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Abstract—Coronavirus 2019 (COVID-19) has led to a global 
pandemic infecting 224 million people and has caused 4.6 million 
deaths. Nearly 80 Artificial Intelligence (AI) articles have been 
published on COVID-19 diagnosis. The first systematic review on 
the Deep Learning (DL)-based paradigm for COVID-19 diagnosis 
was recently published by Suri et al. [IEEE J Biomed Health 
Inform. 2021]. The above study used AtheroPoint’s “AP(ai)Bias 
1.0” using 10 AI attributes in the DL framework. 

The proposed study uses “AP(ai)Bias 2.0” as part of the three 
quantitative paradigms for Risk-of-Bias quantification by using 
the best 40 dedicated Hybrid DL (HDL) studies and utilizing 39 
AI attributes. In the first method, the radial-bias map (RBM) was 
computed for each AI study, followed by the computation of bias 
value. In the second method, the regional-bias area (RBA) was 
computed by the area difference between the best and the worst 
AI performing attributes. In the third method, ranking-bias score 
(RBS) was computed, where AI-based cumulative scores were 
computed for all the 40 studies. These studies were ranked, and 
the cutoff was determined, categorizing the HDL studies into 
three bins: low, moderate, and high. Using the Venn diagram, 
these three quantitative methods were benchmarked against the 
two qualitative non-randomized-based AI trial methods 
(ROBINS-I and PROBAST). 
 Using the analytically derived moderate-high and low-
moderate cutoff of 2.9 and 3.6, respectively, we observed 40%, 
27.5%, 17.5%, 10%, and 20% of studies were low-biased for 
RBM, RBA, RBS, ROBINS-I, and PROBAST, respectively. We 
present an eight-point recommendation for AP(ai)Bias 2.0 
minimization. 

Index Terms—COVID-19 diagnosis, HDL, risk-of-bias, radial-
regional-ranking, PROBAST-ROBINS-I, AP(ai)Bias 2.0. 

I. INTRODUCTION
Since the outbreak of novel coronavirus (SARS-CoV-2) in 
December 2019, the world health organization (WHO) has 
declared it as a global pandemic [1], called COVID-19. As per 
the WHO’s statistical records, this deadly disease has infected 
224 million people had caused 4.6 million deaths across the 
globe [2]. The world is still reeling under this deadly virus, with 
several waves of disease noticed in the form of mutants such as 
alpha, beta, and, recently, delta [3]. The ongoing COVID-19 
situation has put the healthcare sector in more vulnerable 
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situations, causing intense pressure on the pharmaceutical and 
financial sectors [4].  

 Real-time reverse transcription-polymerase chain reaction 
(RT-PCR) is the standard clinician’s strategy to discover the 
presence or absence of this type of virus [5]. RT-PCR has a 
relatively low positive rate and sensitivity for the early 
detection of this disease [6-9]. The SAR-CoV-2 affects various 
organs of the body such as the lungs, coronary artery, carotid 
artery [10-12], and brain [13, 14], causing pulmonary 
embolism [15] through the molecular pathways [16], 
accelerating diabetes [17], and leading to cerebral thrombosis 
[18]. X-ray and Computed Tomography (CT)-based lung 
imaging is used as an alternative for understanding the severity 
of the disease, particularly in the quantification of ground-glass 
opacities (GGO) in CT scans [19-22]. Manual methods by 
radiologists are used for judging the COVID-19 severity, but it 
is tedious, slow, vulnerable to errors, and yields low specificity 
and sensitivity [6-9]. Thus, there is a need for a reliable, 
automated, scientific and clinically validated, real-time 
solution for the early COVID-19 disease diagnosis and 
prognosis, thereby saving human lives. 

 Artificial Intelligence (AI) has penetrated all walks of life 
and, more recently, in the field of imaging sciences [23], 
particularly in big data frameworks [24]. These AI-based 
studies that have emerged during COVID-19 demonstrate 
exceptionally high performance without strong clinical 
outcomes and therefore are considered biased [25-27]. The 
team of immunologists, pulmonologists, radiologists, and 
cardiologists are interested in using the AI technology to 
diagnose COVID-19 severity, but it has produced a dent that 
has gone unnoticed several times due to AI bias [28]. The 
proposed study is focused on methods to quantify the biased 
nature of AI-based solutions for COVID-19 diagnosis. 
Recently, the first systematic review on the deep learning (DL) 
paradigm for COVID-19 diagnosis was published by Suri et al. 
[28]. In this study, AtheroPoint’s “AP(ai)Bias 1.0” was 
designed using 10 AI attributes in the DL framework based on 
the ranking paradigm.  Even though the study was innovative, 
it is not robust enough to handle a large number of AI 
attributes. Since HDL is combination of two solo DL (SDL) 
models, either cascaded [29] or parallel [30], therefore, these 
configurations can affect the performance of the segmentation 
or classification. Thus, it is important to study the bias in HDL. 
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 The proposed study presents three new innovative 

paradigms for bias estimation in the best 40 dedicated HDL 
studies for COVID-19 diagnosis utilizing 39 (nearly four 
times) AI attributes. These three methods are then 
benchmarked against earlier two non-randomized-based AI 
trial methods (ROBINS-I [31] and PROBAST [32]) for further 
analysis. In the first innovative solution, a radial-bias map was 
computed for each AI study, followed by its bias measurement. 
In the second innovative method, the AI-bias of a study was 
computed by taking the area difference between the best AI 
performing attributes and least AI performing attributes. In the 
third method, cumulative scores for all the AI studies were 
computed and then ranked, dividing the 40 HDL studies into 
three bins corresponding to low-bias, moderate-bias, and high-
bias. These three quantitative and innovative methods, 
classified as “AP(ai)Bias 2.0”, were then benchmarked against 
the two qualitative non-randomized-based AI trial methods 
(ROBINS-I and PROBAST). Finally, we use the Venn 
Diagram (VD) to estimate the total studies common between 
the five types of AI-bias methods or between any combinatorial 
AI-bias pairs. 

 The remaining part of the study has the following layout. 
Section II presents the search strategy using the PRISMA 
model. The statistical analysis on various HDL attributes is 
also presented in the same section. Section III shows the basic 
principle of the HDL architecture along with the strategy for 
bias estimation. Section IV presents the three innovative 
solutions for bias measurement and its interpretation.  Section 
5 shows the benchmarking strategy using ROBINS-I and 
PROBAST methods, along with the data analysis, and finally, 
section VI presents the discussions, followed by the 
conclusions in section VII. 

II. SEARCH MODEL AND STATISTICAL DISTRIBUTIONS 

A. The PRISMA Model 
A detailed search was performed using Google Scholar, 

PubMed, IEEE Xplore, ScienceDirect, and arXiv. The 
keywords used for selecting studies were “hybrid deep learning 
for COVID”, “hybrid deep learning for COVID classification”, 
“hybrid models”, “COVID diagnosis using the hybrid model”, 
“hybrid deep transfer learning for COVID classification”, and 
“transfer learning-based deep hybrid model for COVID 
application”. Figure 1 shows the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) model 
flow diagram consisting of the HDL application on COVID 
diagnosis references used in this study. A total of 183 studies 
were identified; duplicates were removed leaving 123 records 
using the “Find Duplicates” feature in EndNote software by 
Clarivate Analytics. The three exclusion criteria were (i) 
studies not related to AI, (ii) non-relevant articles, and (iii) 
articles with insufficient data. After applying the exclusion 
criteria, 23, 20, and 10 studies (marked as E1, E2, and E3 in 
Figure 1) were identified and removed, leading to the final 
selection of crucial 70 references for this study. 

B. Hypothesis and Risk-of-Bias Acceptability Criteria 
We hypothesize that “non-randomized HDL-based attributes 

can (a) detect, (b) classify, (c) estimate severity of the COVID-
19 risks, and (d) meet the performance standards in lung 

infected Acute Respiratory Distress Syndrome (ARDS) 
patients.” The first three out of five acceptability criteria under 
which the HDL-based studies are considered for bias 
estimation were: (i) radial-bias map (RBM) method, (ii) 
regional-bias area (RBA) method, (iii) ranking-bias score 
(RBS) method, the mean score must be greater than or equal to 
80% for an AI-HDL based study while taking into 
consideration all the AI-HDL attributes. This was due to the 
consensus of the experienced team and three different classes 
of bias for each AI attribute based on its strength (such as low, 
moderate, and high). Similarly for the remaining two, (iv) 
ROBINS-I and (v) PROBAST paradigms, our acceptability 
criterion must meet the score of 80% or above for HDL-based 
studies to be in the low Risk-of-Bias (RoB) zone. 

 

 
Figure 1. The PRISMA model. 

C. Statistical Distributions by different Criteria 

C.1 Statistical Distribution by the Four Types of Objectives 
The diagnosis of COVID-19 using the HDL paradigm is 
classified into four objectives when considering lung CT 
imaging. (i) Lung classification (LC) for COVID-19 detection; 
(ii) Lung classification followed by lesion localization 
(LC+LL); (iii) Lung segmentation followed by lung 
classification (LS+LC); (iv) Lung segmentation followed by 
lung classification and lesion localization (LS+LC+LL). 
Using the total of 40 HDL studies, the number of studies under 
each of these objectives for COVID diagnosis were 26 (65%) 
[6, 20, 33-56], 4 (10%) [57-60], 6 (15%) [7, 9, 61-64] and 4 
(10%) [8, 19, 65, 66], respectively (see Figure 2 (a)). Class (i) 
(LC) and Class (ii) (LC+LL) used X-ray images or CT images 
as part of the imaging modality, while Class (iii) (LS+LC) and 
Class (iv) (LS+LC+LL) employed CT images as part of lung 
segmentation as their objective for diagnosis of COVID-19 
severity. The studies that provide LL used heatmaps based on 
Grad-CAM for visualization [19]. 

C.2 Statistical Distribution by Two Type of Image Modality 
Image modality always plays a vital role in the system of 
COVID-19 diagnosis using HDL paradigms. The two major 
modalities used in these studies are (a) X-ray and (b) CT. X-
ray offers advantages over CT mainly due to low radiation [50], 
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faster speed [67], a specific signature (features) of pneumonic 
disease [6, 38], and relatively economical [38, 40]. On the 
contrary, CT offers benefits such as better COVID region 
coverage of the lungs [63], stronger graphical feature and 
signature of pneumonic disease [9], bilateral change in 
COVID-19 infected patients with the ill-posed cases [49]. 
Finally, an effective tool in detection, quantification, and 
follow-up of the disease [19, 20]. Several studies [41, 51] have 
used both modalities to exploit the advantages of X-ray and 
CT. The percentage distribution for the use of image modalities 
were X-ray:45%, CT:50%, and X-ray+CT:5% is depicted in 
Figure 2 (b). 

C.3 Statistical Distribution by Three Types of Pneumonia 
We have categorized COVID-19 pneumonia into three 
categories based on the types of pneumonia. In binary (2-class) 
category, i.e., it is COVID vs. control, in ternary (3-class) 
category, i.e., COVID vs. control, vs. pneumonia, while in 
quaternary (4-class), i.e., COVID vs. control vs. viral 
pneumonia vs. bacterial pneumonia. The percentage 
distribution of these classes used in this study are depicted in 
Figure 2 (c) for binary (62%) [6, 8, 19, 20, 34, 35, 37, 42, 44, 
47-49, 51, 52, 55-57, 59-64, 66, 67], for ternary (28%) [7, 9, 
33, 36, 38, 41, 43, 46, 53, 58, 65] and  for quaternary (10%) 
classification system [39, 40, 45, 50]. 

C.4 Statistical Distribution by Types of HDL Architectures  
The architecture of HDL can broadly be classified into spatial, 
temporal, and spatial-temporal, as observed from various 
studies under HDL based on the classification of COVID 
images [68]. It was observed that only two studies [7, 41] (5%) 
used spatial-temporal HDL architecture, while 38  (95%)  used 
spatial HDL architecture (see Figure 2 (d)). 

C.5 Statistical Distribution by Data Size 
Data size (DS) represents the number of images taken using the 
modalities of X-ray, CT, and both X-ray and CT. Since the data 
size drives HDL performance, it prevents over-fitting and 
imbalance. The distribution from 40 HDL studies is shown in 
Figure 3. (Note that only 17.5% (7/40) of studies had dataset > 
5K). 

III. HDL ARCHITECTURE, ITS COMPONENTS, AND BIAS 
ESTIMATION STRATEGY 

A. Pipeline for ARDS diagnosis using HDL architecture 
For a comprehensive RoB analysis, it is customary to 
investigate the basic building blocks of the ARDS pipeline in 
the HDL paradigm. As shown in Figure 4, the three major 
components of the ARDS pipeline are lung segmentation, 
COVID-19 severity classification, and lesion localization.  

B. Typical HDL architecture and the Bias Concept  
This section deals with the HDL architecture and the building 

blocks of HDL for COVID-19 diagnosis in the AI framework 
that leads to the motivation for bias estimation strategy. The 
HDL architecture is mainly driven by either the manifestation 
of three broad categories of imagery used (such as spatial, 
temporal, and spatial-temporal) [68] or the objective of the 
design of the HDL study for COVID-19 diagnoses, such as LC, 
LC+LL, LS+LC, and LS+LC+LL (section II.C). The studies 

considered under this systematic bias estimation (SBE) 
followed the spatial HDL architecture as they consider spatial 
input modalities such as X-ray and CT images while 
maintaining their corresponding design objective for COVID-
19 detection. 

A typical example of the HDL architecture is shown in Figure 
5. Primarily, the HDL architecture considered CT scans and 
then does the separate branch of LC+LL followed by LS. 
Finally, the system performed a joint diagnosis of both 
branches for conformability. The other AI attributes 
contributing to the HDL architecture are the pre-processing, 
data augmentation, and high-value engineering performance 
which could provide the study’s low-bias nature [30]. 
Furthermore, specific clinical objectives should be met, and if 
not met, they can cause a high-bias effect. If this HDL 
engineering attributes over-perform against the desired clinical 
outcomes, the HDL system is biased. Note that these AI 
attributes are responsible for the HDL performance that can be 
quantified against its optimal value.  The difference in HDL’s 
ability to reach optimal value against clinical performance is 
categorized as bias.  Thus, we must have methods to represent 
the bias graphically or pictorially in the form of a map. Thus, 
the spirit of our innovation is the design of a map using a radial 
strategy that represents the fundamental core of HDL, i.e., the 
AI attributes. The quantification of such method leads to two 
more solutions, such as regional-bias area (RBA) and ranking-
bias score (RBS) to estimate bias, thus evolving three such 
innovations to be discussed in the next section. 

 
Figure 2. Statistical distribution by various criteria: (a) by objective; (b) by 

image modalities (c) by types of Pneumonia classes, and (d) by type of HDL 
architectures. 

 

 
Figure 3. The distribution of increasing DS in various HDL studies for 

COVID-19 diagnosis. K~1000. 

IV. THREE NOVEL PARADIGM 
The concept of the RBM originates from the idea that when 

a system is unbalanced, there is always a leak, and this leak 
bleeds and spreads in a unique direction causing a protrusion.  
The strength of the leak can be noticed when compared to the 
un-leaked region.  
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Figure 4. CT-based COVID diagnosis in ARDS using HDL. 
 

 
Figure 5. The standard architecture of HDL for COVID-19 diagnosis with 

low-bias effect [69] (permission pending). 
 

The proposed system consists of AI and its attributes, and 
these attributes when made to spread out in 360 directions, 
create a map. When some of the attributes are too strong, while 
others are weak, it causes a dent in the system leading to a 
glitch, so-called bias. We have categorized this system as a 
“radial-bias” map (RBM) since the AI attributes are spanned 
in radial 360 directions. When some of the attributes are too 
strong, while others are weak, it causes a dent in the system 
leading to a glitch, so-called bias. We have categorized this 
system as a “radial-bias” map (RBM) since the AI attributes 
are spanned in radial 360 directions. Further, the map area 
between the maximum strength of the AI attributes that the 
system (study) can possess, and the minimum strengths of the 
AI attributes can also represent an indirect measure of the bias, 
called the regional-bias area (RBA). In the 3rd bias category, 
we adapt the score for each attribute and for each study leading 
to a cumulative score per study. These scores are then ranked, 
and bias cut-off is estimated. The process of bias identification 
using such a ranking paradigm is the “rank-bias” score (RBS) 
method. 

A. Innovation-I:  Radial-Bias Map 
Since the HDL technology applied for COVID diagnosis 

consists of different stages such as design, optimization, 
performance evaluation, and clinical application, one must 
look for the strengths of the AI attributes (A1 to A39 in Table 
A1, Supporting document) in these stages (so-called clusters).  
We observed that the distribution of AI attributes in each of the 
four clusters were 14, 7, 8, and 10, respectively.  

For estimating the strengths of AI attributes, we used a 
pictorial representation of the “spokes and wheel model” in 360 
directions, where each spoke represents the product of the 
weight of the attribute times the radius of the spoke. The bias 
value (βradial) measurement pseudo algorithm is summarized as 
follows: (i) Divide the AI attributes into four clusters (design, 
optimization, performance evaluation, and clinical validation) 

based on the HDL pipeline. (ii) Compute the spoke length of 
each AI attribute (weight x 80% of half the image size (256)). 
(iii) Compute the sum of spoke lengths corresponding to four 
clusters (say ΣC1, ΣC2, ΣC3, and ΣC4). (iv) Compute the sum of 
the top two and bottom two clusters (say ΣA and ΣB). (v) 
Compute the 𝛃𝛃radial = |ΣA-ΣB|, as the absolute difference 
between ΣA and ΣB. (vi) The normalized bias value ( 
𝛃𝛃radialnorm )=(𝛃𝛃radial

𝜶𝜶
), where α is the total number of AI attributes. 

The weight matrix presents the weights of the AI attributes 
based on the experience and judgment of AI professionals. In 
all, each study has 39 attributes corresponding to every 9.2 
(~360/39) degrees.  The Bezier spline curve is then fitted 
through the endpoint of each spoke to represent the smooth 
curve. Since the curve has four sectors (corresponding to four 
clusters), the radial-bias map resembles butterfly wings, as 
shown in Figure 6, laid out in a 5x8 grid, representing 40 HDL 
studies. These studies are arranged from low to high-bias, 
where the bias of each study is in the corner of the radial-bias 
map (where the name of the bias map is: “Sn-
Name:BiasValue”, for example, “S31-Asl:18”, where “31” 
represents the study number, “Asl” is the first three letters of 
the last name of the first author in the study, and “18” 
represents the normalized value of the bias). Note that the 
following is the sequence of AI attributes for each of the four 
clusters (A1 to A39 in Table A1, Supporting document). The 
AI design cluster (A1-A14) consisted of (i) HDL class, (ii) 
generalized hybrid (coarse), (iii) specialized hybrid (refined), 
(iv) a number of solo deep learning (SDL) architecture used to 
form HDL, (v) number of classifiers, (vi) several classes for the 
classification system, (vii) feature extraction methodology, 
(viii) feature selection methodology, (ix) pre-processing, (x) 
data augmentation, (xi) data partition scheme, (xii) a number 
of performance evaluation parameters for evaluation, (xiii) 
hardware and (xiv) software resource used. The second cluster 
(A15-A21) of AI-based attributes are the seven optimization 
parameters used in the HDL study. These are the (i) 
regularization method adapted, (ii) number of regularization 
methods, (iii) optimizers, (iv) loss function, (v) learning rate, 
(vi) batch size, and (vii) epochs of the HDL system.  The third 
cluster (A22-A29) of attributes includes the performance 
evaluation parameters such as (i) accuracy, (ii) sensitivity, (iii) 
specificity, (iv) precision, (v) F1-score, (vi) Kappa, (vii) area-
under-the-curve (AUC), and (viii) statistical analysis. The last 
and fourth cluster (A30-A39) consists of ten benchmarking 
and clinical validation parameters attributes. These include the 
(i) benchmarking with the number of models, (ii) clinical 
validation, (iii) scientific validation, (iv) image modality, (v) 
dataset size, (vi) performance analysis metrics, (vii) study 
objective, (viii) demographic data of dataset, (ix) clinical 
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validation of dataset by a radiologist, and (x) RT-PCR test 
conducted to confirm the data on the dataset. 

B. Innovation-II: Regional-Bias Area 
The RBA is calculated by the area difference between the 

best AI performing attributes and the worst AI performing 
attributes. The RBA is depicted in Figure 7 for each study in 
increasing order of bias area, where the white region represents 
the bias area. Each study bias is represented as: “Sn-
Name:BiasValue”, for example, “S15-Rez:69”, where “15” 
represents the study number, “Rez” is the first three letters of 
the last name of the first author in the study, and “69” 
represents the normalized value of the bias. Note, the more the 
bias area, the higher is the white shaded region. 

 

 
Figure 6. Demonstration of the results of radial-bias maps for 40 HDL 

studies in the order of the decreasing area of the spline-fitted butterfly. The 
studies are labeled as S1 to S40. The two-digit number after “:” is the 
normalized bias value of the radial-bias map. 

 

 
Figure 7. Bias configuration of HDL studies by regional-bias area method. 

White patches show the regional-bias area. 

C. Innovation-III: Ranking-Bias Score 
There are 40 HDL studies in AI under consideration for the 

COVID-19 diagnosis [6-9, 19, 20, 33-53, 55-67]. We created 
39 AI-based attributes for each study, thus a total of 1,560 
attributes. These HDL features are initially qualitative and then 
quantified by assigning a number between 0 and 5 based on the 
AI scientist’s experience. The study’s aggregate score is the 
sum of all attribute values for that selected study. Using the 
aforementioned technique, we plotted the mean values of the 
40 HDL investigations, which ranged from 2.1 (right) to 4.0 
(left), plotted in decreasing order (4.0 to 2.1), as shown in 

Figure 8 and Table A1 (Supporting document). We follow up 
this ranking-bias score method to find the bias in the HDL 
studies. The higher the mean value, the lower is RoB. Hence, 
the studies were arranged in the order of low-bias, moderate-
bias, and high-bias, according to the decreasing order of their 
aggregate scores. The raw-cutoff of 2.9 was determined to 
select AI-based HDL studies for RoB based on the intersection 
of the “cumulative plot of the mean score and the frequency 
plot curve of the studies”. According to the ranking score 
graph, the majority of the studies had a moderate-bias (ranging 
from 3.5 to 2.9, in decreasing order left to right, Figure 8), and 
this accounted for 24 studies (60%)). Note that all the 
moderate-bias studies were published simultaneously (in 2020) 
and did not offer more extensive diversity in the AI techniques 
for COVID diagnosis. There was a subtle change in the AI 
attributes between the studies. Note that the studies with higher 
normalized mean values in the AI attributes were considered as 
low-bias. These low-bias studies [7, 20, 33, 47, 50, 57, 62] 
showed more innovation in the design for COVID diagnosis. 
On the contrary, the tail-enders [6, 19, 36, 37, 43, 51, 54, 55, 
65] showed low AI attribute mean scores (high-bias) and were 
not clinically substantial compared to low-bias or moderate-
bias studies. We will discuss the analysis of the studies 
between the three quantitative and innovation methods in the 
next section. 

 

 
Figure. 8. Results of the ranking-bias score method showing the frequency 
distribution of HDL studies in decreasing order followed by the cumulative 
plot, showing the raw HDL cut-off. LM: Low-moderate cutoff 3.6, MH: 
Moderate-high cutoff 2.9. 

V. NON-RANDOMIZED AI METHODS AND INTER-
COMPARISON OF FIVE BIAS METHODS 

Recently two qualitative methods (ROBINS-I [31] and 
PROBAST [32]) were designed for non-randomized AI trials. 
The section converts the HDL’s qualitative to quantitative 
measure using ROBINS-I and PROBAST paradigms. 

A. ROBINS-I 
The goal of this bias estimation method is to simulate the 

randomization of non-randomized trials. In order to study RoB, 
it covers seven different features (domains) that are grouped 
into three intervention components (marked parameters): (a) 
“Pre-Intervention,” (b) “During Intervention,” and (c) “Post-
Intervention.” Table A2 (Supporting document) illustrates as: 
(C1) confounding factors (data size, data source, and inclusion 
of demographic data), (C2) participant selection (partitioning 
of dataset and number of HDL models included), (C3) 
intervention classifications (imaging features, pre-processing, 
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and data augmentation), (C4) intended deviation (validation 
and verification by the radiologist and benchmarking), (C5) 
missing data (SWAB test and usage of loss function, 
optimizers, and regularization), (C6) the measurement of 
outcome (prevents it from being included in the meta-analysis, 
performance evaluation parameters), and (C7) result reporting 
(clinical validation and statistical analysis). In order to 
represent the results of the qualitative analysis, a three-color 
scheme was used in the HDL framework. The red signifies a 
high-bias in the study, indicating a serious problem with the AI 
attributes taken into consideration, and the attribute was given 
a score of 1. Those with a moderate-bias (yellow) were given a 
score of 3, whereas those with a low-bias (green) performed 
well compared to the testing parameters and were given a score 
of 5. These scores were summed up, and the final mean score 
was calculated for all the 40 studies. Using ROBINS-I, ~55% 
(22 out of 40) studies had high-bias, and 14 studies (~35%) 
were moderate-bias (Figure 9 c-d). There were four studies in 
the low-bias zone (Figure 9 b).  

B. PROBAST 
The PROBAST is a prominent RoB assessment tool based on 
AI with the following features (a) participants, whether or not 
a radiologist validated them, type of data source, and 
demographics; (b) predictors, consisting of imaging features, 
pre-processing, data augmentation, loss functions, and 
optimizers; (c) outcomes, if RT-PCR test was performed for the 
cohort, and performance evaluation parameters were evaluated 
and (d) analysis, if it would cover the data partitioning, patient 
count, benchmarking against other models, clinical validation, 
and statistical evaluation. The ranking was performed using 
AP(ai)Bias 2.0, (Table A3, Supporting document), using the 
same 40 studies. With the use of PROBAST, we found that 
~35% percent (14 out of 40) of the studies showed a high-bias 
(red), ~45% (18 out of 40) were moderately-biased, and eight 
studies were in the low-biased (Figure 9 b-d). 

C. Analysis of Three Bias Strategies: Venn diagram 
This section represents the Venn diagram (VD) approach to 

analyze the relationship between the three innovative methods 
(RBM vs. RBA vs. RBS) for RoB. Figure 9 (a) depicts the 
process of the VD under three categories of bias such as (a) 
low-bias, (b) moderate-bias, and (c) high-bias. The number of 
studies in low-bias for RBM, RBA, and RBS were 16 (40%) 
[6-8, 33, 35, 36, 42, 46-50, 55, 57, 59, 62], 11 (27.5%) [7, 20, 
33-35, 47, 50, 53, 57, 64, 66] , and 7 (17.5%) [7, 20, 33, 47, 50, 
57, 62] respectively. The number of studies under moderate-
bias for RBM, RBA, and RBS were 9 (22.5%) [20, 34, 40, 53, 
54, 58, 60, 63, 66], 11 (27.5%) [38, 40, 44-46, 49, 56, 58, 59, 
61, 63], and 24 (60%) [8, 9, 34, 35, 38-42, 44-46, 48, 49, 52, 
53, 56, 58-64], respectively. Similarly, for high-bias were 15 
(37.5%) [9, 19, 37, 38, 41, 43-45, 51, 52, 54, 56, 61, 64, 65], 
18 (45%) [6, 9, 19, 36, 37, 39, 41-43, 48, 51, 52, 54, 55, 60, 62, 
63, 65], and 9 (22.5%) [6, 19, 36, 37, 43, 51, 54, 55, 65]. The 
studies that fall under the intersection of low-bias, moderate-
bias, and high-bias were 5, 3, and 6, respectively for the three 
innovative methods (Figure 9 (a)). 

D. Analysis of Bias using five measures 
To create a VD, the following steps were used (Figure 9 b-

d). ROBINS-I and PROBAST were converted from qualitative 
to quantitative schemes using conversion scores such as 5 for 
low-bias, 3 for moderate-bias, 1 for high-bias, and 0 for 
unclear-bias. (ii) Common studies are shown between (a) 
radial-bias map, (b) regional-bias area, (c) ranking-bias score 
(d) ROBINS-I, and (e) PROBAST. (iii) The same set of 40 
HDL studies was normalized into digital count, as shown in 
Figure 9 (a-d). 

 

 
Figure 9. Comparison of (a) three analytical bias methods (RBM, RBA, and 

RBS) using VD. (b), (c), and (d) shows the comparison of five bias methods 
(RBM, RBA, RBS, PROBAST, and ROBINS-I) low-bias, moderate-bias, and 
high-bias measurements, respectively. 

E. Cluster analysis between two groups: three quantitative 
methods (Gr. A) and two non-randomized AI methods (Gr. B) 
Given two clusters (say group A & group B, where A is a pool 
of three innovative methods: RBM, RBA, and RBS methods 
while B is a pool consisting of two older methods: ROBINS-I 
and PROBAST). It is important to investigate the intersection 
of the two clusters in moderate and high-bias categories. The 
intersection is defined as a combination of 2, 3, 4, and 5 bias 
methods using clusters A & B. This is shown in Figure 10, 
where yellow and red represents moderate-bias and high-bias, 
respectively. Following are the conclusions (i) High-bias 
studies strongly overlap between the two clusters. This is 
because most of the studies do not do (a) clinical validation, (b) 
the datasets were not verified and validated by the radiologist, 
(c) feature selection was not performed, and (d) the RT-PCR 
test was not conducted. (ii) Moderate-bias has a lower 
frequency compared to the high-bias. The mean frequency for 
moderate-bias and high-bias studies were 3.19 and 8.38, 
respectively. (iii) Overlap between the clusters was ~163% 
((3.19-8.38) / 3.19) more in the high-bias compared to the 
moderate-bias. Figure 11 shows that with the decrease in the 
cutoff from 4 to 2.1, more studies participate in the low-bias 
region. Only one study passed the acceptability criteria of 80% 
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[7], and with the cutoff of 3.6, seven studies passed the 
hypothesis. 

VI. DISCUSSION 
This is the first study of its kind to demonstrate three new 

methods for AI bias estimation in the HDL paradigm while 
considering ARDS under the class of AP(ai)Bias 2.0. Forty 
studies were selected using the PRISMA model, a well-
established standard in the healthcare industry. The study 
showed various statistical distributions by various criteria such 
as (a) by objective; (b) by image modalities (c) by types of 
Pneumonia classes, and (d) by type of HDL architectures. Note 
that HDL is not same as ensemble or Hybrid Ensemble Deep 
Learning Model (HEDL). This is because ensemble is a 
combination of several classification methods, while HEDL is 
combination of ensemble and hybrid [70].  The main novelty 
of our study was the analytical design of three methods RBM, 
RBA, RBS, and subsequently validated against two of the 
previously developed non-randomized AI strategies such as 
ROBINS-I, and PROBAST. The RBM was the most elegant 
method since it demonstrated the map of high-performing vs. 
low-performing AI attributes in a study.  To this complement, 
the RBA method offers a regional area method for joint 
visualization and bias computation. The RBS method used the 
aggregate score paradigm followed by ranking in the HDL 
framework.  We analyzed these systems using the Venn 
diagram. Finally, based on moderate-high and low-moderate 
cutoffs of 2.9 and 3.6, respectively, we observed 40%, 27.5%, 
17.5%, 10%, and 20% studies were low-biased for RBM, 
RBA, RBS, ROBINS-I, and PROBAST, respectively.  Our 
system AP(ai)Bias 2.0 used 39 AI attributes on 40 HDL studies 
unlike the previous study that used 10 AI attributes on 42 DL 
studies under the class of AP(ai)Bias 1.0. Considering the two 
pools A and B, where pool A consisted of RBM, RBA, and 
RBS and pool B consisted of ROBINS-I and PROBAST, we 
showed the inter-combinations of clusters between the two 
pools. There was 163% more overlap between pool A designed 
using AP(ai)Bias 2.0 and pool B (previous methods) in high-
bias compared to moderate-bias. 

 

 
Figure 10. Inter-combinations of clusters between the two pools (A is a pool 

of RBM, RBA, and RBS while pool B is ROBINS-I and PROBAST). Yellow: 
moderate-bias and Red: high-bias. 

 
A short note on over-emphasis on classification paradigm  
The robustness of any HDL model for COVID-19 detection 

can be reflected by its performance evaluation (PE) parameters. 
The standard PE parameters used by the HDL-COVID-19 
detection system for classification are accuracy, sensitivity, 
specificity, precision, F-1 score, Kappa, and area under the 

curve (AUC). However, accuracy is a very well-known 
parameter and is adapted by almost all HDL models.  

 
Benchmarking Table 
The benchmarking Table 1 shows a comparison between our 

proposed work with six other studies [28, 71-75], where 13 
attributes were considered. The proposed study is in the last 
column. Note that we offer “✓” in places for unique 
contribution in the proposed model and “”in the absence of 
any other contribution. 

 

 
Figure 11. Plot showing the number of studies in the low, moderate, and 

high-bias regions with the decreasing cutoff. 
 

Table 1. Benchmarking table. 
SN Attributes Alzahab 

et al. 
[71] 

Kao  
et al. 
[74] 

Albahari 
et al.  
[72] 

Roberts 
et al. 
[75] 

Bao  
et al.  
[73] 

Suri  
et al.  
[28] 

Suri  
et al. 

(Proposed) 
1 Date Jan.  

2021 
May 
2021 

June  
2020 

Oct.  
2020 

Jun. 
2020 

Aug. 
2021 

2021 

2 AI Spec. HDL AI AI ML AI DL HDL 
3 Application BCI COVID COVID COVID COVID COVID COVID 
4 RBM       ✓ 
5 RBA       ✓ 
6 RBS      ✓ ✓ 
7 ROBINS-I      ✓ ✓ 
8 PROBAST    ✓  ✓ ✓ 
9 Other  Funnel       

10 PRISMA ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
11 # of study 47 6 11 45 13 89 42 
12 References 96 49 109 84 30 116 67 
13 Objective LS, LC LC LC LC LC LC LS, LC, LL 
 

 
Figure 12. Bias analysis and Impact factor of studies. 

 
Comparison between Suri et al. (JBHI’21) & AP(ai)Bias 2.0 
The most fundamental difference between the current study 

and Suri et al. [28] is the design of three novel bias methods 
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(such as RBM, RBA, RBS, so-called AP(ai)Bias 2.0) while 
considering 40 HDL studies using 39 AI attributes, unlike in  
Suri et al. [28] (JBHI ’2021) considering 42 DL studies using 
10 AI attributes, so-called AP(ai)Bias 1.0. The underlying 
principle in AP(ai)Bias 2.0, is the vector representation of the 
AI attribute. It is distributed circularly in four clusters leading 
to butterfly wings, obtained using the “spokes and wheel” 
model. AP(ai)Bias 2.0 was fully automated by accurately 
computing the RBM, RBA, and RBS measurements. Finally, 
the low-bias intersection between the five bias methods is 
elegantly presented, unlike in AP(ai)Bias 1.0, where the 
intersection is of 3 methods only. Note that the cutoffs in 
AP(ai)Bias 1.0 was 1.9, unlike in AP(ai)Bias 2.0, the cutoff 
was 3.6. In AP(ai)Bias 2.0, for low bias, a raw cutoff of 3.6 
was computed using RBS. Using the cutoff of 3.6, it was 
discovered that RBM, RBA, RBS, ROBINS-I, and PROBAST 
had only 40%, 27.5%, 17.5%, 10%, and 20% studies in the low-
bias, respectively. Only one study qualified in low-bias 
category. On the contrary, AP(ai)Bias 1.0, showed that 
ROBINS-I and PROBAST had only 32%, 16%, and 26% 
studies, respectively in low-moderate RoB (cutoff>2.5), and 
none of them qualified for the RoB hypothesis. Overall, the 
standard of HDL studies was better having a category of 
moderate-bias, unlike in the DL framework where most of the 
studies were high-biased. 

 
A short note on Bias analysis and Impact Factor of Studies 
We uncovered why the bias showed higher value in these 40 

HDL studies. Quality has always been a factor in publication.  
Figure 12 shows the impact factor (IF) distribution of 40 HDL 
studies for COVID-19 diagnosis.  Keeping our IF threshold of 
5, only 12% of the studies were published in IF>6.0.  The 
standard to see was that 60% of the studies were published in 
IF<3.5, while 30% were published in IF<1.5. Thus, this is one 
reason for high-bias in studies since the objective was to 
quickly publish fast in journals with low IF. Further, one reason 
which accounts for high-bias is the lack of thorough research. 
This directly points to the cost of conducting research, funding 
for research, multicenter data access, and lack of participation 
by radiology centers (which could be due to their interest and 
no direct incentive for the participating radiologists). 

 
Recommendations/Challenges 
The proposed study presents several recommendations that 

can improve the AI-bias in forthcoming studies. We have 
clustered these recommendations based on the stages of the 
pipeline such as (a) objective-clarity, data size and ground truth 
clinical information, (b) design of the HDL architecture and the 
optimization parameters, (c) performance evaluation of the 
engineering parameters, (d) scientific and clinical validation, 
hardware constraints, and finally the resources which includes 
funding for the entire project. Overall, we have eight-point 
crucial recommendations discussed below: (i) Objective and 
vision of the study: This should be clearly defined based on the 
four types of objectives. This can include (i) LC for COVID-
19 detection; (ii) LC+LL; (iii) LS+LC; or (iv) LS+LC+LL. 
This should consider if the system being developed is spatial, 
temporal, or spatial-temporal. Lastly, it should take into 
consideration the type of classification such as binary (two 
classes), trinary (three classes), and quaternary (four classes). 

Finally, dimensionality (2D vs. 3D) should be taken into 
consideration when choosing the vision. (ii) Data Size and 
Ground Truth Clinical Information: Only 50% of the studies 
had #CT/X-ray scans >3K and 17.5% studies >5K. This 
becomes challenging if the objective classification of 
multiclass (classes >3-10).  Balancing and augmentation is one 
solution, but this introduces bias. Thus, to avoid AI-bias, it is 
required to have a multicenter data collection of data sizes 
>10K. As part of the ground truth information, one must collect 
clinical information such as ground-glass opacities (GGO), 
type of pneumonia (such as COVID, bacterial, viral-
community, atypical, influenza, and legionnaire), grading of 
the COVID-19 severity (low, moderate, and high), location and 
annotation of the lesions inside the lung region. (iii) HDL 
architectural vision: HDL architecture should consider how the 
data is trained using an AI model. Since the COVID-19 disease 
has different repercussions in patients having comorbidity such 
as renal disease, coronary artery disease, neurological disease, 
diabetes, peripheral disease, etc., the training models can be 
designed based on “COVID-19 lung CT scans severity along 
with its comorbidity”. This way, the appropriate model is not 
applied to the “unseen CT scans” with specific symptoms. 
Thus, HDL training models should be tied to comorbidity to 
avoid the AI-bias and to bleed in the radial-bias map. This will 
lead to the best design with the least AI-bias. Further, the need 
for robust initial weights during transfer learning must be used 
to avoid re-training of the deep learning systems. (iv) 
Optimization of HDL Architecture: Optimization in 
engineering design must be conducted for best HDL 
architecture, such as the type of optimizer (ADAM, root mean 
squares (RMSprop), stochastic gradient descent (SGD)), type 
of loss functions (Cross-Entropy, Dice Similarity Coefficient, 
Hinge, Empirical), epochs needed, batch normalization, depth 
of the neural network, and learning rates. (v) Performance 
Evaluation Parameters: The performance evaluation of the 
system design must be conducted for all AI attributes (360) 
which should give equal importance to scientific parameters 
(classifier parameter evaluations) and clinical parameters 
(statistical parameter evaluations). These performances must 
have a feedback loop to overcome the weak parameters to 
avoid AI-bias. (vi) Scientific Validation and Clinical 
Evaluation: The outcome of the AI study on COVID-19 data 
must be scientifically and clinically validated. The current gold 
standard is the RT-PCT test and must be conducted as part of 
the study. Scientifically, the system must be validated on 
unseen data that is not part of the training system. Verification 
of the software must be conducted to avoid failure in the 
software design. (vii) Hardware and Software Requirement: AI 
training models seldom require large data size (a) having 
512x512 to 1024x1024 sized images, (b) 2-3 bytes per pixel (8-
16-24 bits per pixel), and (c) big cohorts. This all leads to large 
memory and processing power requirements. Thus, GPU or 
GPU clusters are sometimes needed to avoid cutting corners 
and AI-bias. (viii) Funding: At national and international 
levels, collaborations must be conducted at the United Nations 
Organization (UNO) level to create funds for research groups 
to expedite the dedicated scientists who cannot access funds in 
their own countries.  This should be non-political and solely 
based on scientific merits providing inputs to designs that can 
prevent AI-bias in outcomes. 
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Strength, Weakness, and its Extension 
AP(ai)Bias 2.0 collectively offers three innovative solutions 

for AI-bias estimation using RBM, RBA, and RBS. Further, 
the AP(ai)Bias 2.0 was benchmarked against two non-
randomized AI-bias estimation methods (ROBINS-I and 
PROBAST) by converting qualitative measures into  
AP(ai)Bias 2.0 framework. The main strength of AP(ai)Bias 
2.0 was its fully automated design using Python language 
offering spline fitted butterfly maps, RBM, and RBS along 
with its cutoff in a click of the button, given the weight matrix.  
The major weakness of the system was the lack of information 
in the published studies which was considered as low-weights 
or score. While this system is truly innovative, fast, reliable, 
and designed with experienced team consent, variability 
studies and fusion ensemble methods need to be conducted for 
further validation [76, 77]. Search criteria need to broaden by 
including keywords such as “fusion, combine, cascaded AI 
models” [78]. The application of the bias methods is not 
restricted to COVID-19 ARDS application alone and can be 
extended to other applications such as cardiovascular risk 
stratification [79, 80], brain tumor [81], and Parkinson's disease 
[82] using AI paradigms. 

VII. CONCLUSION 
This is the first study on COVID-19 diagnosis using HDL that 
envelops three innovative and powerful solutions for bias 
estimation in AI by using AP(ai)Bias 2.0 which consists of a 
radial-bias map, regional-bias area, and ranking-bias score. 
AP(ai)Bias 2.0 was benchmarked against ROBINS-I and 
PROBAST, demonstrating consistent results for the three bias 
bins (low, moderate, and high).  The bias was analyzed using a 
Venn diagram between (a) three innovative methods and (b) 
among the five RoB models. Based on the cumulative score of 
the ranking paradigm having a cutoff of 3.6, the percentage of 
low-bias studies in the five pools were 40%, 27.5%, 17.5%, 
10%, and 20%, corresponding to RBM, RBA, RBS, ROBINS-
I, and PROBAST, respectively. Finally, the study HDL 
presented a set of eight-point recommendations for minimizing 
the AI-bias. 
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