INTRODUCTION

Automated industrial production can reduce labor costs and
increase productivity. Recent research has used Bayesian tech-
niques for manufacturing methods [1] to significantly reduce
the production process cost by producing input parameters
for the desired outcome. Similarly, collective robotic systems
for constructing multi-story buildings [2] reach state-of-the-
art construction speeds. With the rapid development of vision
computing in recent years, Vision-Based Measurement (VBM)
has become one of the most critical and influential methods for
automated industrial production [3], [4]. Surface defect recog-
nition, as an essential part of automated industrial production,
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has the critical role of improving production efficiency and re-
ducing labor costs. Compared with manual defect recognition,
VBM-based machine inspection methods are more objective
and efficient. However, due to the environmental constraints
on defect sample collection, the types of defects occurring in
the production process are uncertain and random. This requires
VBM-based defect recognition models to have the ability to
fit a few samples and the flexibility to adapt to complex
production environments.

However, the remaining surface defects, i.e., the rare-seen
or unseen defects, are still hard to be detected since there are
not enough such defect samples that can be trained. To solve
the problem, existing few-shot models [11]–[15] only require
very few support samples to prompt the model to detect the
query samples. The core idea of these methods is to pre-train
a model from other related training samples (the samples that
are relatively common and easy to collect) in advance. Then,
the pre-trained model extracts the features from the support
samples (rare-seen samples and hard to collect) and tries to
update itself to know the defects. After, the updated model
extracts the features from query samples and tries to infer
the defects of query samples. These methods require at least
one defect sample to conduct the query inference. The more
defect samples, the higher the accuracy of these detection
models. However, in industrial detection practice, some defect
samples are hard to collect in advance or have never appeared
because the well-optimized smart manufacturing environment
has further reduced the defect rate. Consequently, manual
interventions are deeply required to analyze the abnormal
sample once an unseen defect accidentally emerges that will
significantly decrease productivity. Therefore, enabling defect
inference without using any support samples becomes one of
the most critical challenges in the surface defect detection
field.

To solve the non-sample problem, the zero-shot mechanism
is reasonably considered. The basic idea of zero-shot learning
for visual computing is to train a cross-modal network to
synthesize the visual features from the corresponding semantic
features [16]–[20]. Based on this cross-modal network, the
model can synthesize the unseen visual features without truly
learning the sample, i.e., only by describing this object in texts.
Then, the synthesized visual features are matched with the
visual features of the query sample to infer the category of the
query sample. However, existing zero-shot learning methods
are designed for general image classification tasks that do not
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perform well in surface defect detection. This is because these
zero-shot learning methods directly match the synthesized
visual features with query samples without considering the
support information in the industrial data environment, which
hardly guarantees detection accuracy.

To this end, this paper proposes a few-shot and zero-shot
compatible model by considering both synthesized samples
and support samples. The proposed method can detect surface
defects in both few-sample and non-sample data environ-
ments. First, a novel contrastive generator model is proposed
to synthesize the visual features according to the semantic
features. Then, the synthesized visual features are filtered and
considered as support samples to augment the real support
samples. After, a graph-based center feature update method is
proposed to match the visual query features to the synthesized
support visual features iteratively. The experimental results on
massive real-world surface defect datasets show the proposed
method significantly outperforms state-of-the-art methods in
both few-shot tasks and zero-shot tasks. In the highlights,
compared with state-of-the-art methods, our method has sig-
nificant improvements in both few-shot and zero-shot surface
defect detection. Moreover, the proposed method is deployed
in a prototype manufacturing scenario, an automated hot-
rolled steel surface detection line, to demonstrate its feasibility
and applicability. In summary, the work has the following
contributions:

• Compared with deep learning-based methods, the pro-
posed method can be decoupled into two phases: sample
generation and class inference, and only the class in-
ference phase needs to be deployed in the application,
which can significantly reduce the model complexity.
Meanwhile, the graph-based class inference method has
different feature space distributions and graphs when
dealing with different query samples, which is more
adaptable to the complex and changing industrial envi-
ronment.

• Compared with few-shot learning-based methods, we
integrate zero-shot learning, where the types of defects
that can be recognized are no longer limited to known
classes with support samples, and support samples for
unknown classes are obtained through the proposed con-
trast generator instead of being collected.

• Compared with zero-shot learning-based methods, our
approach uses inference rather than a fixed model for
sample prediction, which allows different samples to have
different spatial distributions, seen/unseen class predic-
tions do not affect each other, and the proposed method
focuses more on unlabeled query samples rather than
labeled seen samples or unseen generated samples. Since
there is no need to trade off the seen/unseen class focus,
we achieve the simultaneous optimal performance of
the seen/unseen class prediction instead of the trade-off
performance.

• Compared with SOTA, the proposed method gains an
average of +8.29% improvements on few-shot defect
recognition tasks and an average of +8.23% improve-
ments on zero-shot defect recognition tasks. The proposed

method is deployed in a real-world prototype system to
evaluate the feasibility and practical implementation.

II. RELATED WORK

A. Different methods of defect recognition

The core idea of Deep Learning-based methods is to train
a fixed classifier to recognize defects through many samples.
However, the lack of defect samples leads to the inability to
train an accurate convolutional neural network (CNN). Some
recent studies [5], [6] have utilized the relevant parameter in-
formation of defects to compensate for the wrong recognition
of some defect types due to the lack of samples. However,
extra information often leads to labeling noise. Yu et al. [7]
dealt with labeling uncertainty through knowledge transfer
and collaborative learning. Since defect datasets often suffer
from data imbalance, deep stochastic chain [8] and gradient-
based [9] methods can deal with the difference between defect
samples of the same class. The latest research has theoret-
ically solved some existing problems in defect recognition,
but in real industrial environments, existing deep learning-
based methods inevitably have some disadvantages: (1) Exist-
ing methods incorporate multiple methods (e.g., collaborative
learning, deep random chains, etc.) on deep learning networks,
leading to complex structures and difficulty fine-tuning the
model for non-specialists. (2) Deep learning methods obtain
a fixed model through training, which leads to models that
cannot self-optimize in the application environment, have poor
generalization capabilities, and are inflexible. (3) Methods that
utilize parameter information to supplement samples lead to
models that are difficult to reproduce and tune due to the lack
of uniform standards for different parameter representations.
(4) The category of the dataset used to evaluate the model is
6, which makes it impossible to know the performance of the
model in industrial scenarios where defect types are random
and diverse.

The core idea of Few-Shot Learning is to pre-train a model
from other related training samples (the samples that are
relatively common and easy to collect) in advance. Then,
the pre-trained model extracts the features from the support
samples (rare-seen samples and hard to collect) and tries to
update itself to know the defects. After, the updated model
extracts the features from query samples and tries to infer
the defects of query samples. In recent studies, in order to
better learn the local features of defects and reduce background
interference, Zhou et al. [10] designed a feature extractor
with the class agnostic mask to extract the defect features
and Zhenyu et al. [11] developed a multi-resolution-based
cropping enhancement method to enhance the unlabeled defect
images. By borrowing the idea of multi-scale feature extrac-
tion, a novel backbone network, ResMSNet, was proposed
[12], which realizes cross-domain few-shot learning with the
training set and target defect dataset coming from different
domains. Since with few support samples (e.g., shot = 1), few-
shot learning-based methods often perform poorly, and some
researchers have also attempted to solve this problem by addi-
tional information fusion. Zhao et al. [13] in fusing semantic
information based on feature relationships to effectively obtain
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TABLE I
COMPARISON OF STATE-OF-THE-ART DEFECT RECOGNITION TECHNIQUES

Methodology-based Reference Advantages Disadvantages

Deep Learning Applied to
Surface Defects

[5]-2023
Making up for sample shortages 1.Complex models

2.Inflexible, poor generalization
3.Extra information is difficult to obtain
4.Limitations in recognizing defect types

[6]-2023
[7]-2023 Resolving labeling uncertainty
[8]-2023 Resolving differences between

samples of the same class[9]-2023

Few-Shot Learning Applied
to Surface Defects

[10]-2023
Reduced background interference

1.Methods do not work with shot=0
2.Recognition type limited to datasets
3.Different models need to be trained for
different shots

[11]-2022
[12]-2023 Cross-domain few-shot learning
[13]-2023 Extracting high-dimensional

features[14]-2022
[15]-2022 Flexibility of the model

Zero-Shot Learning Applied
to Surface Defects

[16]-2022
Recognition of unknown novel
classes

1.Difficult to balance seen/unseen class bias
2.Hyperparameter tuning is time-consuming
and laborious

[17]-2022
[18]-2021

Zero-Shot Learning Applied
to Vision

[19]-2023
Excellent performance on
benchmark datasets

1.Difficult to handle small defect datasets
2.Method not applicable to defect images
3.Poor accuracy for defect recognition

[20]-2023
[21]-2022
[22]-2021

high-dimensional feature information in a few images. Song
et al. [14] generated distinguishable class features by learning
affine parameters from the original features, making the model
more portable. Effective inference methods often play a crucial
role in model performance and Xiao et al. [15] optimized
the inference process through graph embedding and optimal
transmission to improve model flexibility. It cannot be denied
that few-shot methods have advantages under few defect
sample conditions, but some limitations seem to make them
difficult to apply: (1) These methods require at least one
defective sample (shot ≥ 1) for inference. This leads to the
fact that once an unseen defect appears unexpectedly (shot
= 0), the few-shot learning-based recognition method breaks
down outright, and manual intervention is required to analyze
the abnormal sample. (2) Detectable defect types are limited
to known dataset classes, which leads to the fact that to use
the method in production environments with a large number
of classes, it is necessary to build at least one support sample
for each possible defect type. However, due to the limitations
of production environments, collecting comprehensive support
samples of all types is an almost impossible task. (3) Some
methods dealing with different numbers of support samples
(different shots) require training different models, e.g., FaNet
[13], which leads to complex model deployment.

In order to detect novel defect types (classes with no support
set) that arise unexpectedly in real production environments,
a few studies have attempted to apply Zero-Shot learning to
defect recognition [16]–[18]. The basic idea of zero-shot learn-
ing for visual computing is to train a cross-modal network to
synthesize the visual features from the corresponding semantic
features [19]–[22]. Based on this cross-modal network, the
model can synthesize the unseen visual features without truly
learning the sample, i.e., only by describing this object in texts.
Then, the synthesized visual features are matched with the
visual features of the query sample to infer the category of the
query sample. However, the application of zero-shot learning

in the field of surface defect recognition is not emphasized,
which is mainly due to: (1) Zero-shot learning-based methods
often train fixed models with a mixture of seen classes and
generated samples of unseen classes. Since the seen/unseen
classes are not differentiated, resulting in the accuracy of
the two affect each other, the model needs to trade off the
attention paid to the two to obtain a compromise performance.
(2) Existing zero-shot learning models in the field of defect
recognition usually have many hyperparameters that need to be
selected and optimized, and manual parameter tuning is time-
consuming and laborious. (3) Zero-shot learning methods in
vision are only applicable to benchmark datasets (e.g., CUB,
SUN, AwA, etc.) with samples > 15,000, while defect datasets
have no more than 1,000 samples. (4) Zero-shot learning
methods in the visual domain try associating local features
with attributes [21], e.g., a bird includes a head, a beak, wings,
and feet. This is entirely inapplicable for surface defects where
it is difficult to disentangle local features.

B. The development of few/zero-shot learning in different
fields

One-shot learning was first proposed in 2006 [23]. Since the
method can quickly learn new knowledge with a few training
samples and generalize, it has been rapidly developed in some
fields where training data is rare.

In natural language processing, relational classification tasks
provide a basis for constructing structured knowledge (e.g.,
knowledge graphs) by judging the predefined relationship
between two target entities in an utterance. However, the devel-
opment has been slow due to the lack of training data. In 2018,
Xu et al. [24] introduced few-shot learning into the relational
classification task for the first time and constructed the FewRel
dataset. Many researchers explored this basis [25]–[28], and
the introduction of few-shot learning made the performance
of the relationship classification task continuously improved
[29], [30].
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In medical image processing, due to the difficulty of biopsy
label acquisition, Qinghua et al. first attempted to introduce
the few-shot learning into the ultrasound breast tumor di-
agnosis system [31] and achieved excellent performance. In
recent years, the few-shot method has been widely used in
the medical field, including the recognition of COVID-19
from rare chest images [32], human cell categorization in rare
datasets [33], autism facial feature categorization [34], skin
image categorization [35], and healthcare safety monitoring
[36].

In 2009, Palatucci et al. proposed the concept of zero-shot
learning [37] due to the ability of this method to detect rare
or unseen objects in an image. In some industrial application
scenarios, the zero-shot method was introduced.

In remote sensing scene classification, satellite images are
prone to new classes of objects beyond the expected scene,
which leads to the collapse of deep learning-based methods. In
2017, Li et al. [38] introduced zero-shot learning into remote
sensing scene classification and proposed a new method for
recognizing images from unseen classes. Further studies tried
to combine knowledge graphs with zero-shot learning and
achieved better performance [39]. The latest methods have also
continued to apply zero-shot learning to remote sensing scene
classification [40], [41], remote sensing image defogging [42],
and remote sensing image super-resolution [43].

In intelligent manufacturing scenarios, due to the diversity
and randomness of industrial faults, some real fault samples
are difficult to obtain or never occur, so zero-shot learning
methods have been widely used in the field of industrial fault
diagnosis in recent years [44]–[47].

III. METHOD

A. Problem Formulation

Let X , Y , and D = {X ,Y} denote the raw visual feature
space, the corresponding image labels, and the dataset respec-
tively. Assume Ds = {X s ∈ X ,Ys ∈ Y} is a training set
consisting of seen classes and Du = {X u ∈ X ,Yu ∈ Y}
is a test set consisting of unseen classes. The constraints are
Ds ∩ Du = ∅ and Ds ∪ Du = D. At the same time, the
class-level text features are provided A = As ∪ Au, where
As correspond to the seen classes in Ds, and Au correspond
to the unseen classes in Du. For the N -way K-shot task, N
unseen classes are selected as the test set in Du, in which K
with-labeled samples are reserved for each selected class as
the support set Dt, and the unlabeled samples in the test set
are the query set Dq . K is usually small or even non-existent
(i.e., K = 0, K = 1 or K = 5). Unlike the common task, the
final support set of the proposed task is Dt ∪ Da, and Da is
a text prompt extracted from Au corresponding to N classes.

B. Contrastive Generator

1) Visual Feature Synthesizing: Let as ∈ As be a text
feature of a seen class while xs ∈ X s be the visual feature
of the corresponding class. The input to the conditional
generation network G is obtained by splicing the text features
as and Gaussian noise ϵ ∼ N (0, 1). G outputs the synthetic
visual samples x̄s = G(as, ϵ). Meanwhile, the discriminator

network D is used to discriminate a real pair (xs, as) from a
synthetic pair (x̄s, as). The feature generator network G and
the discriminator network D can be learned by optimizing the
following adversarial objective:

LG = −Eϵ∼pϵ [D(G(as, ϵ))] + Lcls(G(as, ϵ))

LD = −Eϵ∼pϵ [D (G(as, ϵ))]− Ex∼pd
[D (xs)] + Lcls (x

s)

(1)
LG is the loss function of generator G. It consists of a
discriminator error E and a class classification loss Lcls. LD

is the loss function of discriminator D that consists of a
synthesized visual feature discriminating error, a real visual
feature discriminating error, and a class classification loss Lcls.

2) Contrastive Loss for Real Features: Let the embedding
of a visual sample xs be denoted as fs = E(xs), E is an
embedding function that maps the raw visual sample xs into
the embedding space. To learn the embedding function E, for
each data point fs embedded with real or synthetic features,
try to randomly take one sample fs+ of the same class as the
fs sample as a positive sample and fs+ ̸= fs. And take N
samples randomly as negative samples fs−

j from the set of all
class samples not of the same class as fs+ samples. Then, a
positive sample fs+ is mixed with N negative samples fs−

j

into an unlabeled set of samples fs
j , and the correlation scores

between the real embedding and the other real embedding
samples are obtained by calculating the dot product similarity
between fs and fs

j . Finally, the known labeled sample fs

is used to distinguish the only positive sample in fs
j . For

example, as shown in the Fig. 2, if the embedded real sample
fs class is Am, a randomly selected positive sample fs+ class
is also Am, but fs and fs+ are different pictures. Meanwhile,
samples of classes different from Am (i.e., convexity, In,
blister, bump, etc.) can be selected as negative samples fs−

j .
It is worth noting that since the known labeled samples

fs need to distinguish only the positive sample among the
set of N + 1 positive and negative samples, the size of N
(the number of negative samples) determines the classification
difficulty. If N is small, it is not easy to learn discriminative
class features, and if N is too large, it leads to long training
time and high overhead. At the same time, too accurate class
features may lead to the real embedded feature distribution not
being compatible with the synthetic feature distribution with
significant deviation, making the performance decline. Thus,
by weighing the model accuracy against the training overhead,
the number of negative samples (N ) is set to 25% of the total
number of samples (classes different from fs+).

In summary, consider using a contrast loss function called
InfoNCE1 to compute the expected loss of contrast embedding
LCR for the real embedding samples fs and fs

j . The formula
is shown as follows:

LCR =

− EF

[
log

exp((fs)⊤ · fs+/τ)

exp((fs)⊤ · fs+/τ) +
∑N

j=1 exp((f
s)⊤ · fs−

j /τ)

]
(2)

1https://arxiv.org/abs/1807.03748
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Fig. 1. The overview framework of the proposed method for few/zero-shot visual inspection.
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Fig. 2. Example of positive and negative samples of real and synthesized
features, with synthesized sample resolution of 64× 64 pixels.

Here, N denotes the number of negative samples fs−
j (fs−

j

and fs belong to different seen classes). fs ̸= fs+ but they
belong to the same seen class. τ > 0 is the temperature hyper-
parameter, which is used to control the convergence rate of the
model.

3) Contrastive Loss for Synthesized Features: Analogously,
to make the synthesized samples x̄s fit the real embedding
space and increase the distribution distance between differ-
ent classes of generated samples. The positive and negative
samples of the synthetic features are shown in Fig. 2, which
are selected in the same way as the real features, where the

number of negative samples is also taken as 25% of the total
number of samples (which are not of the same class as fs).
The positive samples are also taken randomly from among the
samples of the same class as fs. Referring to Equation (2),
let f̄s = E(x̄s), the contrastive loss LCS of the synthesized
features is defined as follows:

LCS =

− EF

[
log

exp((fs)⊤ · f̄s+/τ)

exp((fs)⊤ · f̄s+/τ) +
∑N

j=1 exp((f
s)⊤ · f̄s−

j /τ)

]
(3)

During the contrastive generator training process, only seen
visual features X s, seen semantic features As, and seen labels
Ys are used. During the few/zero-shot predicting, a generator
G(Au, ϵ) is used to generate the synthesized visual features
X u, after which the synthesized visual features are mapped to
the embedding space by the embedding function E : F̄u =
E(G(Au, ϵ)), which includes only the features of the unseen
class. Raw features of unseen classes are also mapped to the
embedding space Fu = E(X u).

C. Graph-based Few/Zero-shot Inference

1) For Zero-shot Inference: In the industry-specific zero-
shot visual inspection process, first, the similarity matrix S
is obtained by calculating the feature similarities among the
support features F̄ t and the query features Fq synthesized
from the contrastive generator (see Section III.B). Then, the
similarity graph is constructed from the adjacency similarity
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matrix S. The class center T̄ (0)
i is obtained by initializing the

support node T . Finally, the final classification probability ma-
trix Mi,j is obtained by continuously updating the class center
T̄ (k+1)
i with the classification probability matrix M

(k+1)
i,j . The

predicted label is obtained as Ŷi by selecting the maximum
probability of Mi,j .

In the above process, all support embedding samples are
synthesized by the proposed generator G and the embedding
function E (see Section III.B), all query samples are processed
by the embedding function E, and all query and support
samples belong to the unseen class. Fig. 1 provides the
overview process of zero-shot inference.

Let S be the adjacent similarity matrix, and Si,j stores
a similarity value of feature i and feature j. Equation (4)
provides the definitions of S.

Si,j =


w⊤(f̄ t

i ∥ f̄ t
j ), if i, j in F̄ t

w⊤(fq
i ∥ f̄ t

j ), if i in Fq, j in F̄ t

w⊤(f̄ t
i ∥ fq

j ), if i in F̄ t, j in Fq

w⊤(fq
i ∥ fq

j ), else

(4)

Here, F̄ t is the synthesized visual feature embedding space
of the support set, while Fq is the real visual feature em-
bedding space of the query set, F̄ t ∈ F̄u, Fq ∈ Fu. f̄ t

denotes the synthesized visual embedding features. fq denotes
the real visual embedding features. w denotes a parameter
matrix. In the experiment, for each node in S, only Top-k
similar neighbors remain. The rest neighbors are marked as 0
in similarities.

Before inference on query set categories, it is crucial to
construct a relational network containing support set label-
ing information and unlabeled query set information. The
proposed method constructs interrelationships between query
samples and support samples through graph embedding (GE)
to fully utilize the known label information. The graph-based
inference process usually needs to initialize a center for each
class and continuously optimize the class centers to achieve
class differentiation during the inference process. Different
methods of class center selection [48]–[50] often affect the
quality of inference results and iteration efficiency. In order
to obtain more reasonable class centers, the self-attention
mechanism (SA) is introduced. By further correlating feature
information between samples, the proposed method obtains
class center points with rich defect feature information, which
is also more global in biasing the support sample distribution.

Eventually, the SAGE module is constructed to further
improve the class center optimization module (CCO) perfor-
mance through sample information integration and class center
initialization, which contains the following Equation (5)(6).

Given a diagonal matrix Di,j=
∑

j Si,j , the adjacency matrix
S, a normalization function Norm(·), a self-attention function
Self(·), and a one-layer learn-able weight matrix W , the
graph embedding is defined as follows:

T ∪ Q = Self(Norm(D− 1
2 (S + ξ · E)θD− 1

2W )) (5)

Here, T is the graph embedding for all support samples. Q is
the graph embedding for all query samples. E is the node

self-connection matrix, and ξ is the weight parameter that
balances the importance of the neighboring node and self-node
information. θ is the embedding ratio parameter.

Based on the support samples feature matrix T , the support
classes’ center feature matrix T̄ can be calculated by the
following formula.

T̄ (0)
i =

1

K

K·(i−1)+K∑
k=K·(i−1)+1

Tk (6)

Where K is the number of support samples for a class. Tk
denotes the kth support sample feature while T̄i represents
the ith class’ center feature. Here, (0) means the initial center
feature.

T̄ (k+1)
i = (1− α) · T̄ (k)

i +

α ·

(
K · T̄ (0)

i +
∑N

j=1(M
(k)
i,j · Qj)

K +
∑N

j=1 M
(k)
i,j

)
(7)

T̄ (k+1)
i denotes the center feature of the ith class after

(k+1) iterations. α is an updating rate parameter. The updating
is faster if α is bigger and vice versa. In our experiments, α is
set to 0.2. Here, Mi,j represents the classification probability
of the jth query sample Qj belonging to the ith class. It
is calculated by measuring the distance between the class
center feature T̄ (k)

i and the query feature Qj , as defined in
the following.

M
(k+1)
i,j = SinkHorn

(
||T̄ (k)

i −Qj ||2, λ
)

(8)

Here, λ is a regularization parameter that will be discussed
in the experiment. The settings of the Sinkhorn function are
referred from [53].

Ŷi = argmax
i

(Mi,j) (9)

Finally, based on the iterated probability matrix M , the zero-
shot inference can be conducted by selecting the maximum
value of Mj for the given query sample j, the predicted label
matrix for all classes is Ŷi, as shown in Equation (9).

2) For Few-shot Inference: The key challenge of few-shot
inference is that the number of support samples is too small
(normally only one to five samples) compare with the training
and query samples, causing a serious distribution skewness
problem. To handle the problem, based on the idea of zero-
shot inference proposed, we try to augment the support set
F t by adding extra synthesized samples F̄ t from the feature
generator (see section III.B). However, it was observed in
the experiment that simply adding F̄ t into F t does not
obviously improve the classification accuracy. The reason for
this phenomenon is that some synthesized samples f̄ t might
deviate from the real visual feature distribution. These deviated
samples will disturb the model inference.

To guarantee the quality of the synthesized samples, we do
not directly add F̄ t into F t. Instead, F̄ t is filtered in advance
by a classifier based on F t in which only the correct classified
samples F̄ t are added into F t. The inference process is similar
to the zero-shot inference. See Equation (5)-(9). The only
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difference is the similarity graph construction, as defined in
Equation (10).

S̄i,j =


w⊤(f̄ t

i ∥ f̄ t
j ), if i, j in F̄ t

w⊤(f t
i ∥ f̄ t

j ), if i in F t, j in F̄ t

w⊤(f̄ t
i ∥ f t

j ), if i in F̄ t, j in F t

w⊤(f t
i ∥ f t

j ), else

(10)

Let F̄ t′ be the filtered synthesized sample set. We then have
the augmented support set F̂ t={F̄ t′ ∪F t}. It is worth noting
that ¯|F t′ | ≫ |F t|. Based on the support set F̂ t and the query
set Fq obtained by filtering, the similarity graph Ŝ for few-
shot inference is re-constructed (refer to Equation (4)).

Finally, based on the new similarity graph Ŝ, few-shot
inference can be conducted through Equation (5)-(9).

IV. EXPERIMENTS

A. Preliminaries

1) Datasets: To verify the effectiveness of the proposed
method for surface defect recognition, we validated it on eight
different datasets, which mainly include three surface defect
datasets (MSD-Cls [15], FSC-20 [13] and MT-CF) and five
fine-grained datasets DTD2, EuroSAT3, RESISC454 , MED-
3 ( consists of a blood cell image database5, multi-source
dermoscopic images of pigmented lesions HAM100006 and
optical coherence tomography (OCT) images7), and GTSRB8.

MSD-Cls [15] is a metal surface defect dataset that contains
aluminum and steel with different defect types. In MSD-Cls,
only a few training data are about steel defects. However, the
test data are all about aluminum defects that cause a serious
cross-domain problem, making it hard to detect accurately.
FSC-20 MT-CF dataset consists of the oil pollution defect
database9, the annotated road crack image database Crack-
Forest10, and the magnetic tile surface defect database11.

Noting that MSD-Cls, MT-CF, and MED-3 are cross-
domain datasets consisting of more than three different
datasets from the same industrial domain, the significant data
differences are extremely challenging. RESISC45, GTSRB,
and DTD datasets are fine-grained multi-category datasets with
insignificant class characteristics compared to conventional
few-shot visual inspection datasets. Extra experiments, includ-
ing ablation study, hyperparameter study, and base generator
discussions, are conducted on the MSD-Cls dataset.

2https://paperswithcode.com/dataset/dtd
3https://paperswithcode.com/dataset/eurosat
4https://paperswithcode.com/dataset/resisc45
5https://github.com/Shenggan/BCCD Dataset
6https://dataverse.harvard.edu
7https://www.kaggle.com/datasets/paultimothymooney/kermany2018
8https://paperswithcode.com/dataset/gtsrb
9http://faculty.neu.edu.cn/songkc/en/z-dylm/263267
10https://github.com/cuilimeng/CrackForest-dataset
11https://github.com/abin24/Magnetic-tile-defect-datasets

2) Dataset Splits: To simulate the few-sample data envi-
ronment, all the above datasets are narrowed by randomly
selecting 10 to 50 samples for each class. Then with reference
to the PS-split12, the database is divided into the training and
validation set Ds (seen class) and the test set Du (unseen
class).

3) Experimental Setups: In few-shot inference compari-
son experiments, we follow the different backbone network
settings of the state-of-the-art methods (i.e., ResNet-12 [62],
ResNet-18 [62], WRN [63]). In zero-shot inference compari-
son experiments, CLIP [64] was used to extract visual features
X and corresponding text features A of the seen classes for
all methods (using only class names as text cues).

4) Evaluation Metrics: For few-shot tasks, accuracy (acc)
and way-shot metrics are applied. Here, the way denotes the
number of classes in Du while the shot means the number of
support samples for each class. For example, 5-way-1-shot
means five to-be-classified classes with one support sample
for each class during the testing.

For the Generalized Zero-Shot Learning (GZSL) task, fol-
lowing the metrics13, Top-1 classification accuracy on seen
classes (S) and unseen classes (U ) are evaluated. The har-
monic mean (H) of S and U is used to represent the final
performance of zero-shot visual inspection where H = 2 ×
S × U/(S + U).

To report stable results, 10,000 random draws with 95%
confidence are conducted to obtain the average accuracy values
for each evaluation.

B. Evaluations

1) Few-shot Inference Comparison: Table II provides the
way-shot results of few-shot visual inspection.

For the 0-shot comparison, the few-shot competitive meth-
ods are adjusted to zero-support samples if their source codes
are available. Else, “-” in Table II denotes that 0-shot inference
can not be reproduced for the corresponding method. On
the dataset with mixed seen and unseen classes, our method
achieves an average of +25.4% ∼ +37.25% improvement com-
pared with PTNET and GTnet. Notably, this is the first attempt
to apply the few/zero-shot compatible models in industry-
specific visual inspection domains and achieves a significant
improvement.

For 1-shot tasks, our method obtains +5.87%, +4.72%,
+4.12%, and +7.93% improvements in MSD-Cls, MT-CF,
EuroSAT, and MED-3 datasets, respectively, compared to the
second-best method, while 4.01 decreases in GTSRB dataset.
Notably, our method obtains +12.79% and +11.12% significant
improvements over the second-best method in the RESISC45
and DTD datasets, respectively, with improvements >10%.
For 5-shot tasks, the highlight of the comparison results is that
our method obtains +10.5%, +10.98%, +13.65%, and +9.94%
significant improvements in the MSD-Cls, RESISC45, MED-
3, and DTD datasets, respectively, compared to the second-
best method (the average improvement was >10%). On other
datasets (MT-CF and EuroSAT), our method obtains +4.18%

12https://arxiv.org/abs/1707.00600
13https://arxiv.org/abs/1707.00600
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TABLE II
THE COMPARISON RESULT OF FEW-SHOT VISUAL INSPECTION

Datasets K-shot S2M2 R [51] ICI-FSL [52] PTNET [53] Latent [54] TRA [55] GTnet [15] fsl-rsvae [56] FaNet [13] FSL Cls [10] Ours

MSD-Cls
(5-way)

0-shot 20.00±00.00 - 20.00±00.00 - - 20.00±00.00 - - - 46.33±0.36
1-shot 60.25±0.60 60.10±0.72 73.68±0.16 73.94±0.61 62.57±0.71 69.57±0.91 71.25±0.64 70.10±0.18 60.37±0.41 79.81±0.22
5-shot 75.72±0.43 75.87±0.41 77.98±0.11 78.09±0.11 77.07±0.10 79.09±0.72 77.03±0.56 82.37±0.10 77.9±0.38 89.59±0.06

FSC-20
(5-way)

0-shot 20.00±00.00 - 20.00±00.00 - - 20.00±00.00 - - - 61.53±00.11
1-shot 69.84±1.47 63.50±0.66 88.72±0.19 81.03±0.62 76.31±0.59 74.59±0.22 81.22±0.12 86.21±0.22 59.88±0.28 88.94±0.14
5-shot 81.51±0.79 72.86±0.51 93.65±0.06 86.40±0.29 83.34±0.25 83.60±0.09 91.05±0.53 94.24±0.05 77.38±0.11 95.33±0.05

MT-CF
(3-way)

0-shot 33.33±00.00 - 33.33±00.00 - - 33.33±00.00 - - - 70.66±00.03
1-shot 77.60±1.65 59.62±0.92 89.17±0.23 82.14±0.76 80.63±0.72 90.78±0.23 72.22±0.18 80.22±0.11 92.37±0.05 95.50±0.05
5-shot 86.97±1.26 76.87±0.57 93.31±0.07 89.04±0.24 85.76±0.36 95.79±0.04 92.72±0.01 91.35±0.76 95.22±0.13 99.97±0.01

EuroSAT
(3-way)

0-shot 33.33±00.00 - 33.33±00.00 - - 33.33±00.00 - - - 77.10±00.11
1-shot 86.07±1.41 68.87±0.88 93.41±0.18 92.70±0.66 90.71±0.49 87.95±0.23 87.83±0.42 78.77±0.21 62.76±0.07 97.53±0.10
5-shot 92.78±0.74 79.86±0.47 94.96±0.07 94.84±0.24 92.42±0.27 93.43±0.08 92.44±0.03 87.68±0.10 83.33±0.72 98.64±0.05

RESISC45
(5-way)

0-shot 20.00±00.00 - 20.00±00.00 - - 20.00±00.00 - - - 56.44±00.10
1-shot 54.91±1.93 51.93±1.06 68.77±0.29 68.38±0.90 61.49±0.77 58.00±0.25 71.27±0.03 51.24±0.16 55.86±0.14 84.06±0.12
5-shot 74.31±1.24 69.21±0.74 80.36±0.15 80.18±0.48 74.05±0.47 72.77±0.15 79.01±0.37 70.80± 0.11 70.56±0.81 91.34±0.05

MED-3
(4-way)

0-shot 25.00±00.00 - 25.00±00.00 - 25.00±00.00 - - - 26.72±00.01
1-shot 25.88±0.80 28.94±0.53 26.62±0.13 26.66±0.44 28.75±0.43 29.79±0.15 27.18±0.27 36.94±0.15 14.93±0.06 37.72±0.19
5-shot 27.83±1.11 33.56±0.48 28.34±0.13 28.46±0.41 33.62±0.39 34.90±0.13 33.92±0.27 40.67±0.60 38.02±0.71 48.55±0.14

GTSRB
(5-way)

0-shot 20.00±00.00 - 20.00±00.00 - - 20.00±00.00 - - - 62.03±00.26
1-shot 75.71±2.65 67.38±1.09 87.56±0.23 87.87±0.71 82.23±0.74 81.19±0.23 76.48±0.05 75.03±0.28 66.56±0.62 83.55±0.45
5-shot 86.69±1.95 79.78±0.76 93.82±0.14 94.15±0.42 93.57±0.33 95.53±0.08 91.03±0.26 92.91±0.03 93.46±0.08 92.19±0.26

DTD
(5-way)

0-shot 20.00±00.00 - 20.00±00.00 - - 20.00±00.00 - - - 61.02±00.03
1-shot 54.20±2.02 46.36±0.87 60.08±0.26 59.95±0.85 56.74±0.76 55.03±0.23 52.42±0.22 52.89±0.19 48.62±0.12 71.20±0.26
5-shot 70.49±1.60 59.17±0.77 73.92±0.18 73.77±0.57 68.91±0.53 69.09±0.17 71.82±0.01 69.89±0.11 59.94±0.03 83.86±0.11

and +3.95% improvement, while there is a 3.34 decrease in
the GTSRB dataset.

The highlights also show from Table II that the proposed
method has significant improvements in MSD-Cls, MED-3,
RESISC45, and DTD. In detail, +5.9% to +13.4% improve-
ments are achieved in MSD-Cls and MED-3 datasets (the
training and testing classes are not intersected) on the few-
shot inference. +10.1% to +13.2% improvements are obtained
in RESISC45 and DTD datasets (relatively larger numbers of
classes for the few-shot task) on the few-shot inference. This
indicates the proposed method can obtain more critical class
differentiation in non-trivial datasets.

On the large-scale few-shot classification dataset FSC-20,
the proposed method improves +2.73% and +1.09% on 1-
shot and 5-shot, respectively, compared to FaNet, the method
applied to the FSC-20 dataset. It is worth mentioning that
the proposed method obtained a significant improvement of
+41.53% on 0-shot.

Furthermore, the qualitative result of one-shot retrieval is
provided in Fig. 3. In the figure, each row represents a class
such as “Am”, “bump”, “damage”, etc. Each cell in each row
is the to-be-retrieval sample. The green frames denote the
correct retrieval, while the wrong retrieval for red frames.
The last row indicates steel surface defects, and the other
four rows indicate aluminum surface defects. It can be seen
relatively high acc is obtained for aluminum damage, bump,
and convexity defect retrieval. However, relatively high acc is
observed on aluminum defect retrieval. This is because of the
unbalanced data distribution problem, very few steel samples
in the training set, of the dataset that need to be considered in

Am
acc:
21.3%

convexity
acc:
42.3%

bump
acc:
56.7

damage
acc:
82.6%

Fig. 3. Qualitative results of one-shot retrieval. Correct and incorrect retrieved
instances are shown in green and red, respectively.

future research.
To evaluate the sensibility of the model on the initial number

of query samples, one to fifteen query samples are applied to
the proposed method with the competitor GTnet, as shown
in 4. It is observed that the proposed method always keeps
stable no matter the initial number of query samples. On the
contrary, GTnet requires a larger initial number (greater than 9)
of query samples to get a fair performance. This demonstrates
the proposed method is insensitive to the initial query samples.
This is mainly because the proposed method uses synthesized
samples to augment the query samples, which reduces the
dependencies on the initial number of query samples.

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2023.3329163

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTING TO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 9

TABLE III
THE COMPARISON RESULT OF ZERO-SHOT VISUAL INSPECTION

Datasets Metrics CvcZSL [57] ZSL ABP [58] CADA-VAE [59] LisGAN [60] CE-GZSL [22] MSDN [21] Ours

MSD-Cls
U 18.56% 18.75% 10.80% 3.14% 16.13% 18.22% 28.29%
S 42.22% 24.63% 29.50% 18.15% 26.73% 32.18% 51.09%
H 25.78% 21.29% 15.81% 5.36% 20.12% 23.26% 36.42%

FSC-20
U 12.40% 34.00% 9.30% 21.60% 11.60% 18.72% 34.61%
S 69.73% 61.63% 59.91% 20.00% 59.20% 40.19% 71.03%
H 20.41% 43.82% 16.10% 20.77% 19.40% 25.54% 46.54%

MT-CF
U 11.33% 25.00% 8.20% 32.27% 23.99% 35.02% 51.85%
S 73.41% 47.89% 52.18% 54.94% 34.51% 41.22% 76.85%
H 19.63% 32.85% 14.17% 40.00% 28.30% 37.87% 61.92%

EuroSAT
U 8.27% 21.71% 2.33% 17.25% 9.10% 29.28% 35.49%
S 87.86% 36.14% 70.43% 55.58% 61.65% 61.02% 89.62%
H 15.12% 27.13% 4.52% 22.92% 12.25% 39.57% 50.85%

RESISC45
U 1.50% 18.24% 1.17% 33.71% 41.35% 31.92% 43.00%
S 73.39% 47.49% 75.27% 71.52% 69.48% 52.01% 82.10%
H 2.94% 26.36% 2.30% 45.44% 51.85% 39.56% 56.44%

MED-3
U 8.02% 28.96% 9.00% 25.69% 24.85% 21.11% 29.13%
S 82.10% 48.20% 60.44% 45.37% 49.14% 51.92% 64.29%
H 14.61% 36.18% 15.67% 32.32% 32.77% 30.02% 40.09%

GTSRB
U 6.21% 13.91% 10.10% 17.47% 14.29% 21.01% 32.63%
S 88.79% 80.11% 83.90% 42.78% 31.24% 41.79% 91.65%
H 11.62% 23.70% 18.03% 23.77% 18.92% 27.96% 48.13%

DTD
U 1.82% 17.28% 1.45% 29.95% 30.52% 31.22% 42.78%
S 71.00% 45.41% 63.11% 54.36% 46.70% 47.03% 59.72%
H 3.55% 25.04% 2.84% 38.30% 36.84% 37.53% 49.85%

0-shot

1-shot
3-shot
5-shot

0-shot

1-shot
3-shot
5-shot

(b) Ours(a) GTnet

(b) Ours(a) GTnet

0-shot

1-shot
3-shot
5-shot

0-shot

1-shot
3-shot
5-shot

Fig. 4. Influence of the initial number of query samples q of our method and
compares with previous state-of-the-art method GTnet.

2) Zero-shot Inference Comparison: Table III provides the
comparison results of zero-shot visual inspection. It is ob-
served that our method significantly outperforms all competi-
tors in all datasets. In highlights, on the H metric, our method
achieves +10.64%, +21.92%, +11.28%, +20.17%, +11.55%,
and +2.72% improvements in MSD-Cls, MT-CF, EuroSAT,
GTSRB, DTD, and FSC-20 respectively compared with the
highest records. On the H metric, our method significantly sur-
passes all state-of-the-art methods. This demonstrates that the
proposed method can effectively balance the performance be-
tween unseen and seen visual inspection. On the U metric, our
method obtains +9.54%, +16.83%, +6.21%, +1.65%, +0.17%,
+11.62%, and +11.56% improvement over state-of-the-art
methods on the MSD-Cls, MT-CF, EuroSAT, RESISC45,
MED-3, GTSRB and DTD datasets, respectively. This denotes
that the proposed method can synthesize ”fake” features that
are very similar to the real features, and the synthesized
features can represent the real sample space distribution. On

the S metric, our method obtains +8.87%, +3.44%, +1.76%,
+6.83%, and +2.86% improvements in MSD-Cls, MT-CF,
EuroSAT, RESISC45, and GTSRB datasets respectively while
17.81, and 11.28 decreases in MED-3, and DTD dataset.
Interestingly, existing zero-shot methods have lower U scores
than S in industry-specific data environments. This is because,
in industry-specific data environments, there are not enough
training samples for the existing zero-shot methods to learn a
stable network for predicting unseen samples. On the contrary,
instead of using augmented samples for model training, our
method uses synthesized samples for model inference. This
significantly decreases the requirements for the number of
training samples.

To further reveal the performance of the method, three
representative methods, LisGAN, CE-GZSL and CvcZSL, are
selected to construct the confusion heat maps, as shown in
Fig. 5. The x-axis represents the predicted defect classes,
while the y-axis refers to the real defect classes. The dark
color represents the high probability given by the model for
predicting the class label. The more dark colors close to the
diagonal of the heat map, the more accurate the model is.

Obviously, the color distribution of Fig. 5(a) is chaotic
which means the corresponding method fails to conduct the
task. Fig. 5 (b) and (c) have similar color distributions that are
close to the diagonal of the heat map. However, there are still
many dark colors that deviate from the diagonal of the heat
map which represents the wrong predictions. Fig. 5 (d) has the
clearest color distribution that is close to the diagonal. It has
the best prediction performance. This further demonstrates the
comprehensive superiority of the proposed method on unseen
defect prediction compared with the existing methods.
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(b) CE-GZSL(a) LisGAN

(c) CvcZSL (d) Ours

Fig. 5. The confusion heat maps of the representative methods. The x-axis
represents the predicted defect classes, while the y-axis refers to the real defect
classes.

C. Discussions

1) Ablation study: The proposed method consists of RFFC,
SAGE, and CCO modules (see Section III.B). To ensure a
fair comparison and more clearly demonstrate the performance
of the proposed module, the baseline combines a traditional
few-shot learning model and a traditional generative zero-shot
learning model, similar to S2M2 R [51] and GAZSL [61].
The result of the ablation study is provided in Table IV. Inter-
estingly, the addition of the synthesized feature contrast mod-
ule (RFFC) resulted in a significant improvement (+13.67%,
+5.2%, and +3.04%) in accuracy on fewer shots (0-shot, 1-
shot, and 5-shot). This indicates the RFFC can effectively
generate unseen features for few/zero-shot predicting.

TABLE IV
THE ABLATION STUDY

Baseline RFFC SAGE CCO 5-way
0-shot 1-shot 5-shot√
23.62% 62.35% 76.92%√ √
37.29% 67.55% 79.33%√ √
24.93% 65.39% 78.39%√ √
26.44% 71.62% 79.42%√ √ √ √
46.33% 79.81% 89.59%

Further, compared with the baseline using the SAGE module
alone, the accuracy was optimized on different shots (+1.31%,
+3.07%, +1.47%). This demonstrates that the SAGE module
can optimize model performance through sample information
fusion. Using the combination of RFFC, SAGE, and CCO
modules compared with the RFFC module alone, the accu-
racy was significantly improved on different shots (+9.04%,

+12.26%, +10.26%). This shows that SAGE as a feature
preprocessing for the CCO module and the combination of
the two is more outstanding.

(b) CE-GZSL(a) GAZSL (c) proposed

Generated class3Generated class2Generated class1

Fig. 6. Comparison of RFFC module effects. The visual analysis for different
classes of features synthesized by different 0-shot learning models, with
different colors representing that the synthesized features belong to different
classes.

As shown in Fig. 6, we visualize the different classes
of features generated by the proposed model (contrastive
generator RFFC module), with different colors representing
different classes of the MSD-Cls dataset. It can be found that,
compared with GAZSL (The milestone model for zero-shot
learning) and CE-GZSL (The representative model for zero-
shot learning), after the 1st embedding space optimization
based on contrast learning, our method has a significant
distance between different classes of synthesized features, a
clear boundary between the generated different classes, and a
significant decrease of biased samples.

2) Hyperprameters Discussion: The hyperparameters used
in our method are k, θ, and λ. For the maximum similarity
retention k (k ≥ 1, see Equation (4) and (10)) and the em-
bedding graph ratio θ (see Equation (5)), the metric evaluated
is the accuracy of 1-shot (Fig. 7(a)) and 5-shot (Fig. 7(b))
classifications. The dataset for the evaluations is MDS-Cls.

(a) (b) 

(c) (d)

� = 1
� = 2
� = 3
� = 4

� = 1

� = 2

� = 3
� = 4

1-shot
3-shot
5-shot

0-shot

1-shot

5-shot

Fig. 7. The influence of hyperparameters.

It is observed from Fig. 7(a) that the accuracy decreases
when θ increases, and the maximum accuracy is obtained when
θ=1. The accuracy first increases when k increases from 2 to
4 but then gradually decreases when k ≥ 6. Thus, all things
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Fig. 8. Memory consumption of the inference process with different synthe-
sized support samples.

considered, for θ and k, the best settings at 1-shot are θ = 1
and k = 6. Similarly, according to Fig. 7(b), for θ and k, the
best settings at 5-shot are θ = 1 and k = 4.

For the regularization parameter λ (see Equation (8)), 1-
shot to 5-shot classification experiments are conducted. As
shown in Fig. 7(c), the accuracy increases quickly when λ
starts from 0 to 5. After, the accuracy of 1-shot, 3-shot, and
5-shot classifications tend to be stable when λ continuously
increases. Thus, the reasonable setting of the regularization
parameter is λ=5.

Since the proposed method generates samples from the
RFFC module as synthesized support samples for inference on
the query samples category, this leads to a different number of
synthesized samples with different accuracy rates. As shown
in Fig. 7(d), in 0-shot condition, the model performance is
optimal when the number of synthesized samples = 6, and
then it gradually decreases, which may be because some
biased synthesized samples cause the inference process to be
misguided, leading to the decrease of the accuracy rate.

Similarly, the model performance is optimal in the 1-shot
and 5-shot conditions when the number of synthesized samples
is 7 and 6.

The memory consumption of the model’s inference process
on the MSD-Cls dataset with different numbers of synthesized
support samples is shown in Fig. 8. A clear trend is that the
larger the number of synthesized support samples, the larger
the memory consumption of the model inference process,
while the query samples remain constant.

In summary, by weighing the relationship between model
size and accuracy, the number of synthesized support samples
of the proposed method is uniformly set to 6 in practical
deployment. To ensure that the model obtains the maximum
performance while consuming as little memory as possible.

3) Inference Time Evaluation: To further understand the
performance of the proposed method, the model inference time
is evaluated on the MSD-Cls dataset, as shown in Table V.
Since the filtering phase of the few-shot inference process
can be completed before inference about the query sample
categories, the inference process of the proposed method is
decoupled into two phases (filtering + inference). The filtering
and inference time before decoupling and the inference time
without the filtering phase are validated here, respectively.

A clear trend is that the inference time becomes longer

TABLE V
EVALUATION OF INFERENCE TIME WITH DIFFERENT SUPPORT SAMPLES

Method 5-way-0-shot 5-way-1-shot 5-way-5-shot
S2M2 R [51] - 0.7344 2.1298
ICI-FSL [52] - 1.2703 1.4182
PTNET [53] - 3.7299 4.1307
Latent [54] - 2.8341 4.3862
TRA [55] - 14.5392 16.0262

GTnet [15] - 6.0329 11.8432
fsl-rsvae [56] - 7.1127 10.4728
FaNet [13] - 5.1127 9.7328

Ours(Filtering + Inference) 4.4637 8.1528 12.7347
Ours(Inference) 4.4637 5.4831 9.8305

as the support sample increases. Meanwhile, the inference
time of the proposed method alone is much smaller than the
time of both inference and filtering phases. Therefore, filtering
operations are performed before model deployment to improve
real-time prediction.

TABLE VI
PERFORMANCE EVALUATION OF DIFFERENT BACKBONE NETWORKS

Method 5-way-0-shot 5-way-1-shot 5-way-5-shot
WRN-28–10 46.69 ± 0.36 78.92 ± 0.31 88.74 ± 0.11
ResNet-12 45.92 ± 0.44 78.02 ± 0.82 87.25 ± 0.27
ResNet-18 43.01 ± 0.08 77.06 ± 0.66 89.91 ± 0.11

4) Backbone Network Discussion: In order to evaluate
the impact of different backbone networks on the proposed
method, it is evaluated on the MSD-Cls dataset using several
mainstream backbone networks (i.e., WRN-28-10, ResNet-12,
ResNet-18). The test results are shown in Table VI, where
the accuracy of the proposed method is 46.69% and 78.92%
on WRN-28-10 for shot=0 and shot=1. The highest accuracy
is achieved on ResNet-18 for shot=5. Overall, WRN-28-10
is more suitable to handle the MSD-Cls dataset with fewer
sample sizes.

D. A Prototype Scenario

1) Hot-Rolled Steel Sample Collection: In order to evaluate
the performance of the method in practical applications, we
collected 15 types of hot-rolled steel surface defects from our
partner manufacturers. Some of the defect samples are shown
in Fig. 9(a), and the types of defects include contaminants
(Co), inclusions (In), scratches (Sc), oxides (Ox), and so on.
This included 150 defect samples (10 for each defect class)
and 210 normal samples, and a hot-rolled steel surface defect
data set (HRS-SD) was created. Ten defect classes and their
samples and all normal samples are split as the training set.
The five defect classes (50 defect samples) are split into a test
set for a few/zero-shot defect classification.

2) Prototype Scene Building: A prototype manufacturing
defect detection scenario was established to evaluate the
model’s performance in a realistic scenario. The prototype sce-
nario consists of a production environment, an IoT middleware
(our previous work [65]), and a cloud server (Huawei kAi1s
accelerated cloud server).

The production environment is shown in Fig. 9(b), where
three industrial cameras with different angles (Top-Camera,

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2023.3329163

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTING TO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 12

Prototype
 ScenarioReject Device

IoT Middleware

All-in-One Machine

Cloud Server

Conveyor Belt

Right-CameraLeft-CameraTop-Camera

Hot-Rolled Steel Plate Surface Defect Detection System V1.0

Tips for the detection process

Detection time
Defect Information Results statistics

Determine whether a 
product is qualified

Product quality
Defect type

Detection area
Defect position Number of unqualified products

Average detection time

Total number of detections
Number of qualified products

Right-Camera
Top-Camera

Left-Camera

Defect Classification 
Model

Defect Segmentation 
Model

IoT Middleware Cloud Server
(b) Production Environment (a) Hot-rolled Steel Defect Samples (c) Cloud Server Results Feedback

Data 

Data 

Fig. 9. The prototype manufacturing scenario for hot-rolled steel defect classification based on the proposed method.

Left-Camera, and Right-Camera) were used to parallel obtain
defect samples of hot-rolled steel on the conveyor belt (running
at 10m/s and the length of 600mm), with the top-camera
at 230mm distance from the samples, and cameras with
resolution dimensions of 2594 × 1944 pixels. The images
were resized to 64 × 64 pixels to be passed to the server
to improve the speed of the model run.

Considering that in the realistic application environment,
multiple production lines may be monitored in real time
with multiple cameras, which will lead to a large number
of product images being captured at the same time, it is not
easy to expand the devices and transmit image data quickly by
connecting the cameras directly to the server. Thus, to integrate
a large amount of image data quickly, the obtained image data
and the control signals of other devices (e.g., reject devices)
are integrated into a cloud server via the IoT middleware. The
reject device uses a programmable vision robot arm with five
degrees of freedom and a vision resolution of 640 × 480,
and the microprocessor is a Quad-core ARM A57+128-core
NVIDIA Maxwell.

The proposed method is deployed to perform defect detec-
tion response (controlling the reject device and conveyor belt)
and result visualization (displaying on an all-in-one machine)
on a cloud server with a Kunpeng 920 2.6 GHz processor.

It is worth mentioning that to perform real-time defect
detection, the proposed method is decoupled into three phases
in the deployment, including feature generation based on
contrast learning (see Section III.B), support sample filtering
(see Section III.C.(2)), and defect class inference (see Section
III.C.(1)). Only the inference phase is deployed on the server,
and the feature generation and sample filtering phases are pre-
processed before deployment. Firstly, the synthesized features
of seen/unseen classes are generated using the class prompts
provided by the experts. Then, the generated seen class fea-
tures are filtered. Finally, the unseen class synthesized features,
the filtered seen class synthesized features, and the real support
features are combined to form a feature support library for use
in the defect class inference stage.

In practical applications, to realize defect detection (includ-
ing classification and segmentation), a defect segmentation
model with segmentation and object detection functions is in-
troduced, which crops out the detected defects and then passes
them to our proposed classification model. More accurate
defect locations and smaller image sizes help improve the pro-
posed method’s accuracy and speed. The defect segmentation
model segments the image when the proposed method finishes
classifying the defects. The final visualization is shown in Fig.
9(c).

TABLE VII
PROTOTYPE SCENARIO EXPERIMENTAL RESULTS

K-shot Recognition Send Receive Average Accuracy
0-shot 3600ms 1200ms 150ms 72.30%
1-shot 5700ms 1500ms 150ms 91.30%
5-shot 8200ms 2100ms 150ms 100.00%

3) Evaluation Results: For each experiment, we repeated
ten times to obtain the average value. Combining the parameter
analyses and inference time evaluations from Section IV.C, all
experimental parameters were fixed to θ = 1, k = 4, λ = 5,
and the number of synthesized support samples was four by
weighing model size, classification accuracy, and run time.

The experimental results are shown in Table VII, which
includes the average recognition time for K-shot classification,
the time to send visual features on the network, and the
time to receive the results. Based on the experiment results,
it can be observed that the proposed method achieves an
average accuracy of 100% for 5-shot classification. This result
indicates that for the classification of hot-rolled steel surface
defects in real manufacturing, the model performance of our
method is relatively high for both zero-shot and few-shot. The
time cost of classification is also acceptable for manufacturing
applications.

This work will be further collaborated with Metallurgical
Research Institute Co., Ltd and promoted in industrial pro-
duction lines.
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V. CONCLUSION

In the field of surface defect recognition, our work focuses
on solving three problems: lack of training samples and model
complexity in deep learning-based methods, recognition of
defect types limited to known classes in few-shot learning-
based methods, and inability to trade-off attention to seen
and unseen classes in zero-shot learning-based methods. A
novel few/zero-shot compatible surface defect classification
method is proposed. Extensive experiments on eight fine-
grained datasets show that our method improves by an average
of 8.29% on the few-shot recognition task and 8.23% on
the zero-shot recognition task compared to state-of-the-art
methods. The prototype scenario evaluation demonstrates that
the proposed method can recognize defect types in real time.
Meanwhile, the average accuracy of the 5-shot classification of
hot-rolled steel defects reaches 100%, proving the adaptability
of the proposed method in industrial environments.

The limitations of this method include (1) Compared with
the existing zero-shot learning methods, the accuracy of the
proposed method has significantly improved, but it has not
yet reached the expected accuracy for industrial applications.
The next step will explore associating the seen class sample
information with the unseen class and further optimizing the
recognition of the unseen class using the few-shot learning
idea. (2) Through experiments, it is found that although the
classification performance of the proposed method outper-
forms the methods based on few-shot learning on surface
defect datasets (i.e., MSD-Cls, FSC-20, and MT-CF), the
model size and inference time are not optimal. The next step is
introducing model compression methods, such as knowledge
distillation, to make the model more adaptable to real-time
industrial production environments.
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[17] Abdo, A.A.A. and László Czúni. “Zero-shot learning and classification
of steel surface defects.” Fourteenth International Conference on Machine
Vision (ICMV 2021) (2022): n. pag.

[18] Sun, Xiaohong, Jinan Gu, Meimei Wang, Yanhua Meng and Hui Shi.
“Wheel Hub Defects Image Recognition Base on Zero-Shot Learning.”
Applied Sciences (2021): n. pag.

[19] Jia, Zhen, Zhang Zhang, Caifeng Shan, Liang Wang and Tien-Ping Tan.
“Dual-focus transfer network for zero-shot learning.” Neurocomputing
541 (2023): 126264.

[20] J. Huang, Z. Li and Z. Zhou, ”A Simple Framework to Generalized Zero-
Shot Learning for Fault Diagnosis of Industrial Processes,” in IEEE/CAA
Journal of Automatica Sinica, vol. 10, no. 6, pp. 1504-1506, June 2023,
doi: 10.1109/JAS.2023.123426.

[21] Chen, Shiming et al. “MSDN: Mutually Semantic Distillation Network
for Zero-Shot Learning.” 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) (2022): 7602-7611.

[22] Han, Z., Fu, Z., Chen, S., Yang, J. (2021). Contrastive Embedding
for Generalized Zero-Shot Learning. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2371-2381.

[23] Li Fei-Fei, R. Fergus and P. Perona, ”One-shot learning of ob-
ject categories,” in IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 28, no. 4, pp. 594-611, April 2006, doi:
10.1109/TPAMI.2006.79.

[24] Han, Xu, Hao Zhu, Pengfei Yu, Ziyun Wang, Y. Yao, Zhiyuan Liu and
Maosong Sun. “FewRel: A Large-Scale Supervised Few-Shot Relation
Classification Dataset with State-of-the-Art Evaluation.” Conference on
Empirical Methods in Natural Language Processing (2018).

[25] Y. Wang and D. V. Anderson, ”Hybrid Attention-Based Prototyp-
ical Networks for Few-Shot Sound Classification,” ICASSP 2022 -
2022 IEEE International Conference on Acoustics, Speech and Signal

This article has been accepted for publication in IEEE Transactions on Instrumentation and Measurement. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIM.2023.3329163

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTING TO IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 14

Processing (ICASSP), Singapore, Singapore, 2022, pp. 651-655, doi:
10.1109/ICASSP43922.2022.9746118.

[26] Gao, Tianyu, Xu Han, Hao Zhu, Zhiyuan Liu, Peng Li, Maosong Sun and
Jie Zhou. “FewRel 2.0: Towards More Challenging Few-Shot Relation
Classification.” Conference on Empirical Methods in Natural Language
Processing (2019).

[27] Geng, Ruiying, Binhua Li, Yongbin Li, Jian Sun and Xiaodan Zhu. “Dy-
namic Memory Induction Networks for Few-Shot Text Classification.”
ArXiv abs/2005.05727 (2020): n. pag.

[28] Geng, Xiaoqing, Xiwen Chen and Kenny Q. Zhu. “MICK: A Meta-
Learning Framework for Few-shot Relation Classification with Little
Training Data.” ArXiv abs/2004.14164 (2020): n. pag.

[29] J. Han, B. Cheng, Z. Wan and W. Lu, ”Towards Hard Few-Shot
Relation Classification,” in IEEE Transactions on Knowledge and
Data Engineering, vol. 35, no. 9, pp. 9476-9489, 1 Sept. 2023, doi:
10.1109/TKDE.2023.3240851.

[30] Wang, Junwen, Yongbin Gao and Zhijun Fang. “An angular shrinkage
BERT model for few-shot relation extraction with none-of-the-above
detection.” Pattern Recognit. Lett. 166 (2023): 151-158.

[31] Huang, Qinghua Zhang, Fan Li, Xuelong. (2018). Few-shot decision
tree for diagnosis of ultrasound breast tumor using BI-RADS features.
Multimedia Tools and Applications. 77. 10.1007/s11042-018-6026-1.

[32] Jadon, Shruti. “COVID-19 detection from scarce chest x-ray image data
using few-shot deep learning approach.” Medical Imaging (2021).

[33] Walsh R, Abdelpakey MH, Shehata MS, Mohamed MM. Automated
human cell classification in sparse datasets using few-shot learning. Sci
Rep. 2022 Feb 21;12(1):2924. doi: 10.1038/s41598-022-06718-2. PMID:
35190567; PMCID: PMC8861170.

[34] N. Zhang, M. Ruan, S. Wang, L. Paul and X. Li, ”Discriminative Few
Shot Learning of Facial Dynamics in Interview Videos for Autism Trait
Classification,” in IEEE Transactions on Affective Computing, vol. 14, no.
2, pp. 1110-1124, 1 April-June 2023, doi: 10.1109/TAFFC.2022.3178946.

[35] Moxuan, Y. QianG, Z. Xiyi, C. Juan and W. Quan, ”Contrastive Rep-
resentation for Dermoscopy Image Few-Shot Classification,” 2020 17th
International Computer Conference on Wavelet Active Media Technology
and Information Processing (ICCWAMTIP), Chengdu, China, 2020, pp.
134-137, doi: 10.1109/ICCWAMTIP51612.2020.9317490.

[36] Q. -H. Nguyen, C. Q. Nguyen, D. D. Le and H. H. Pham, ”En-
hancing Few-Shot Image Classification With Cosine Transformer,” in
IEEE Access, vol. 11, pp. 79659-79672, 2023, doi: 10.1109/AC-
CESS.2023.3298299.

[37] Palatucci, Mark, Dean A. Pomerleau, Geoffrey E. Hinton and Tom
Michael Mitchell. “Zero-shot Learning with Semantic Output Codes.”
NIPS (2009).

[38] A. Li, Z. Lu, L. Wang, T. Xiang and J. -R. Wen, ”Zero-Shot Scene
Classification for High Spatial Resolution Remote Sensing Images,” in
IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 7,
pp. 4157-4167, July 2017, doi: 10.1109/TGRS.2017.2689071.

[39] Li, Yansheng, Deyu Kong, Yongjun Zhang, Yihua Tan and Ling Chen.
“Robust deep alignment network with remote sensing knowledge graph
for zero-shot and generalized zero-shot remote sensing image scene
classification.” Isprs Journal of Photogrammetry and Remote Sensing 179
(2021): 145-158.

[40] T. Toizumi, K. Sagi and Y. Senda, ”Automatic Association between
Sar and Optical Images based on Zero-Shot Learning,” IGARSS 2018 -
2018 IEEE International Geoscience and Remote Sensing Symposium,
Valencia, Spain, 2018, pp. 17-20, doi: 10.1109/IGARSS.2018.8517299.

[41] Xu, W, Wang, J, Wei, Z, Peng, M Wu, Y 2023, ’Deep Semantic-Visual
Alignment for zero-shot remote sensing image scene classification’,
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 198, pp.
140-152. https://doi.org/10.1016/j.isprsjprs.2023.02.012

[42] Wei, Jianchong, Yan Cao, Kunping Yang, Liang Chen, and Yi
Wu. 2023. ”Self-Supervised Remote Sensing Image Dehazing Network
Based on Zero-Shot Learning” Remote Sensing 15, no. 11: 2732.
https://doi.org/10.3390/rs15112732

[43] Cha, Zhangzhao, Dongmei Xu, Yi Tang and Zuo Jiang. “Meta-Learning
for Zero-Shot Remote Sensing Image Super-Resolution.” Mathematics
(2023): n. pag.

[44] P. Pan, Y. Li and D. Zhao, ”Generalized Zero-shot Learning Fault Diag-
nosis Framework Based on Anomaly Detection and Contractive Stacked
Autoencoder,” 2022 China Automation Congress (CAC), Xiamen, China,
2022, pp. 2427-2432, doi: 10.1109/CAC57257.2022.10055111.

[45] Z. Hu, H. Zhao, L. Yao and J. Peng, ”Semantic-Consistent Em-
bedding for Zero-Shot Fault Diagnosis,” in IEEE Transactions on In-
dustrial Informatics, vol. 19, no. 5, pp. 7022-7031, May 2023, doi:
10.1109/TII.2022.3210215.

[46] B. Li and C. Zhao, ”Federated Zero-Shot Industrial Fault Diagnosis
With Cloud-Shared Semantic Knowledge Base,” in IEEE Internet of
Things Journal, vol. 10, no. 13, pp. 11619-11630, 1 July1, 2023, doi:
10.1109/JIOT.2023.3243401.

[47] Z. Y. Ding, J. Y. Loo, S. G. Nurzaman, C. P. Tan and V. M. Baskaran,
”A Zero-Shot Soft Sensor Modeling Approach Using Adversarial Learn-
ing for Robustness Against Sensor Fault,” in IEEE Transactions on
Industrial Informatics, vol. 19, no. 4, pp. 5891-5901, April 2023, doi:
10.1109/TII.2022.3187708.

[48] Zhou, Hai. (2012). A New Kind of Based on the Graph K-Means
Clustering Initial Center Selection Algorithm. Applied Mechanics and
Materials. 241-244. 2845-2848. 10.4028/www.scientific.net/AMM.241-
244.2845.

[49] Hassani, Ali, Amirarsalan Iranmanesh, Mahdi Eftekhari and Ab-
bas Salemi. “DISCERN: diversity-based selection of centroids for k-
estimation and rapid non-stochastic clustering.” International Journal of
Machine Learning and Cybernetics 12 (2019): 635 - 649.

[50] W. Tong, Y. Wang and D. Liu, ”An Adaptive Clustering Algorithm
Based on Local-Density Peaks for Imbalanced Data Without Parameters,”
in IEEE Transactions on Knowledge and Data Engineering, vol. 35, no.
4, pp. 3419-3432, 1 April 2023, doi: 10.1109/TKDE.2021.3138962.

[51] Mangla, P., Singh, M.K., Sinha, A., Kumari, N., Balasubramanian, V.N.,
Krishnamurthy, B. (2019). Charting the Right Manifold: Manifold Mixup
for Few-shot Learning. 2020 IEEE Winter Conference on Applications
of Computer Vision (WACV), 2207-2216.

[52] Wang, Y., Xu, C., Liu, C., Zhang, L., Fu, Y. (2020). Instance Credi-
bility Inference for Few-Shot Learning. 2020 IEEE/CVF Conference on
Computer Vision and Pattern detection (CVPR), 12833-12842.

[53] Hu, Yuqing, Vincent Gripon and Stéphane Pateux. “Leveraging the
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