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Abstract— The complicated sensing and communication envi-
ronment of power systems results in measurement errors with
unknown, nonzero-mean, non-Gaussian, and time-varying statis-
tics. Traditional state estimator designs are based on heuristic
assumptions of measurement error distributions and are agnostic
to the true error statistics, yielding suboptimal error filtering
performances in reality. This article investigates the supervisory
control and data acquisition (SCADA) and phasor measurement
unit (PMU) measurement chain modeling and presents a new
state estimation (SE) paradigm based on the concept of adap-
tive SE (ASE). Instead of ignoring or passively resisting the
unknown measurement error statistics, it proactively captures
this information and adapts the structure and parameters of
the estimator online to optimize the accuracy of the state
estimates. The proposed method can capture arbitrarily complex
measurement error distributions, preserves high computational
efficiency, adapts to abrupt gross errors, and also enables a sensor
calibration approach for both PMUs and SCADA without the
need for field experiments. The proposed method is validated
on the IEEE 30-bus test system with complex and time-varying
measurement errors generated by comprehensive SCADA and
PMU measurement chain modeling.

Index Terms— Adaptive state estimation (ASE), measurement
error distribution, phasor measurement unit, sensor calibration.

I. INTRODUCTION

COMBATING measurement errors is one of the main
functionalities of power system state estimation (PSSE).

As networked control systems with communication over vast
geographical areas, electric power systems are exposed to
complicated measurement environments with ambient noise,
sensor drift, signal processing errors, time skews, communica-
tion delays, packet drops and failures, and even cyber-physical
attacks [1], [2], resulting in the deviations of measurements
from the true values of the measured variables, namely
measurement errors. Although these errors are unknown and
stochastic, it is possible to limit their impacts given their statis-
tical knowledge as well as information redundancy. The core
objective of PSSE is to minimize the impact of measurement
errors on the recovery of system state variables.

The earliest proposed PSSE method is the weighted least
squares (WLS) state estimation (SE) dating back to the
1970s [3]. In essence, it is a maximum likelihood estimator

Manuscript received 9 December 2023; revised 20 April 2024;
accepted 25 April 2024. Date of publication 20 May 2024; date of current
version 5 June 2024. This work was supported by the National Science
Foundation under Award 2348289. The Associate Editor coordinating the
review process was Dr. Grazia Barchi. (Corresponding author: Yuzhang Lin.)

Gang Cheng is with the Department of Electrical and Computer Engineer-
ing, University of Massachusetts Lowell, Lowell, MA 01854 USA (e-mail:
gang_cheng@student.uml.edu).

Yuzhang Lin is with the Department of Electrical and Computer
Engineering, New York University, Brooklyn, NY 11201 USA (e-mail:
yuzhang.lin@nyu.edu).

Digital Object Identifier 10.1109/TIM.2024.3403203

(MLE) assuming the following “benign” measurement error
conditions: 1) Gaussian distributed; 2) zero-mean; and 3)
known variance. Theoretically, if all these conditions are
satisfied, WLS SE yields state estimates whose errors have
zero means (i.e., unbiased) and minimum variances. However,
the popularity of WLS SE actually resulted from a more
practical reason: under the aforementioned conditions, the
MLE criterion leads to an elegant unconstrained optimization
problem with a quadratic-form objective function, which can
be solved by Newton’s method with modest computational
costs [1]. This was a major advantage in the days when
computing resources were of primary concern. However,
a close examination reveals that these conditions are unlikely
to hold in real-world power systems. Even though the noise in
originally measured quantities may follow a close-to-Gaussian
distribution, the signal processing algorithms (e.g., power cal-
culation in supervisory control and data acquisition (SCADA)
systems, fast Fourier transform in phasor measurement units
(PMUs), etc.), and time skews induced by communication
latencies will distort the distributions and make them non-
Gaussian [4], [5], [6]. Sensor drift, improper calibration,
and even cyber-attacks can easily make the measurement
errors nonzero-mean [7], [8]. Moreover, the variances of
errors are typically unknown and can vary with the oper-
ating points of the system and the aging condition of the
sensors. The violation of the “benign” measurement error
conditions may severely degrade the performance of WLS SE,
producing state estimates with nonzero-mean errors and large
variances.

In order to achieve more stable SE performances in realistic
conditions, the concept of robust SE (RSE) is proposed. The
earliest and most widely known RSE method is the weighted
least absolute value (WLAV) SE [9]. In essence, WLAV SE
is the MLE under measurement errors with Laplacian distri-
butions with zero means and known scale parameters. The
advantage of assuming Laplacian instead of Gaussian distribu-
tions is that they are “heavy-tailed” distributions encompassing
large measurement errors (also known as gross errors) that
commonly occur in power systems. Over the years, WLAV
SE has been enhanced to handle leverage points [10], [11],
model parameter errors [12], and to reduce computational
costs [13]. The WLAV SE belongs to a larger family of M-
estimators, which minimize the sum of various symmetric
functions of residuals as the MLEs of zero-mean measurement
error distributions of different shapes [14]. An effort has also
been dedicated to reweighting M-estimators to suppress the
effect of leverage points, referred to as the generalized M-
estimators [15]. There have been other types of RSE methods
that deviate from the MLE framework, e.g., the maximum
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normal measurement rate (MNMR) based SE [16], the least
absolute shrinkage and selection operator (LASSO) based
SE [17], the maximum exponential absolute value (MEAV)
SE [18], and the data-fusion-based SE [19]. In summary, the
RSE methods are designed either based on heuristic assump-
tions of heavy-tailed distributions of measurement errors or
to have formulations that are insensitive to a wide variety of
possible distributions, such that consistent results are obtained
irrespective of the true distributions of measurement errors.
As they are inherently agnostic to the true distributions of mea-
surement errors, RSE methods can only stabilize the results,
i.e., to avoid unacceptably large errors of state estimates, but
cannot truly optimize the results, i.e., to minimize the means
and variances of errors of state estimates.

In view of the limitations of conventional WLS SE and
RSE methods, this article presents a fundamentally differ-
ent paradigm to maneuver PSSE through a complicated and
unknown measurement environment: adaptive SE (ASE). The
ASE concept is motivated by the following visions: 1) in
order to optimize the performance of PSSE, the true statistical
knowledge of the measurement errors must be captured and
exploited and 2) as the probability distributions of measure-
ment errors are time-varying, the formulation of PSSE must
be adapted consistently online to maintain near-optimal per-
formance. Based on these visions, we will design an algorithm
to capture the probability distributions of measurement errors,
and then use this statistical knowledge to adapt the PSSE
formulation online so as to enhance the statistical accuracy
of state estimates. As a result, the performance of PSSE can
always be optimized online under complicated measurement
error conditions without relying on any prior knowledge of
measurement error statistics. The contributions of the article
are as follows.

1) We perform detailed measurement chain modeling to
analyze and synthesize SCADA and PMU measurements
in power systems. The sources of non-Gaussianity and
time variance of measurement error distributions are
identified, and realistic measurement errors are syn-
thetized for the validation of PSSE performances.

2) We develop an effective algorithm to capture any arbi-
trarily complex probability distributions of measurement
errors, jointly with power system state variables, using
the expectation maximization (EM) algorithm and the
Gaussian mixture model (GMM). As a byproduct, it also
enables sensor calibration without the need for field
experiments.

3) We develop an adaptive state estimator that proactively
adapts its structure and parameters to the updated statis-
tical knowledge of measurement errors to optimize the
accuracy of state estimates under a complicated mea-
surement environment. The proposed SE model achieves
high computational efficiency. Through a special “gross
error trap” design, it also maintains high accuracy even
under abrupt gross errors that do not follow the captured
statistical knowledge of measurement errors.

Note that the ASE concept is a well-established concept
in the signal processing domain. However, the concepts and

TABLE I
COMPARISON: OUR EARLIER WORK [20] AND THE PROPOSED WORK

algorithms proposed in this article constitute the first system-
atic framework, in the power system domain, to proactively
optimize PSSE performance under unknown, non-Gaussian,
nonzero-mean, and time-varying measurement error distribu-
tions with any arbitrary shape. The preliminary effort was
reported in our earlier work [20], where a mixture model
of one Gaussian component and one Laplacian component,
both with zero means, is used to model measurement errors.
This article makes fundamental advancements over our earlier
work [20] in multiple aspects, as listed in Table I.

II. MODELING AND ANALYSIS OF ERROR SOURCES AND
CHARACTERISTICS IN MEASUREMENT CHAINS

In this section, we will model and analyze the SCADA and
PMU measurement chains in detail and identify the sources
of measurement error complexity, i.e., nonzero mean, non-
Gaussianity, and time variance. In Table II, the measurement
error sources of each component in the SCADA and PMU
measurement chains are analyzed and summarized.

A. Measurement Chain Analysis

1) SCADA Measurement Chain: Modern SCADA systems
rely on data concentrators and intelligent electronic devices
(IEDs) in replacement of the conventional remote terminal
units (RTUs) with their hardwired input and output (I/O)
points [21]. In this article, three major components are mod-
eled in the SCADA measurement chain, as shown in Fig. 1.
The errors introduced by each component are elaborated as
follows:

a) Instrument transformers: Instrument transformers
comprise voltage transformers (VTs) and current transformers
(CTs). The IEEE Standard C5713-2016 implies that VTs
and CTs will introduce both ratio and phase angle errors
[22], [23]. Accuracy classes, power factors of supply systems,
percentages of rated currents, burdens, etc., are a few factors
that may affect measurement errors [23]. First, for both ratio
and phase angle errors, instrument transformers may introduce
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Fig. 1. Measurement error distributions introduced by different components
in SCADA and PMU measurement chains: (a) voltage magnitude errors from
VTs; (b) active power errors from communication networks; (c) active power
errors from the entire SCADA chain; (d) voltage magnitude errors from
off-nominal frequency; (e) voltage phase angle errors from GPS signal loss;
and (f) voltage magnitude errors the entire PMU chain.

systematic errors dependent on the accuracy class of devices.
In practice, VTs and CTs are usually calibrated by using
ratio and phase shift angle correction factors when they are
used in real-world power systems. Nevertheless, systematic
errors introduced by instrument transformers may not be fully
calibrated, potentially leading to measurement errors following
nonzero-mean distributions. Second, for CTs, the magnitudes
of systematic errors will be impacted by the percentage of
rated currents. Typically, the smaller the percentage of rated
current, the larger the systematic errors [23]. In power systems,
power flow fluctuations may lead to time-varying currents,
and thus time-varying systematic errors. Third, random noises
are typically unavoidable in real-world power or electronic
devices. However, the random noise introduced by instrument
transformers has not been studied in existing literature. In this
article, we consider assuming a non-Gaussian distribution
as a more conservative and cautious choice for the random
noise, since there is no literature demonstrating that random
noises always follow a Gaussian distribution. This allows
us to comprehensively explore the potential range of error
distributions in future studies, avoiding oversights regarding
possibilities. In summary, the factors discussed above may lead
to both ratio and phase angle errors following nonzero-mean,
non-Gaussian, and time-varying distributions.

b) Control cables and burdens: Control cables will intro-
duce a time delay transformed into phase angle errors [24],
resulting in nonzero-mean error distributions for phase angles.
This delay depends on several characteristics of control cables,
such as the cable length, material, and whether it is shielded.
Moreover, burden resistances may also introduce systematic
errors, resulting in nonzero-mean error distributions [25]. The
impact of burden resistance combined with control cables
can be significant, especially for longer cable lengths [24],
[25]. In addition, instrumentation cables may also introduce
random errors, called thermal noise or Johnson noise, that
are caused by the motion of free electrons in a resistance
due to temperature changes [4], [26]. In the real world,
systematic errors introduced by control cables and burdens
may not be fully calibrated, so they can lead to measurement
errors following nonzero-mean distributions. Moreover, since
the characteristics of control cables in different measurement

channels may be different, the time delay introduced in dif-
ferent channels may also be different, resulting in time skew
errors in measurements.

c) IEDs: The industry standard definition of an IED
is “any devices incorporating one or more processors with
the capability to receive or send data/control from or to an
external source” [21]. In this article, it is assumed that the
active/reactive power calculation is conducted within IEDs.
The power measurements output from IEDs are expressed as
follows:

P = V · I · cos
(
δV
− δ I

)
(1)

Q = V · I · sin
(
δV
− δ I

)
(2)

where P and Q represent the active and reactive power
calculated within IEDs, respectively; V and I represent the
voltage and current magnitudes input to IEDs, respectively;
and δV and δ I represent voltage and current phase angles
input to IEDs, respectively. Based on (1) and (2), it can be
concluded that power calculation will fuse both voltage and
current magnitude and phase angle errors introduced by VTs,
CTs, control cables, and burdens, further complicating the
error distributions for active and reactive power measurements.
Even if the errors of the original voltage and current quantities
follow a Gaussian distribution, the power calculation within
IEDs can transform them into non-Gaussian errors in their
output power measurements, since the transformation of a
random variable through a nonlinear function, such as taking
the cosine, often leads to a more complicated distribution that
may not have a simple closed-form expression [27].

d) Communication Networks: Communication networks
may introduce unpredictable measurement errors due to both
latency and power flow fluctuations [28], [29]. In commu-
nication networks, latency commonly arises from a variety
of factors, such as propagation delay, transmission delay,
processing delay, queueing delay, routing delay, network con-
gestion, packet retransmission, etc. Essentially, the latency
does not affect the measurement itself since it has already been
computed and digitalized. However, since the communication
latencies in different channels may be different, measurement
data may not be simultaneously received in the control center,
resulting in time skew errors in measurements, especially when
they are not time-stamped (conventional SCADA measure-
ments). Under the fluctuation of power flows, time skew errors
can lead to discrepancies in the operating conditions of the grid
compared to those present at the time the measurement was
initially taken. Consequently, measurement data received in the
control center will deviate from the current operating states of
power grids, resulting in measurement errors that may follow
nonzero-mean and non-Gaussian distributions. In addition,
the changes in communication conditions and power flow
fluctuations further complicate measurement errors, leading to
time-varying error characteristics.

2) PMU Measurement Chain: In wide-area monitoring
systems (WAMSs), measurement errors may stem from a
variety of factors [7], [25], [30]. In this article, three major
components, including instrument transformers, control cables
and burdens, and PMUs, are considered to model the PMU
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measurement chain. The measurement errors introduced by
each component are elaborated as follows.

a) Instrument transformers: The measurement errors
introduced by VTs and CTs in the PMU measurement chain
are the same as those in the SCADA measurement chain.

b) Control cables and burdens: The measurement errors
introduced by control cables and burdens are the same as those
in the SCADA measurement chain.

c) PMUs: Phasor estimation is commonly conducted
within PMUs, which aims to compute phasors from sampled
values of the input signal [31]. Various phasor estimation
algorithms have been proposed, such as discrete Fourier trans-
form (DFT) methods, least squares methods, Kalman filter
methods, and Prony methods. In phasor estimation, several
factors can lead to estimation errors, such as sampling time
errors [32], off-nominal frequency of input signals [33], and
GPS signal loss [34]. Specifically, first, sampling time errors
are usually introduced by the frequency drift of oscillators
and the fact that the sampling clock is not precisely at a
multiple of the power system frequency [32]. The sampling
time error will be accumulated in one second and then cleared
by the pulse per second (PPS) timing reference sent by
the GPS. In DFT-based phasor estimation, sampling time
errors will create inaccuracy in phasor estimates, yielding
phase angle estimation errors following nonzero-mean near-
uniform distributions [32]; Second, off-nominal frequency is
the most common phenomenon in power system operation due
to load and generation imbalances, generator inertia, frequency
control, faults, and switching events. In DFT-based phasor
estimation, the off-nominal frequency will result in phasor
estimation errors with time-domain sinusoidal waveforms,
making both magnitude and phasor angle estimation errors
clearly non-Gaussian [33]. Even if the frequency deviation is
very small (e.g., tens of mHz from 60 Hz), the magnitude of
the phasor estimation error could be substantial, even though
the time-domain sinusoidal waveform of the error will be a
long-period, low-frequency signal. Moreover, the frequency of
the sinusoidal waveform of phasor estimation errors is deter-
mined by the frequency deviation, which is time-varying with
the change in the operating state of power systems. Hence,
the frequency of the sinusoidal waveform will also change
over time, leading to time-varying phasor estimation error
distributions. Third, GPS signal losses can result from various
uncontrollable and unpredictable factors, such as atmospheric
disturbances, failure of the GPS antenna, extreme weather,
etc. When the GPS signal is lost, the accurate PPS sent by
the GPS will not be available in PMUs. Consequently, the
sampling time error introduced by internal crystal oscillators
will accumulate over time, resulting in time skew errors.
This, in turn, leads to phase angle estimation errors following
nonzero-mean, long-tailed, and asymmetric distributions [34].

B. Modeling and Simulation of Measurement Errors

In Section II-A, measurement error sources in both SCADA
and PMU measurement chains have been comprehensively
studied, revealing multiple sources of nonzero-mean, non-
Gaussian, and time-varying measurement error distributions.

In order to synthesize SCADA and PMU errors with realistic
characteristics, we modeled the measurement chains in detail,
which, due to the limited space of the article, was described
in an online document [35]. In the article, we only illustrate a
few simulation results from the developed measurement chain
models.

In the SCADA measurement chain, systematic errors are
set to follow a uniform distribution, where the limits are
determined by the accuracy class and percentage of rated
current [23]. As there is no existing study on random errors
of instrument transformers, it is assumed that they follow
a GMM distribution. The GMM serves as a tool to fit the
non-Gaussian distribution, and various alternatives, such as
the Laplacian distribution, Cauchy distribution, t-distribution,
etc., exist for the same purpose. In this manuscript, the
GMM is selected due to its flexibility, as it can effec-
tively model arbitrary distributions when the parameters are
appropriately selected. Also, we developed a procedure to
allow user-defined properties of the GMM distributions when
modeling the random errors, which is elaborated in [35]. It
allows users to customize the GMM distribution and determine
the similarity between the designed GMM distribution and a
Gaussian distribution. The distribution of voltage magnitude
measurement errors introduced by VTs is shown in Fig. 1(a).
In communication networks, measurement errors resulting
from latency [36] and power flow fluctuations (EPFL PMU
dataset [37]) exhibit the nonzero-mean and non-Gaussian
distribution [i.e., Fig. 1(b)]. Considering all components in
the SCADA measurement chain [including those not shown
in Fig. 1(a) and (b)], the final distribution of active power
measurement errors is shown in Fig. 1(c), exhibiting nonzero-
mean and non-Gaussian characteristics.

In the PMU measurement chain, VTs and CTs are modeled
in the same way as those in the SCADA measurement chain.
In phasor estimation, the distributions of measurement errors
introduced by the off-nominal frequency and GPS signal loss
are shown in Fig. 1(d) and (e), respectively. Clearly, the
off-nominal frequency may result in errors exhibiting multiple-
peak distributions, while the GPS signal loss may lead to errors
with long-tailed and asymmetric distributions. Considering all
components in the PMU measurement chain [including those
not shown in Fig. 1(d) and (e)], the distribution of voltage
magnitude measurement errors is shown in Fig. 1(f), which
is, again, strongly nonzero-mean and non-Gaussian.

In addition, please note that the impact (contribution) of
individual components on the final shape of measurement error
distributions is dependent on the realistic measurement condi-
tions, such as the accuracy class of instrument transformers,
the control cable length, the communication delay, sampling
time errors, frequency of input signals, etc.

III. MODELING OF UNKNOWN MEASUREMENT ERRORS

In view of the complexity of measurement error char-
acteristics in SCADA and PMU measurement chains, the
proposed ASE framework utilizes a generic and flexible GMM
to model the unknown and time-varying measurement error
distributions. Assume that a n-bus power system is measured
by PMUs and SCADA. The numbers of PMU and SCADA
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measurement channels are mpmu and mscada, respectively. The
sampling rate of SCADA is one scan per 2–5 s. PMUs provide
synchrophasor measurements with a sampling rate as fast as
60 scans per second [38].

As the article focuses on static SE under steady-state opera-
tion of power systems, two reasonable assumptions are made.
It is assumed that state variables are approximately unchanged
in a very short time period (e.g., within 0.2 s) containing
multiple PMU measurement scans, and measurement error dis-
tributions are approximately unchanged within a median time
interval (e.g., within 30 min). This is because the operating
conditions of the real-world power grid, such as fluctuations
of load profiles, operating states of field instruments, ambient
temperatures, etc., usually have slight changes within a short
time interval. To clearly describe the measurement data, all
measurements sampled at exactly the same time instant are
referred to as a measurement scan. All measurement scans
within a very short time period with approximately unchanged
state variables are referred to as a measurement group. All
measurement groups within a time interval with approximately
unchanged measurement error distributions are referred to as a
measurement set. Note that SCADA measurements are usually
asynchronous and accurate time stamps are unavailable. How-
ever, they can still be assigned to a measurement group using
their time of arrival. The time skew errors are taken as part of
the measurement errors whose statistics are to be collectively
estimated with other parts of errors.

A measurement set including SCADA measurements and
PMU measurements is shown as follows:

Z =
{

z(1), z(2), . . . , z(l), . . . , z(L)
}

, l = 1, 2, . . . , L (3)

z(l)
=



(
z(l,1)T

pmu , . . . , z(l,s)T
pmu , . . . , z(l,Spmu)T

pmu

)T
,

if the lth group does not contain SCADA data(
z(l,Sscada)T

scada , z(l,1)T
pmu , . . . , z(l,s)T

pmu , . . . , z(l,Spmu)T
pmu

)T
,

if the lth group contains SCADA data
(4)

where Z represents the measurement set including SCADA
measurements and PMU measurements within a time interval;
z(l) represents the lth measurement group; z(l,s)

pmu ∈ Rmpmu×1 is
the sth PMU measurement scan in the lth group; z(l,Sscada)

scada ∈

Rmscada×1 is a SCADA measurement scan in the lth group;
Spmu is the number of PMU measurement scans in a group;
Sscada is the number of SCADA measurement scan in a
group, which is typically equal to 1 as the time between two
SCADA scans is typically much longer than the length of
a measurement group; and L is the number of measurement
groups within the measurement set.

The relationship among measurement data, state variables,
and measurement errors are as follows:

z(l)
= h

(
x(l)

)
+ e(l) (5)

where x(l)
∈ R2n×1 represents the state variable vector of the

lth measurement group; h(·) represents the relation between
the state variable vector and the measurement data; and e(l)

represents the measurement errors of the lth measurement
group.

As GMM can be used to approximate probability distribu-
tions of any shape [39], the probability density functions (pdfs)
of the measurement errors can be expressed as

p
(

e(l,s)
κ,i

∣∣∣ θκ,i

)
=

Kκ,i∑
k=1

φκ,i,k N
(

e(l,s)
κ,i

∣∣∣µκ,i,k, σ
2
κ,i,k

)
(6)

where e(l,s)
κ,i represents the measurement error of the i th

measurement channel of the sth scan of measurement type
κ in the lth group; κ = pmu, scada; i = 1, 2, . . . , mκ ;
s = 1, . . . , Sκ ; θκ,i represents the error distribution parameters
of the i th measurement channel of measurement type κ; Kκ,i is
the number of components of the GMM distribution of the i th
measurement channel of measurement type κ; φκ,i,k , µκ,i,k ,
and σ 2

κ,i,k represent the mixture weight, the mean, and the
variance of the kth component of the i th measurement channel
of measurement type κ .

In reality, if a measurement channel is precalibrated, the
total mean of the error probability distribution of the channel
is close-to-zero. This additional information can be helpful
in measurement error parameter estimation (EPE). If the
measurement channel is not precalibrated, this condition does
not hold, i.e., there may be a nonzero systematic bias in the
measurement channel, which must be taken into account in
PSSE.

The pdfs of the measurements can be expressed as

p
(

z(l,s)
κ,i

∣∣∣ x(l), θκ,i

)
=

Kκ,i∑
k=1

φκ,i,k N
(

z(l,s)
κ,i

∣∣∣ hκ,i

(
x(l)

)
+ µκ,i,k, σ

2
κ,i,k

)
(7)

where

θκ,i =
[
φκ,i,1, µκ,i,1, σ

2
κ,i,1, . . . , φκ,i,k, µκ,i,k, σ

2
κ,i,k, . . . ,

φκ,i,Kκ,i , µκ,i,Kκ,i , σ
2
κ,i,Kκ,i

]
(8)

θ =
{
θpmu,1, θpmu,2, . . . , θpmu,mpmu , θ scada,1, θ scada,2, . . . ,

θ scada,mscada

}
. (9)

z(l,s)
κ,i represents the measurement data of the i th measurement

channel of the sth scan of measurement type κ in the lth group
κ , and hκ,i (·) is the relation between the state variables x(l)

and the measurement z(l,s)
κ,i .

IV. FRAMEWORK OF ASE

In this section, the framework of the proposed PSSE
paradigm will be presented. The framework consists of two
parts: near-real-time EPE, i.e., Algorithm 2, and real-time
ASE, i.e., Algorithm 3. The two parts are executed in dif-
ferent time intervals: the previous interval and the current
interval. They refer to the time intervals where measurements
are collected to perform EPE and ASE, respectively. The
measurement data sampling scheme in the two different time
intervals and the high-level framework of the proposed SE
paradigm is shown in Fig. 2.
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Fig. 2. Data sampling scheme and framework of the proposed paradigm.

Algorithm 1 High-Level Description of Proposed Method

Input: T , Z̄, and z̃
Output: ˆ̃x
Set counter ζ = 1 and time instant t = T
repeat

Consolidate measurement data in the previous
interval [(ζ −1) · T + 1, ζ · T ] to form the
measurement set Z̄
Obtain parameter estimates of the GMM model
representing measurement error distributions, θ̂ ,
by Algorithm 2 // Error Parameter Estimation (EPE)
procedure described in Section IV

while t ≤ (ζ + 1) · T do
Increase the time instant index t by 1, t ← t + 1
Intake measurement data at the current instant t
in the current interval [ζ · T + 1, (ζ + 1) · T ] to
form the measurement scan z̃
Obtain state estimates ˆ̃x of the current instant by
Algorithm 3 // Adaptive State Estimation (ASE)
procedure described in Section V

end
Increase the counter ζ by 1, ζ ← ζ + 1

until
return state estimates ˆ̃x

The EPE aims to capture the measurement error distribution,
i.e., the structure and parameters of the GMM in the previous
interval. The ASE, on the other hand, aims to estimate the
power system state variables at the current time instant lying
within the current interval by using the up-to-date measure-
ment error distribution information captured from the previous
interval by EPE. To effectively estimate the measurement error
distribution, the measurement redundancy required by EPE is
much higher than that required by ASE [40]. The measurement
set including L measurement groups in the previous interval
(i.e., multiple measurement scans) is utilized in an aggregated
fashion in one EPE execution. By contrast, only a single

Algorithm 2 EPE Procedure

Input: Z̄, εSM , and εθ

Output: θ̂

Initialize the state variable x̄0 by the WLS estimator
x̄ ← x̄0
for each measurement i = 1, 2, . . . , mκ ;
κ = scada, pmu do

Set the initial number of Gaussian components
Kκ,i = 1
Set the initial similarity SM(Kκ,i)

κ,i = 0
// Outer loop: Determination of the proper number of
Gaussian components described in Section V-A
while SM(Kκ,i)

κ,i ≤ εSM do
Set

∥∥1θ̂
∥∥ = 10εθ

Compute the initial measurement residuals

r̄ (l,s)
κ,i,0 = z̄(l,s)

κ,i − hκ,i

(
x̄(l)

)
Obtain the initial error distribution parameter
θ
(Kκ,i)
κ,i,0 by k-means algorithm with r̄ (l,s)

κ,i,0 and Kκ,i

θ
(Kκ,i)
κ,i ← θ

(Kκ,i)
κ,i,0

// Inner loop: EM algorithm for error distribution
parameter estimation described in Section V-B
while ∥1θ̂∥ > εθ do

// E step
Compute w̄

(l,s)
κ,i,k by Eq. (20) with x̄, θ

(Kκ,i)
κ,i ,

and z̄(l,s)
κ,i

// M step
Solve ˆ̄x by Eq. (23) with w̄

(l,s)
κ,i,k , θ

(Kκ,i)
κ,i , and

z̄(l,s)
κ,i

Compute θ̂
(Kκ,i)
κ,i by Eqs. (24) ∼ (28) with

w̄
(l,s)
κ,i,k , x̄, and z̄(l,s)

κ,i

Compute 1θ̂ = θ̂
(Kκ,i)
κ,i − θ

(Kκ,i)
κ,i

Update the values of parameters

θ
(Kκ,i)
κ,i ← θ̂

(Kκ,i)
κ,i

Update the values of state variables x̄ ← ˆ̄x
end
Compute the similarity SM(Kκ,i)

κ,i by Eq. (16)

with θ̂
(Kκ,i)
κ,i and θ̂

(Kκ,i−1)
κ,i when Kκ,i > 1

Increase the number of Gaussian components
Kκ,i by 1
Update the values of state variables x̄ ← ˆ̄x

end
end
Derive the error distribution parameter estimates

θ̂ ← θ̂
(Kκ,i−1)

return θ̂

measurement scan, i.e., the most recent one collected in the
current interval, is utilized in the ASE execution for the
current instant.

Let Z̄ and θ̂ represent the measurement set and the parame-
ter estimates of the GMM model representing the measurement
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Algorithm 3 ASE Procedure

Input: z̃, θ̂ , σart , φart , and εx
Output: ˆ̃x
Initialize the state variables x̃0 by the WLS estimator
x̃ ← x̃0
Set

∥∥1 ˆ̃x∥∥ = 10εx

while
∥∥1 ˆ̃x∥∥ > εx do

// E step
Compute w̃′κ,i,k and w̃κ,i,art by Eqs. (35) ∼ (36) with
z̃, x̃, θ̂ , σart , and φart
// M step
Solve state estimates ˆ̃x by Eq. (34) with w̃′κ,i,k ,
w̃κ,i,art , z̃, θ̂ , σart , and φart
Compute the bias vector of state estimates
1 ˆ̃x = ˆ̃x − x̃
Update the values of state variables x̃ ← ˆ̃x

end
return ˆ̃x

error distribution obtained from EPE, respectively, and let z̃
and ˆ̃x represent the measurement scan and the state estimates
obtained from ASE, respectively. A high-level overview of the
proposed SE paradigm is provided in Algorithm 1, where T
is the length of the time interval and ζ is a counting variable
for the number of intervals passed in the algorithmic execution
of the proposed procedure. The detailed procedures of EPE
and ASE will be discussed in Sections V and VI, respectively.

From Algorithm 1, it can be clearly seen that the EPE
procedure always consolidates all the measurement scans in
the previous interval [(ζ − 1) · T + 1, ζ · T ] to estimate the
parameters of measurement error statistics; while the ASE
procedure always takes the latest received measurement scan
at the current time instant t , which lies in the current interval
[ζ · T + 1, (ζ + 1) · T ], to estimate the instantaneous state
variables. The linkage between the EPE and the ASE is that
the EPE procedure passes the updated knowledge about the
measurement error statistics, i.e., the optimal structure and
parameter estimates of GMM, to the ASE procedure to keep
the near-optimal SE performance.

V. CAPTURING MEASUREMENT ERROR STATISTICS

The key to maintaining near-optimal SE performance is to
keep track of the measurement error statistics. This section
will discuss the EPE procedure for this purpose. As the
outcomes of EPE will also reveal the systematic biases in
the measurement channels, a byproduct of this procedure is
the calibration of measurement channels for both SCADA and
PMUs, which will also be discussed in this section.

To obtain the optimal structure and accurate parameters of
GMM for the error distribution of each channel, θ , the joint
MLE problem can be formulated in terms of state variables x̄
and parameters θ . The log-likelihood function is as follows:

L
(

x̄, θ | Z̄
)

= log

 L∏
l=1

∏
κ=pmu,

scada

Sκ∏
s=1

mκ∏
i=1

p
(

z̄(l,s)
κ,i

∣∣∣ x̄(l), θκ,i

)
=

L∑
l=1

∑
κ=pmu,

scada

Sκ∑
s=1

mκ∑
i=1

log

Kκ,i∑
k=1

φκ,i,k N
(

z̄(l,s)
κ,i

∣∣∣ hκ,i

(
x̄(l)
)

+µκ,i,k, σ
2
κ,i,k

) .

(10)

The goal of the MLE is to find the values of state variables
x̄ and error distribution parameters θ that maximize the log-
likelihood function, which can be expressed as[

ˆ̄x, θ̂
]
= arg max L̂

(
x̄, θ | Z̄

)
. (11)

However, it is difficult to obtain the analytical solutions to the
MLE problem in (11) because the logarithm of the sum of
pdfs is present in (10). To solve the MLE problem, the EM
algorithm is adopted and customized to obtain ˆ̄x and θ̂ . The
EM algorithm is executed by iterating the so-called Q function
between the expectation step (E step) and the maximization
step (M step) to approach the true values of x̄ and θ .

As the first step of EPE, the initial values x̄0 are estimated
by using the WLS estimator; then, the initial measurement
residuals r̄ (l,s)

κ,i,0 can be computed by

r̄ (l,s)
κ,i,0 = z̄(l,s)

κ,i − hκ,i

(
x̄(l)

0

)
. (12)

The initial values of GMM parameters, θ0, can be achieved
by the k-means clustering algorithm [41] with r̄ (l,s)

κ,i,0 and Kκ,i ,
where Kκ,i is the number of Gaussian components of the
GMM for the i th channel of measurement type κ . First, the k-
means algorithm is adopted, where the input includes r̄ (l,s)

κ,i,0 and
Kκ,i and the output is the cluster index variable idx; Second,
the parameters of the GMM can be estimated based on the
clustered measurement residuals via the following equations:

φ̂κ,i,k,0 =
count (idx = k)

Sκ

, k = 1, 2, . . . , Kκ,i (13)

µ̂κ,i,k,0 = mean
(

r̄ idx=k
κ,i,0

)
, k = 1, 2, . . . , Kκ,i (14)

σ̂ 2
κ,i,k,0 = var

(
r̄ idx=k
κ,i,0

)
, k = 1, 2, . . . , Kκ,i (15)

where count(.) is a counting function, which is used to count
the number of measurement residuals that are clustered into
the kth component; mean(.) is a function to calculate the mean
of the clustered measurement residuals; var(.) is a function to
calculate the variance of the clustered measurement residuals;
Sκ is the number of measurement scans of the measure-
ment type κ; Kκ,i is the number of Gaussian components
of the i th measurement channels of the measurement type
κ; and r̄ idx=k

κ,i,0 represents the measurement residuals that are
clustered into the kth component. Finally, the initial param-
eter estimates of the GMM can be obtained, i.e., θ

(Kκ,i )

κ,i,0 =

{φ̂κ,i,k,0, µ̂κ,i,k,0, σ̂
2
κ,i,k,0}.
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A. Determination of the Number of Gaussian Components

The number of Gaussian components (i.e., Kκ,i ) deter-
mines the structure of GMM. It is critical for capturing
the unknown measurement error distribution and should be
properly selected.

The search for the appropriate number of Gaussian com-
ponents Kκ,i goes as follows. It starts from Kκ,i = 1,
where there is only one Gaussian component and GMM is
reduced to a regular Gaussian distribution. Then, Kκ,i will
be increased gradually, and the parameter estimates θ̂

(Kk,i )

κ,i
under each value of Kκ,i will be obtained as described
in Section V-B. Comparing the parameter estimates θ̂

(Kk,i )

κ,i

obtained under Kκ,i components with those θ̂
(Kk,i−1)

κ,i obtained
under Kκ,i−1 components, if there is a high similarity between
the resulting pdfs, it implies that continuing the increase of
Kκ,i will not significantly improve the fitting performance;
hence, the EPE can stop increasing Kκ,i and output the final
parameter estimates θ̂

(Kk,i−1)

κ,i .
The cosine similarity between the two pdfs based on the

parameter estimates under Kκ,i Gaussian components and
Kκ,i − 1 Gaussian components can be quantified as fol-
lows [42]: (16) and (17), as shown at the bottom of the next
page, where SM(Kκ,i )

κ,i represents the similarity of two pdfs

based on θ̂
(Kκ,i )

κ,i and θ̂
(Kκ,i−1)

κ,i , respectively; Y is a vector con-
sisting of a set of samples, which are utilized for computing the
values of pdfs; D is the number of the samples; P(y j |θ̂

(Kκ,i )

κ,i )

and P(y j |θ̂
(Kκ,i−1)

κ,i ) represent the values of the two probability

densities with respect to yi , θ̂
(Kκ,i )

κ,i and θ̂
(Kκ,i−1)

κ,i .

B. EPE Based on Customized EM Algorithm

In this section, the procedure for obtaining the parameter
estimates θ̂

(Kk,i )

κ,i given the structure of GMM, Kκ,i , will be
presented. The method is based on a customized EM algorithm
and can be divided into the E step and the M step.

1) E Step: The E step aims to develop the Q function
based on the likelihood function. The measurement data z̄(l,s)

κ,i ,
referred to as the observation data, is known as the input.
However, it is unknown which Gaussian component the mea-
surement error ē(l,s)

κ,i comes from. Hence, the latent variable is
defined as follows:

γ̄
(l,s)
κ,i,k =

{
1, if ē(l,s)

κ,i comes from the kth component
0, otherwise.

(18)

In the E step, the values of state variables x̄ and error
distribution parameters θ will be used to compute the posterior
probability. For the first iteration, the WLS estimator and the
k-means algorithm are utilized for the initializations of x̄ and
θ . For the future iterations, the values of x̄ and θ are derived
from the last iteration. The Q function is defined as follows:

Q =
L∑

l=1

∑
κ=pmu,

scada

Sκ∑
s=1

mκ∑
i=1

Kκ,i∑
k=1

×

{
w̄

(l,s)
κ,i,k · log

[
p
(

z̄(l,s)
κ,i , γ̄

(l,s)
κ,i,k = 1

∣∣∣ x̄(l), θκ,i

)]}
(19)

w̄
(l,s)
κ,i,k = p

(
γ̄

(l,s)
κ,i,k = 1

∣∣∣ z̄(l,s)
κ,i , x̄(l), θκ,i

)
=

φκ,i,k N
(

z̄(l,s)
κ,i

∣∣∣ hκ,i

(
x̄(l)

)
+ µκ,i,k, σ

2
κ,i,k

)
∑Kκ,i

k=1 φκ,i,k N
(

z̄(l,s)
κ,i

∣∣∣ hκ,i

(
x̄(l)

)
+ µκ,i,k, σ

2
κ,i,k

)
(20)

where w̄
(l,s)
κ,i,k is the posterior probability, which is the prob-

ability that the measurement error ē(l,s)
κ,i comes from the kth

GMM component with respect to parameters θκ,i .
2) M Step: The M step aims to estimate the values of x̄

and θ by using the posterior probability, i.e., w̄
(l,s)
κ,i,k , computed

in the E step. The objective function is shown as follows:[
ˆ̄x, θ̂

]
= arg max

x̄,θ
Q (x̄, θ)

= arg max
x̄,θ

L∑
l=1

∑
κ=pmu,

scada

Sκ∑
s=1

mκ∑
i=1

Kκ,i∑
k=1

{
w̄

(l,s)
κ,i,k

· log
[

p
(

z̄(l,s)
κ,i , γ̄

(l,s)
κ,i,k = 1

∣∣∣ x̄(l), θκ,i

)]}
(21)

where

log
[

p
(

z̄(l,s)
κ,i , γ̄

(l,s)
κ,i,k = 1

∣∣∣ x̄(l), θκ,i

)]
= −

[
z̄(l,s)
κ,i − hκ,i

(
x̄(l)

)
− µκ,i,k

]2

2σ 2
κ,i,k

+ log

(
φκ,i,k
√

2πσκ,i,k

)
.

(22)

The maximization of Q(x̄, θ) is divided into two steps: state
regression and error distribution parameter estimation. This
method divides the M step into partial minimization steps and
is called expectation conditional minimization (ECM) [43].

The state regression step aims to estimate the values of
state variables x̄ based on the error distribution parameters
θ obtained from the last iteration and the values of w̄

(l,s)
κ,i,k

obtained from the E step. The maximization of (21) with
respect to state variables x̄ leads to a convex optimization
problem

ˆ̄x = arg min
x̄

L∑
l=1

∑
κ=pmu,

scada

Sκ∑
s=1

mk∑
i=1

Kκ,i∑
k=1

×

{
w̄

(l,s)
κ,i,k

2σ 2
κ,i,k
·

[
z̄(l,s)
κ,i − hκ,i

(
x̄(l)

)
− µκ,i,k

]2
}

. (23)

The optimization problem (23) can be converted into a least
squares problem, which can be efficiently solved.

The error distribution parameters θ can be estimated by
differentiating (21) with respect to φκ,i,k , µκ,i,k , and σκ,i,k ,
and equating them to zero based on the values of x̄ obtained
from the last iteration and the values of w̄

(l,s)
κ,i,k obtained from

the E step. The results are shown as follows:

φ̂κ,i,k =

( L∑
l=1

S(l)
κ

)−1

·

L∑
l=1

Sκ∑
s=1

w̄
(l,s)
κ,i,k (24)
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µ̂κ,i,k =

( L∑
l=1

Sκ∑
s=1

w̄
(l,s)
κ,i,k

)−1

·

L∑
l=1

Sκ∑
s=1

[
w̄

(l,s)
κ,i,k ·

(
z̄(l,s)
κ,i − hκ,i

(
x(l)

))]
(25)

σ̂ 2
κ,i,k =

( L∑
l=1

Sκ∑
s=1

w̄
(l,s)
κ,i,k

)−1

·

L∑
l=1

Sκ∑
s=1

{
w̄

(l,s)
κ,i,k

[
z̄(l,s)
κ,i − hκ,i

(
x(l)

)
− µκ,i,k

]2
}
(26)

where S(l)
κ is the number of measurement scans of measure-

ment type κ in the lth measurement group.
The detailed EPE procedure is provided in Algorithm 2.

It should be noted that the procedure consists of two loops: an
inner loop procedure and an outer loop procedure. The EPE
given the number of Gaussian components, i.e., Kκ,i , is an
inner loop procedure (Section V-B), while the determination
of the number of Gaussian components is an outer loop
procedure (Section V-A). The inner loop procedure aims to
obtain the parameter estimates θ̂

(Kk,i )

κ,i given the structure of
GMM, i.e., Kκ,i . The outer loop procedure aims to determine
the structure of GMM, i.e., to obtain the number of Gaussian
components. The threshold for termination εSM can be set
empirically; we recommend setting it in the range of 0.96–
0.99, which will ensure that further incrementation of Kκ,i
brings about little benefit and the procedure can be terminated.

C. Sensor Calibration Based on EPE

From the sensor calibration perspective, the measurement
errors can be viewed as the superposition of two compo-
nents: a stochastic component with zero mean (stochastic
error) and a deterministic component (systematic bias). The
objective of sensor calibration is to change the internal set-
tings of the sensor to offset the deterministic component
(systematic bias) [8]. In this article, we propose a remote
calibration method for measurement channels based on the
EPE outcomes, which does not require traditional calibration
processes. To distinguish between the traditional calibration
and the proposed calibration based on EPE, field calibration,
and algorithmic calibration are introduced in this section.
Field calibration refers to the process of calibrating devices
in the field, including calibrations of instrument transformers,
control cables, burdens, PMUs, etc. Algorithmic calibration
refers to the process of calibrating measurement channels

by using the total mean of measurement error distributions
estimated from the EPE procedure. For a particular EPE cycle,
if a measurement channel has been field-calibrated in advance,
it is referred to as field precalibrated; if it has gone through
an algorithmic calibration via a previous EPE cycle, it is
referred to as algorithmic precalibrated. For both field pre-
calibrated channels and algorithmic precalibrated channels,
systematic biases are commonly compensated, so they can be
significantly reduced [44], [45], [46], [47], exhibiting relatively
close-to-zero mean values for measurement error distributions.
Therefore, they are collectively referred to as precalibrated
channels for the given EPE cycle. If a measurement channel
does not belong to either of the situations above, it is referred
to as a nonprecalibrated channel.

As accurate mean values of the precalibrated channels are
unavailable, but known to be close-to-zero, i.e., µ∗κ,i ≈ 0,
and significantly smaller than that of the nonprecalibrated
channels, we approximate them as 0 to enhance the infor-
mation redundancy, such that nonprecalibrated channels with
large systematic errors can be calibrated more accurately via
the EPE procedure. In the EPE procedure, the additional
information that precalibrated measurement channels have
close-to-zero means can be used to correct the estimate of
the mean of each Gaussian component, i.e., µ̂κ,i,k , by

1µ̂κ,i =


0, non-pre-calibrated

channel

µ∗κ,i −

Kκ,i∑
k=1

φ̂κ,i,k · µ̂κ,i,k, pre-calibrated channel

⇓ µ∗κ,i ≈ 0 (27)

1µ̂κ,i =


0, non-pre-calibrated channel

0−
Kκ,i∑
k=1

φ̂κ,i,k · µ̂κ,i,k, pre-calibrated channel

µ̂′κ,i,k = µ̂κ,i,k +1µ̂κ,i (28)

where µ̂κ,i,k and µ̂′κ,i,k are the uncorrected and corrected
estimates of the mean of the kth component of the i th
measurement channel of measurement type κ , respectively;
and µ∗κ,i is the actual mean of the precalibrated channels,
which is unknown but close to 0 compared with those of
the nonprecalibrated channels. The corrected estimates of
the mean, i.e., µ̂′κ,i,k , are used during iterations of the EPE
procedure. In other words, once the mean is estimated by (25),
it will be further corrected by (27) and (28); then the corrected
mean will be used in the next iteration.

SM(Kκ,i)
κ,i =



0, Kκ,i = 1∑D
j=1 P

(
y j
∣∣ θ̂(Kκ,i)

κ,i

)
P
(

y j
∣∣ θ̂(Kκ,i−1)

κ,i

)
√∑D

j=1

[
P
(

y j
∣∣ θ̂(Kκ,i)

κ,i

)]2

·

√∑D
j=1

[
P
(

y j
∣∣ θ̂(Kκ,i−1)

κ,i

)]2
, Kκ,i > 1 (16)

Y =
[
y1, y2, . . . , y j , . . . , yD

]
, j = 1, 2, . . . , D (17)
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As a result, the final estimated total mean of the GMM
distribution of a precalibrated channel will be approximated
by zero, while that of a nonprecalibrated measurement channel
will be nonzero. The estimated total mean of the GMM distri-
bution of the i th measurement channel without precalibration
is given by

µ̂κ,i =

Kκ,k∑
k=1

φ̂κ,i,k · µ̂κ,i,k . (29)

This information can be used to calibrate the nonprecalibrated
channels. When these channels are properly calibrated by (29),
in the next EPE cycle, they will be deemed algorithmic
precalibrated, which will become part of the precalibrated
measurement channel set.

As the proposed algorithmic calibration is carried out
by (29), all channels will eventually become precalibrated.
However, the calibration of measurement channels needs to
be performed periodically. As time goes by, both field precal-
ibrated channels and algorithmic precalibrated channels may
experience sensor drafts due to operating condition changes,
aging, or other factors. Therefore, calibration needs to be
performed again if: 1) a measurement channel has not been
calibrated for a long time and 2) if a measurement channel
exhibits significant (or dubious) characteristic changes, for
example, a significant shift of measurement residual distri-
bution. In either of these two cases, the measurement channel
may not be trustworthy anymore, and it should be put back
into the nonprecalibrated set to undergo a new round of
algorithmic calibration by (29) based on the proposed EPE
procedure.

As will be shown in the simulation results in Section VII, the
EPE can not only benefit the ASE that immediately follows,
but also enable highly accurate calibration of SCADA and
PMU channels to permanently remove the systematic biases.

VI. ONLINE ADAPTATION OF SE TO MEASUREMENT
ERROR STATISTICS

The structure Kκ,i and parameter estimates of the developed
GMM error distribution, θ̂ , are obtained by EPE in the
previous interval. Then, parameter estimates will be used to
perform the real-time SE of the power system in the current
interval. In ASE, the procedure is also executed between the E
step and the M step, and only the posterior probabilities w̃κ,i,k
and state variables x̃ need to be iteratively solved to achieve
the near-optimal state estimates by using a single measurement
scan that arrives mostly lately in the current interval.

A. ASE Based on Customized EM Algorithm

The ASE procedure based on the customized EM algorithm
can be divided into the E step and the M step.

1) E step: The E step aims to develop the Q function
and compute posterior probabilities w̃κ,i,k by using the error
distribution parameter estimates θ̂ obtained from EPE and the
values of state variables x̃ obtained from the last iteration. For
the first iteration, the initial values of state variables, x̃0, are

obtained from the WLS estimator. The Q function for ASE is
as follows:

Q =
∑

κ=pmu,
scada

mκ∑
i=1

Kκ,i∑
k=1

×

{
w̃κ,i,k · log

[
p
(

z̃κ,i , γ̃κ,i,k = 1 | x̃, θ̂κ,i

)]}
(30)

where

γ̃κ,i,k =

{
1, if ẽκ,i comes from the kth component
0, otherwise

(31)

w̃κ,i,k = p
(
γ̃κ,i,k = 1

∣∣ z̃κ,i , x̃, θ̂κ,i

)
=

φ̂κ,i,k N
(

z̃κ,i
∣∣ hκ,i

(
x̃
)
+ µ̂κ,i,k, σ̂

2
κ,i,k

)
∑Kκ,i

k=1 φ̂κ,i,k N
(

z̃κ,i
∣∣ hκ,i

(
x̃
)
+ µ̂κ,i,k, σ̂

2
κ,i,k

) . (32)

z̃κ,i and ẽκ,i are the i th measured value and its error of
measurement type κ , respectively; γ̃κ,i,k is the latent variable
defining whether the ẽκ,i comes from the kth component
or not; and w̃κ,i,k is the posterior probability, which is the
probability that ẽκ,i comes from the kth GMM component.

2) M step: The M step aims to estimate the state variables
x̃ by using the computed posterior probabilities w̃κ,i,k in the
E step and error distribution parameter estimates θ̂ obtained
from the EPE procedure. The PSSE problem can be converted
into a WLS problem, which is shown as follows:

ˆ̃x = arg min
x̃

∑
κ=pmu,

scada

mκ∑
i=1

Kκ,i∑
k=1

{
w̃κ,i,k

2σ̂ 2
κ,i,k

[
z̃κ,i−hκ,i

(
x̃
)
−µ̂κ,i,k

]2}
.

(33)

Note that this problem is fundamentally different from the
conventional WLS estimator, in that for the i th measurement
of type κ , 1) there are Kκ,i squared terms representing the
Kκ,i Gaussian components of its error; 2) the weight of each
term, w̃κ,i,k/2σ̂ 2

κ,i,k , is dynamically and adaptively computed;
and 3) systematic errors (i.e., biases) of measurements are
consistently corrected by µ̂κ,i,k . However, as its unconstrained
quadratic formulation resembles WLS SE, it is much more
computationally efficient compared with the ASE formulation
proposed in our previous work [20], which contains both
square terms and absolute value terms in the objective function
and must be converted into a constrained quadratic program-
ming problem for solution.

B. Robustness Enhancement of Adaptive Estimator by
Adding Gross Error Trap

In the developed SE paradigm, the parameter estimates of
measurement error statistics in the previous interval are passed
to the SE in the current interval. The underlying assump-
tion is that the error distribution does not have an abrupt
change between the previous interval and the current interval.
In practice, however, abrupt gross error may appear in the
case of sensor malfunctioning, communication interruption,
or cyber-attacks [2], [7], [8], [28], [29], [30]. To address
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this challenge, an additional artificial term, named the gross
error trap, is introduced to the ASE. Abrupt gross errors are
represented by an artificially introduced Gaussian component
with a small mixture weight and a very large variance, which
is not captured by EPE. The improved estimator is as follows:
(34)–(36), as shown at the bottom of the next page, where
φart is the mixture weight of the gross error trap; σ 2

art is
the variance of the gross error trap; w̃′κ,i,k is the probability
that the i th measurement error of measurement type κ comes
from the kth mixture component; and w̃κ,i,art is the probability
that the i th measurement error of measurement type κ comes
from the gross error trap term. For example, if a gross error
appears in the i th measurement channel of measurement type
κ , the posterior probability w̃′κ,i,k will approach 0, and w̃κ,i,art
will approach 1, i.e., the ASE will infer that the measurement
comes from an artificial Gaussian component with a very large
variance σ 2

art. As σ 2
art is much greater than the variances of

other regular terms, σ̂ 2
κ,i,k , the contribution of the measurement

with gross error to the objective function of (34) will be
significantly suppressed. Therefore, the outcomes of ASE will
be insensitive to measurements with large abrupt gross errors,
even if they are not captured by the preceding EPE procedure.
The detailed ASE procedure is provided in Algorithm 3.

VII. SIMULATION RESULTS

To evaluate the performance of the proposed SE paradigm
under a complicated measurement environment, compre-
hensive simulations are carried out on the IEEE 30-bus
power system. About 24 PMUs are deployed across the
system except for buses 3, 7, 14, 17, 19, and 26, which
collect 24 voltage magnitude measurements, 24 voltage
phase angle measurements, 71 real parts of current phasor
measurements, and 71 imaginary parts of current phasor
measurements, and 110 SCADA measurements including
ten voltage magnitude measurements, 20 pairs of real and
reactive power injection measurements, and 30 pairs of
real and reactive power flow measurements are considered.
Besides, it is assumed that 70% of measurement channels,
including 133 PMU measurement channels and 77 SCADA
measurement channels are field-precalibrated. In other words,
the mean values of the error distributions of 70% measurement
channels are close-to-zero, and those of the remaining 30%
channels are significantly nonzero. Please note that the number
of field precalibrated measurement channels hardly impacts
the computational burden of the EPE procedure since the
parameters of measurement error distributions of all mea-
surement channels, including both field precalibrated and
field nonprecalibrated channels, are estimated in the EPE
procedure. The length of EPE and ASE time intervals are set
as 30 min. The simulation is conducted for 24 h.

The effectiveness of the developed EPE and ASE will be
verified under different measurement error conditions. In this
section, measurement errors are synthesized based on the
developed realistic SCADA and PMU measurement chains
as discussed in Section II. The simulation is based on the
real-world power flow trend derived from the ISO New Eng-
land load data on June 1st, 2023 [48]. The details of the
SCADA and PMU measurement chain models are described

in a document online [35] due to the limited space of the
article. The parameter settings for each component in the
measurement chains are as follows.

1) In the SCADA measurement chain modeling, the
parameter settings are tailored for VTs/CTs, IEDs,
and communication networks. For VTs and CTs, the
accuracy class is 0.6. Hence, the limits of uniform
distributions for systematic errors can be obtained from
the IEEE Std C57. 131-2016 [23]. The random errors
are set to follow GMM distributions with four compo-
nents, with the total mean and total variance of random
errors set to be 0 and 4 × 10−4 p.u. for ratio errors
and 0 and 1◦ for phase angle error, respectively, and
the Kullback-Leibler divergence (KLD) [42] with a
Gaussian distribution, a “Gaussianity” metric, is set to
follow a uniform distribution ranging from 0.8 to 1.0 for
all measurement channels. These choices are based on
the following rationales: 1) the errors have a high-to-
median level of similarity to Gaussian distributions; 2)
the number of Gaussian components, i.e., K , is set to
4 to mimic the causes of the multipeak and/or skewed
measurement error distributions reported in [4], [5],
and [6]; and 3) the total variance of the error is set as
a fraction of the systematic errors, as for VTs and CTs,
systematic errors play a more significant role compared
with random errors. For control cables and burdens,
typically, a 500 ft. RG-8 cable introduces a 0.4◦ phase
angle error [24]. In some cases, the length of the cable
can reach 3000 ft., which will cause an even larger
phase angle error [24]. Hence, the ratio errors follow
a Gaussian distribution with a mean of 0.002 p.u. and a
standard deviation of 0.003 p.u., while the phase angle
errors follow a Gaussian distribution with a mean of
0.2◦ and a standard deviation of 0.33◦. For IEDs, the
mean and variance of the Gaussian distribution for each
type of measurement are set to be 0 and 1 × 10−6 p.u.,
respectively. For communication networks, the measure-
ment errors are assumed to follow GMM distributions
with four components and the Gaussian similarity is
assumed to follow a uniform distribution ranging from
0.8 to 1.0 for all measurement channels. The total mean
and total variance of the GMM distributions are set to
be 0 and 1 × 10−4 p.u., respectively.

2) In the PMU measurement chain modeling, the parameter
settings are tailored for VTs/CTs, control cables and
burden, and the phasor estimation procedure. For VTs,
CTs, and control cables and burdens, the parameters are
set the same as those in the SCADA measurement chain
modeling. For the phasor estimation procedure, the DFT
algorithm with filters is used to estimate phasor measure-
ments [31]. Specifically, it is assumed that the nominal
frequency of input signals is 60 Hz. The off-nominal
frequency of input signals follows a uniform distribution
ranging from 59.8 to 60.2 Hz, which is used to mimic
the realistic behavior of the power grid frequency. The
reporting rate of PMUs is 60 Hz. The sampling rate of

1Trademarked.
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the DFT algorithm is 16 sampled values per cycle, i.e.,
960 Hz. The frequency of the oscillator is 20 MHz. The
oscillator frequency drift is 0.15 µs/PPS.

Furthermore, abrupt gross errors are introduced in the 30th
and 40th time intervals. For SCADA measurements, gross
errors are introduced by abnormally long latency in commu-
nication networks. For PMU measurements, gross errors are
introduced by GPS signal loss. The EPE tolerances for φκ,i,k ,
µκ,i,k , σκ,i,k , and SM(Kκ,i )

κ,i are set as εφ = 10−3, εµ = 10−4,
εσ = 10−4, and εSM = 0.98, respectively. In ASE, the
parameters of the gross error trap are set as φart = 0.01 and
σart = 10, respectively. The state regression tolerance in the
EPE and ASE are set as εx = 10−5.

In order to evaluate the performance of EPE, we need to
quantify how close the estimated measurement error distribu-
tions are to the true distributions for all measurement channels.
The Cosine similarity measure is used to evaluate the accuracy
of outcomes of EPE. It evaluates the similarity between the
pdfs of the true distribution and the estimated distribution of
the errors from a measurement channel [42]

SMEPE
κ,i =

∑U
j=1 P

(
o j
∣∣ θ̂κ,i

)
· P

(
o j
∣∣ θκ,i

)
√∑U

j=1

[
P
(

o j
∣∣ θ̂κ,i

)]2
·

√∑U
j=1

[
P
(

o j
∣∣ θκ,i

)]2
(37)

O =
[
o1, o2, . . . , o j , . . . , oU

]
, j = 1, 2, . . . , U (38)

where SMEPE
κ,i is the similarity between the pdf based on

true error distribution parameters θκ,i and the pdf based on
estimated error distribution parameters θ̂κ,i ; P(o j |θ̂κ,i ) and
P(o j |θκ,i ) represent the probabilities of the error distributions
with respect to θ̂κ,i , θκ,i , and o j ; O is a set of sample data,
which is used to compute the probabilities of pdfs; and U is
the number of sample data. The closer the similarity metric is
to 1, the better the performance of the EPE procedure.

In order to evaluate the performance of ASE, we need to
quantify how close the state estimates are to the true states.
The mean absolute errors (MAEs) are used to evaluate the
performance of the developed ASE, defined as follows:

MAEV =
1
n

n∑
i=1

∣∣∣Vi − V̂i

∣∣∣ (39)

MAEδ =
1
n

n∑
i=1

∣∣∣δi − δ̂i

∣∣∣ (40)

where MAEV and MAEδ represent the MAEs of estimated
voltage magnitudes and estimated phase angles, respectively;
the variables with and without a hat represent the esti-
mated and true values of state variables, respectively. The
performance of the developed ASE is compared with three
conventional methods, the WLS SE, the WLS SE with bad
data correction (BDC), and the WLAV SE. The WLS SE
implicitly assumes that the measurement errors follow pure
zero-mean Gaussian distributions, and it is mostly widely used
in industry today. In the realistic power system, the bad data
detection, identification, and correction procedure is typically
followed by the WLS SE since it is not robust against gross
errors [1]. The WLAV SE assumes that the measurement errors
follow pure zero-mean Laplacian distributions, and it is one
of the most widely investigated RSE methods in literature.
In this simulation, the weights of WLS SE and WLAV SE
are set based on the variances of true measurement errors.
Note that such knowledge is not often available in practice,
and the weight settings of two estimators are typically less
reliable than assumed in these simulations. Therefore, the
presented simulations already mimic the upper bounds of the
conventional estimators’ performance in practice.

A. Performance Under Measurement Errors Synthesized
From the Realistic Measurement Chain Models

First, the feasibility of the proposed method is demonstrated
in the first two time intervals in the 24-h testing period. Then,
the performances of EPE and ASE are illustrated over the
entire 24-h period under time-varying error distributions and
abrupt gross error conditions, respectively.

1) Feasibility Validation of the Proposed EPE and ASE
Procedures: The measurements within the first 30-min time
interval are used to perform EPE for capturing the parameters
of measurement error distributions. The ASE is executed by
using error distribution parameters obtained from the EPE and
on a single measurement scan in the second time interval. The
simulation is repeated 2000 times.

For EPE, the cosine similarity metric between the pdfs based
on true parameters and estimated parameters of all measure-
ment channels is shown in Fig. 3. For most measurement
channels, the similarity metric is very close to 1, indicating that
the estimated measurement error distributions are very close
to the ground truths. To further illustrate the performance of
EPE, the true and estimated pdfs of measurement errors from
six different measurement channels in PMUs and SCADA are

ˆ̃x = arg min
x̃

∑
κ=pmu,

scada

mκ∑
i=1


Kκ,i∑
k=1

[
w̃′κ,i,k

2σ̂ 2
κ,i,k

(
z̃κ,i − hκ,i

(
x̃
)
− µ̂κ,i,k

)2]
+

[
w̃κ,i,art

2σ 2
art

(
z̃κ,i − hκ,i

(
x̃
))] (34)
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2
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)
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(
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)
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2
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)
+ φart N

(
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(
x̃
)
, σ 2
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) (35)
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Fig. 3. Similarity between true and estimated measurement error distributions
for all measurement channels.

Fig. 4. Probability densities of measurement errors in selected channels:
(a) 15th channel (P11); (b) 41st channel (Q18); (c) 112th channel (V2);
(d) 141st channel (δ9); (e) 170th channel (real part of I5−2); and (f) 234th
channel (imaginary part of I2−6).

Fig. 5. Systematic biases of field nonprecalibrated measurement channels
with and without algorithmic calibration using the EPE results: (a) SCADA
channels and (b) PMU channels.

shown in Fig. 4. It is observed that the true and estimated pdfs
are highly consistent, implying that the statistics of measure-
ment errors can be accurately captured by the proposed EPE
procedure. The accurate statistical knowledge of measurement
error will support the subsequent ASE procedure to achieve
accurate state estimates for power system operation.

As described in Section V-C, an important byproduct of EPE
is the algorithmic precalibration of sensors with systematic
errors. The measurement channels can be reset based on the
estimated total mean of errors by (29) to remove systematic
errors (biases) pertaining to the channel. In Fig. 5(a) and (b),
the biases of the 30% field nonprecalibrated SCADA channels
and PMU channels before and after algorithmic precalibration
by EPE are presented, respectively. The biases are significantly
reduced after algorithmic precalibration using the estimated
total mean values given by EPE.

In order to evaluate the performance of ASE, the absolute
errors of estimated voltage magnitudes and phase angles of

Fig. 6. Absolute errors of estimated voltage magnitudes.

Fig. 7. Absolute errors of estimated phase angles.

all buses based on the WLS SE, the WLS SE with BDC, the
WLAV SE, and the proposed ASE are shown in Figs. 6 and 7,
respectively. They are scatter plots on the simulation results
of 100 trials. Evidently, the distributions of absolute errors
of all state estimates based on the proposed ASE are more
concentrated around zero compared with WLS SE, WLS SE
with BDC, and WLAV SE. The MAEs of the estimated voltage
magnitudes and phase angles based on the developed ASE,
the WLS SE, the WLS SE with BDC, and the WLAV SE are
shown in Table III, along with the percentage improvements
achieved by the ASE. It can be seen that the proposed ASE
can achieve more accurate state estimates than the WLS SE,
the WLS SE with BDC, and the WLAV SE by adopting the
measurement error statistics captured by the proposed EPE.
Note that the performance of the WLAV SE, which is well
known for its capability of resisting heavy-tailed measurement
errors, is inferior to the developed ASE. The reason is that
WLAV SE is agnostic to the true statistics of measurement
errors. It is the unbiased and minimum-variance estimator only
when the measurement error follows a Laplacian distribution
with a zero mean and a known scale parameter, which is not
likely to be true in practice. The proposed ASE, on the other
hand, does not require any prior knowledge of measurement
error statistics. Instead, it is informed by the error statistics
captured by EPE and adjusts its structure and parameters
accordingly. Therefore, it achieves higher accuracy than robust
estimators such as WLAV SE when the measurement error
statistics are complex and unknown in advance.

The simulation results discussed above demonstrate the
feasibility of the proposed EPE and ASE procedures in
the first two time intervals. In practice, the measurement
error conditions could be even more challenging: the error
distributions could be time-varying and abrupt gross errors
due to sensor/communication failures may also be present.
The following two parts aim to evaluate the performance
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TABLE II
ANALYSES OF MEASUREMENT ERROR SOURCES OF EACH COMPONENT IN SCADA AND PMU MEASUREMENT CHAINS

TABLE III
SIMULATION RESULTS OF PSSE

of the proposed SE paradigm under such very challenging
conditions. The simulation is executed continuously in a 24-h
period. During this period, the power flow trend is derived
from the actual load data from the ISO New England [48].
Consequently, the measurement error distributions of each
measurement channel are time-varying due to the changes in
operating states. Besides, the abrupt gross errors are introduced
into 10% field nonprecalibrated measurement channels in the
30th and 40th time intervals as follows.

2) Normal Time-Varying Measurement Errors (24 h Except-
ing for the 30th and 40th Time Intervals): The measurement
error distributions in the SCADA and PMU measurement
chains at different time instants are illustrated in Figs. 8 and 9,
respectively. The simulation is based on the real-world power
flow trend derived from the ISO New England load data
on June 1st, 2023 [48]. These results demonstrate that the
statistics of measurement errors are indeed continuously vary-

Fig. 8. Measurement error distributions in the SCADA measurement chain at
different time instants: (a) active power errors and (b) reactive power errors.

ing due to the wide variety of varying conditions especially
power system operating points, verifying the need to perform
ASE. Meanwhile, the results also show that the variations of
the measurement error statistics are relatively slow, and the
difference between the 2 h is mild. Therefore, it can be inferred
that the change of the measurement error distribution is very
slight in a short time interval such as 30 min, which verifies the
rationality of the assumption that measurement error distribu-
tions are approximately unchanged in the time window of the
EPE procedure. In order to evaluate the performance of EPE
under normal time-varying measurement error distributions,
the average similarities of true and estimated error distributions
of all measurement channels within different time intervals
are shown in Fig. 10. The similarities between the true error
distribution and the assumed error distributions by WLS SE
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Fig. 9. Measurement error distributions in the PMU measurement chain at
different time instants: (a) real part of current phasor errors and (b) imaginary
part of current phasor errors.

Fig. 10. Average similarities between captured and true error statistics.

and WLAV SE, which are a pure Gaussian distribution and
a pure Laplacian distribution, are also shown comparatively.
The results reveal that GMM used by the proposed EPE can fit
the complex measurement error distribution much better than
a pure Gaussian distribution or a pure Laplacian distribution.
In order to evaluate the performance of ASE, the MAEs of
estimated voltage magnitudes and phase angles of the four
estimators from the second to the 49th interval are shown
in Figs. 11 and 12, respectively. Note that the abscissas in
Figs. 11 and 12 start at the second interval and end at the 49th
interval. The reason is that parameter estimates obtained from
a 30-min time window (i.e., the previous interval) by EPE are
used by ASE in the subsequent 30-min time window (i.e., the
current interval), as discussed in Section IV. Based on Figs. 11
and 12, it can be found that the performance of SE, particularly
for the WLAV SE, exhibits time-varying characteristics as the
underlying measurement error statistics vary with the change
of operating states of power systems. Moreover, the proposed
ASE outperforms the WLS SE, the WLS SE with BDC, and
the WLAV SE regardless of the variation of measurement error
statistics, manifesting strong adaptiveness under a complex and
time-varying measurement environment.

3) Abrupt Gross Errors (the 30th and 40th Time Inter-
vals): When gross errors abruptly occur due to sen-
sor/communication failure, the error distribution may be
severely distorted instantaneously, which the EPE procedure
fails to capture in a prompt manner. In order to test the per-
formance of the proposed ASE paradigm under abrupt gross
errors, it is assumed that the communication delay and the GPS
signal loss occurred in 10% field nonprecalibrated SCADA
and PMU measurement channels, respectively. From Figs. 11
and 12, the developed ASE also remains the most accurate

Fig. 11. MAEs of voltage magnitudes under complex and time-varying
measurement errors.

Fig. 12. MAEs of phase angles under complex and time-varying measurement
errors.

state estimate among the four estimators under the extreme
situation. Especially, it still achieves better performances than
the well-known robust WLAV estimator and the WLS with
BDC. The reason is that although the ASE cannot exploit the
statistics of measurement errors within the current interval, the
M-step [i.e., (36)] will compute a large posterior probability
for the gross error trap, w̃κ,i,art (i.e., w̃κ,i,art will be close
to 1 and w̃′κ,i,k will be close to 0). In other words, in the
E-step, the ASE will infer that there is a large probability
that the measurement comes from the artificially introduced
Gaussian component with a large variance σ 2

art, and then
suppress its impact on the M-step estimation. As a result, the
state estimates will not be heavily affected by the gross error.
Hence, the developed ASE has the capability to suppress gross
errors that occur instantaneously and are not captured promptly
by EPE.

B. Computational Efficiency

The simulations are executed using a personal computer
with Intel Core i7-9700K CPU, 32GB RAM, and Windows
10 64-bit operating system. The proposed EPE and ASE
algorithms are implemented using MATLAB version R2020b.
For the EPE procedure executed every 30 min (1800 s)
for capturing the measurement error statistics, the average
computational time is 436 s, which shows that the proposed
EPE algorithm can be executed in the desirable frequency.
For the ASE procedure executed at a much higher frequency



9003917 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

to estimate the state variables of the system, the average
computational times for the WLS SE, the WLS SE with
BDC, the WLAV SE, and the proposed ASE are 0.026, 0.043,
0.078, and 0.136 s, respectively. Evidently, the computational
cost of the proposed ASE is only mildly higher than those
of the conventional WLS SE and WLAV SE. Moreover, the
computational burden for large power systems will not be an
obstacle to the practical application of the proposed adaptive
state estimator due to the partition and parallel computing
approaches [49], [50], [51]. This is because the proposed EPE
for a measurement channel and proposed ASE for a state
variable largely rely on the information in the local area [1].
For example, for estimating the state variable of a given bus,
the measurements that are three or four buses away may have
a very little impact [1, Ch. 7.2]. In addition, in the EPE
procedure, the parameter estimation, i.e., (20) and (24)–(26),
are independent for different measurement channels and can
be performed in parallel. In a control center where parallel
computing is available, the computational time will be further
reduced. Hence, the large power system can be partitioned
into a few small-scale systems and executed in parallel with
the EPE and ASE procedures. Therefore, the proposed SE
paradigm is efficient enough for the online monitoring of
power grids.

While partitioning and parallel computing methods can
improve computational efficiency, they may also result in
several issues, such as the deterioration of SE accuracy due
to the global impact of voltage magnitude measurements, the
uniqueness of phase angle solutions for multiple subsystems,
the lower capability of bad data processing at the boundaries
of subsystems, etc. Fortunately, the global impact of voltage
magnitude measurements on the entire system can be mitigated
since abundant voltage measurements are available in today’s
power systems [49], [50]. A unique phase angle solution for
the entire system can be achieved by sharing the local SE
results between neighboring estimators [49]. Moreover, the
robustness of decentralized SE can be improved by over-
lapping the boundary buses in neighboring subsystems [50]
and by implementing two-stage SE [51]. Although numerous
methods have been proposed to tackle these challenges [49],
[50], [51], careful consideration is still required when utilizing
partitioning and parallel computing techniques to deal with
large-scale systems.

VIII. CONCLUSION

The performance of PSSE is dependent on the degree of
fitness between the formulation of estimators and the true
measurement error statistics. The challenging reality is that
the statistics of measurement errors are typically unknown,
nonzero-mean, non-Gaussian, and time-varying, limiting the
performances of estimators with stiff prior assumptions. This
article proposes a comprehensive adaptive paradigm to maneu-
ver PSSE through such an uncertain challenging measurement
environment. Simulation results in the IEEE 30-bus test system
demonstrate that the developed EPE method accurately cap-
tures complex probability distributions of measurement errors.
It also enables an accurate sensor algorithmic precalibration
approach without the need for field experiments. The ASE

method, which updates the estimator formulation based on the
captured statistical knowledge of measurement errors by EPE,
yields more accurate state estimates compared with the mostly
widely used WLS SE, WLS with BDC, and robust WLAV SE
methods under unknown, time-varying, and highly complex
measurement error conditions. Through a carefully designed
gross error trap, the proposed ASE performs stably well even
when abrupt gross errors occur. The proposed algorithms are
applicable to a mix of PMU and SCADA measurements and
are demonstrated to be computationally efficient for real-
time applications. Although the measurement chain analysis
in the article has sufficiently motivated and validated the pro-
posed method, further investigation and documentation of the
detailed error characteristics of individual components in the
measurement chain and their combined effect in the real world
is an important direction for the technical community. The
authors’ more detailed work in this aspect will be presented
in follow-on IEEE publications.
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