
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024 2003616

Low-Cost FPGA Implementation of Deep
Learning-Based Heart Sound Segmentation

for Real-Time CVDs Screening
Daniel Enériz , Graduate Student Member, IEEE, Antonio J. Rodriguez-Almeida , Himar Fabelo ,

Samuel Ortega , Francisco J. Balea-Fernandez , Gustavo M. Callico , Senior Member, IEEE,
Nicolás Medrano , Senior Member, IEEE, and Belén Calvo , Senior Member, IEEE

Abstract— The development of real-time, reliable, low-cost
automatic phonocardiogram (PCG) analysis systems is critical for
the early detection of cardiovascular diseases (CVDs), especially
in countries with limited access to primary health care programs.
Once the raw PCG acquired by the stethoscope has been
preprocessed, the first key task is its segmentation into the
fundamental heart sounds. For this purpose, an optimized
hardware implementation of the segmentation algorithm is
essential to attain a computer-aided diagnostic system based
on PCGs. This article presents the optimization of a U-Net-
based segmentation algorithm for its implementation in a low-end
field-programmable gate array (FPGA) using low-resolution
fixed-point data types. The optimization strategies seek to reduce

Manuscript received 15 December 2023; revised 26 March 2024;
accepted 29 March 2024. Date of publication 22 April 2024; date of current
version 6 May 2024. This work was supported by FEDER, UE Projects
under Grant PID2019-106570RB-I00/AEI/10.13039/501100011033, Grant
PID2022-138785OB-I00/AEI/10.13039/501100011033, and Grant PID2020-
116417RB-C42/AEI/10.13039/501100011033. The work of Daniel Enériz
was supported by Gobierno de Aragón under Grant BOA20201210014.
The work of Antonio J. Rodriguez-Almeida was supported in part by
the Pre-Doctoral Fellowship through Agencia Canaria de Investigación,
Innovación y Sociedad de la Información (ACIISI), Consejería de Economía,
Conocimiento y Empleo, Gobierno de Canarias; and in part by the European
Social Fund (FSE) under Grant POC 2014-2020, Eje 3 Tema Prioritario
74 (85%). The work of Himar Fabelo was supported by the European
Union NextGenerationEU/PRTR under Grant FJC2020-043474-I and Grant
MCIN/AEI/10.13039/501100011033. The Associate Editor coordinating the
review process was Dr. Mohamad Forouzanfar. (Daniel Enériz and
Antonio J. Rodriguez-Almeida are co-first authors.) (Corresponding author:
Nicolás Medrano.)

Daniel Enériz, Nicolás Medrano, and Belén Calvo are with the Aragon
Institute of Engineering Research, University of Zaragoza, 50018 Zaragoza,
Spain (e-mail: eneriz@unizar.es; nmedrano@unizar.es; becalvo@unizar.es).

Antonio J. Rodriguez-Almeida and Gustavo M. Callico are with the
Research Institute for Applied Microelectronics, Universidad de Las Palmas
de Gran Canaria, 35001 Las Palmas de Gran Canaria, Spain (e-mail:
aralmeida@iuma.ulpgc.es; gustavo@iuma.ulpgc.es).

Himar Fabelo is with the Research Institute for Applied Microelectronics,
Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de Gran
Canaria, Spain, and also with Fundación Canaria Instituto de Investigación
Sanitaria de Canarias, 35012 Las Palmas de Gran Canaria, Spain (e-mail:
hfabelo@iuma.ulpgc.es).

Samuel Ortega is with the Research Institute for Applied Microelectronics,
Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas de
Gran Canaria, Spain, and also with Norwegian Institute of Food,
Fisheries and Aquaculture Research, 9019 Tromsø, Norway (e-mail:
sortega@iuma.ulpgc.es).

Francisco J. Balea-Fernandez is with the Research Institute for Applied
Microelectronics and the Department of Psychology, Sociology and Social
Work, University of Las Palmas de Gran Canaria, 35001 Las Palmas de Gran
Canaria, Spain (e-mail: fbalea@cop.es).

Digital Object Identifier 10.1109/TIM.2024.3392271

the system latency while maintaining a constrained consumption
of FPGA resources, aiming for a real-time response from the
stethoscope data acquisition to the CVD detection. Experimental
results prove a 64% decrease in latency compared to a baseline
version, a 3.9% reduction of block random access memory
(BRAM), which is the limiting resource of the design, and a 70%
reduction in energy consumption. To the best of our knowledge,
this is the first work to exhaustively study different optimization
strategies for implementing a large 1-D U-Net-based model,
achieving real-time fully characterized performance.

Index Terms— Cardiovascular disease (CVD) detection,
computer-aid diagnostic, convolutional neural networks (CNNs),
deep learning, edge AI, embedded systems, field-programmable
gate array (FPGA), heart sound segmentation.

I. INTRODUCTION

IN 2019, 17.9 million people died due to cardiovascular
diseases (CVDs), the leading cause of death, with 32% of

deaths worldwide [1]. More than three-quarters of these CVD
deaths occurred in low and middle-income countries, where
people with risk factors often do not have access to primary
health programs for early detection and treatment. Moreover,
cardiac auscultation performed by a medical doctor using
a stethoscope, which is the fundamental method for CVD
screening, is challenging to learn, resulting in only 20% of
cardiac events being detected by internal medicine and family
practice residents [2]. These two factors have motivated the
development of automatic phonocardiogram (PCG) analysis
in recent years [3], [4], as a computer-aided decision system
based on auscultation would lead to improved accuracy
and shorter diagnostic times, thus facilitating the referral of
patients to cardiology doctors. Therefore, a system such as a
processing unit that automatically analyses the PCG in real-
time attached to the traditional stethoscope can be a feasible
solution to provide a more efficient CVD screening process.

PCGs are recordings of the heart sounds made during
its mechanical and physiological activity, resulting from the
opening and closure of the cardiac valves. As drawn in
Fig. 1, two main sounds, S1 and S2, are produced when the
atrioventricular and the semilunar valves close, respectively.
These sounds define the duration of the cardiac cycle,
which is divided into two periods: systole and diastole.
Apart from the fundamental sounds (S1 and S2), additional

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5709-1183
https://orcid.org/0000-0001-6358-5745
https://orcid.org/0000-0002-9794-490X
https://orcid.org/0000-0002-7519-954X
https://orcid.org/0000-0003-2028-0858
https://orcid.org/0000-0002-3784-5504
https://orcid.org/0000-0002-5380-3013
https://orcid.org/0000-0003-2361-1077


2003616 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Fig. 1. Illustrative example of a PCG signal, where the fundamental sounds
S1 and S2 and the systole (Sys) and diastole (Dias) intervals are labeled. The
limits of each cardiac cycle are also marked with vertical lines.

sounds can appear in the PCGs. These sounds are often
related to cardiac murmurs, possibly associated with CVDs.
Recognizing and describing these murmurs in a first screening
is crucial to deciding whether a patient must be referred to a
cardiologist [5]. Please note that Fig. 1 shows an illustrative
example. In medical practice, PCG signals are mixed with
different noise sources such as the patient’s breathing, skin
contact with the stethoscope, background conversations, etc.

In recent years, several studies have addressed different
tasks in the heart-sound analysis field by employing a
wide variety of algorithms. One of the most basic tasks is
the segmentation of the PCG, that is, the recognition of
its fundamental components: S1, systole interval, S2, and
diastole interval, as shown in Fig. 1. In [6], a segmentation
algorithm based on a duration-dependent hidden Markov
model (DHMM) was presented, first introducing an explicit
model of heart-sound time duration. Based on this work,
another hidden semi-Markov model (HSMM) was introduced
by Springer et al. [7], which uses logistic regression in the
model probabilities and additional input features, achieving
significant improvements. An additional logistic regression
segmentation algorithm based on the HSMM was presented
in [8], which uses adaptive sojourn time parameters.

Finally, inspired by the success of U-Net [9] in image
segmentation, the work presented in [10] introduces the
use of convolutional neural networks (CNN) for heart-sound
segmentation. The analysis of performance included in [10],
showed that the U-Net-based model outperformed the existing
reference algorithms to date (see [6], [7], and [8]), establishing
the current state-of-the-art in this field. A summary of this
analysis comparing the algorithms in [6], [7], and [10] is
available in Table I, where the U-Net-based model outperforms
in three different metrics. The adaptive sojourn temporal
modeling described in [8] is also evaluated in [10], with slight
improvements in sensitivity. For these reasons, the U-Net-
based model described in [10] was the one selected to be
implemented in this work.

A critical aspect that must be considered when developing
an automatic PCG analyzer is the hardware running the
algorithm and its time response. Because computer-aided
diagnostic systems must be real-time responsive, an opti-
mized algorithm implementation is required, especially in

TABLE I
PERFORMANCE COMPARISON WITH SEGMENTATION ALGORITHMS

PROPOSED IN THE LITERATURE. DATA EXTRACTED
FROM [10, TABLE I]

computationally intensive solutions, such as machine and deep
learning models. Moreover, owing to the substantial impact of
CVDs in low- and middle-income countries, it is desirable
to have a low-cost and internet-independent system suitable
for use in areas where the main resources are not regularly
available. Additionally, as clinical data are sensitive, their
privacy must be ensured, making their processing undesirable
in third-party datacenters such as Big Tech cloud services.
For these reasons, an edge-computing solution is the best
option, because this choice entails a single device acquiring
and processing the data.

Four leading hardware platforms are widely used to
implement algorithms: central processing units (CPUs),
graphic processing units (GPUs), field-programmable gate
arrays (FPGAs), and application-specific integrated circuits
(ASICs). Heterogeneous systems are also emerging by
combining previous platforms.

CPUs are the most general-purpose approach, but with very
limited parallelization capability, whereas ASICs are specific
solutions that can provide full parallelization. GPUs and
FPGAs lie in between, both are general-purpose and highly
parallelizable, but their nature differs in terms of flexibility
and adaptability. GPUs are particularly well-suited for parallel
processing tasks, making them ideal for graphics rendering
and batch training of deep learning models, but often with
high energy consumption. Their development methodology is
straightforward thanks to the extended support of libraries such
as CUDA and OpenCL [11], [12].

On the other hand, FPGAs offer a unique advantage with
their reconfigurable hardware, allowing for custom hardware
acceleration tailored to specific algorithms and unlocking
great optimization capabilities. While GPUs excel at tasks
with high data parallelism, FPGAs offer a more flexible
and adaptable solution while supporting high parallelization
capabilities, making them suitable for a wider range of
applications, especially those requiring low-latency and power
efficiency, such as a real-time CVD screening device
requires.



ENÉRIZ et al.: LOW-COST FPGA IMPLEMENTATION OF DEEP LEARNING-BASED HEART SOUND SEGMENTATION 2003616

The drawback of using FPGAs is the development
methodology, as they require the hardware description to be
implemented. Fortunately, there are high-level synthesis (HLS)
tools that enable FPGA programming from an algorithmic
description, thus shortening the implementation time close
to its GPU counterpart while maintaining a high-level of
control over the synthesized design. Moreover, the possibility
of using fixed-point data types of arbitrary lengths in HLS
allows further optimization of the algorithms by lowering the
resolution of the data types below 16 bits. The implementation
of custom hardware for optimized inference of machine and
deep learning models in FPGAs has become popular in recent
years [13], [14], [15], [16], [17], thanks to the advances
in HLS tools, opening up the possibility of using low-cost
FPGAs as target platforms to implement artificial intelligence
models. Finally, the heterogeneous platforms, such as the
Xilinx1 Zynq2 7000 series [18], allow the distribution of the
computational workload between the CPU and FPGA during
prototyping periods. This unique characteristic enhances
flexibility by allowing developers to fine-tune the allocation
of processing tasks based on their nature and complexity.
For example, the Xilinx Zynq 7000 series seamlessly
integrates a powerful ARM Cortex-A9 processor with an
FPGA fabric, providing a versatile environment for algorithm
development.

Additionally, one of the advantages of using deep learning
models with hierarchical architectures is their ability to
introduce parameters to control their size. This is especially
advantageous when the model must be implemented on low-
end hardware because this opens another way to adapt the
model to its target optimally [19].

Only a few studies have presented hardware implementa-
tions of heart-sound segmentation algorithms based on deep
learning. Kwiatkowski et al. [20] implemented a small CNN
in an ARM Cortex M7 processor with an inference time of
11 ms, using an 8-bit representation. Vakamullu et al. [21]
used a Raspberry Pi 3B (quad-core ARM Cortex A53) to
implement a 1-D CNN. They used different combinations
of the decimation factor of the data and kernel size of the
CNN to fit the model on the targeted device. No execution
times have been reported, even though their design has been
physically validated. These works prove the feasibility of the
implementation of deep learning heart-sound segmentation
algorithms on microprocessors like ARM Cortex-M and -A
series with real-time performance. Even so, the heart-sound
segmentation algorithm is just a first step in a real-time CVD
screening device, that will require the concurrent operation
of multiple algorithms, probably most of them deep learning
models. For these reasons, we believe an FPGA is a more
suitable device for this purpose since the customization,
optimization, and parallelization capabilities these devices
have will unlatch the concurrent operation of the following
stages, as a murmur detector. Finally, the selection of a
heterogeneous platform, such as the Xilinx Zynq 7000 series
will allow the rapid swapping of the computational workload

1Registered trademark.
2Trademarked.

between the CPU and the FPGA during the development of
the system.

This work proposes an optimization of the implementation
of a U-Net-based segmentation algorithm targeting the Xilinx
Zynq 7020 FPGA, as a first stage toward the development of
a real-time CVDs screening device. This work involves the
following contributions:

1) Reproduction of the U-Net-based segmentation
algorithm with sequential max temporal modeling,
evaluated over the 2016 Physionet/CinC Challenge
dataset [22], [23].

2) Evaluation of the model over the CirCor DigiScope
PCG dataset [23], [24] proving its suitability for a more
extensive dataset with environmental noise.

3) Identification of novel architecture parameters that
enable further control of the model size, and com-
putation of the effects these parameters have on the
performance metrics, number of model operations, and
memory consumption.

4) Exploration of two different implementation strategies:
one with shared memory for feature maps and the
other with streaming dataflows. For each strategy, the
impact of the model reduction parameters on the model
accuracy, FPGA resource consumption, and latency (i.e.,
execution time or inference time) of the model are
analyzed.

5) Offline evaluation of model performance and FPGA
resource consumption with different low-resolution
fixed-point representations using the aforementioned
public datasets.

6) Perform the preliminary step to envision a hand-held
and low-power device that automatically detects heart
sound abnormalities, enabling the detection of early
signs of CVDs in the clinical practice in short periods
of time.

To the best of our knowledge, this is the first work that
assesses an in-depth study of the U-Net-based cardiac sound
segmentation algorithm targeting an FPGA implementation.
It includes an exhaustive analysis of the influence of
the aforementioned model reduction parameters and the
optimization of the model implementation to achieve the
best performance in terms of 1) classification metrics;
2) latency; and 3) FPGA resource consumption, thus demon-
strating that the state-of-the-art cardiac sounds segmentation
algorithm can be executed in real-time on a low-end
device.

The rest of the article is organized as follows. Section II
introduces the underlying concepts of the operations in CNNs
and the basis of the HLS tools to the reader. The U-Net-based
segmentation model is presented in Section III. Section IV
includes the methodology followed for the model optimization
during the training and implementation steps. The datasets
used for experiments, the target FPGA, the results of
the training, the HLS C simulations with fixed-point
representations, the synthesis, the C/RTL co-simulation and
a comparison with other implementations are included in
Section V. Finally, some conclusion is drawn in Section VI.



2003616 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

An open-source release of the code used in this work is
available on GitHub.3

II. BACKGROUND

A. Convolutional Neural Networks

CNNs are a type of neural network capable of extracting
features from data using convolutional structures inspired by
the biological vision perceptron. These architectures have been
particularly successful in computer vision and solving tasks
such as object detection [25] with state-of-the-art accuracy.
CNNs have also shown promising results in the biomedical
field at tasks such as image segmentation [9] and disease
classification [26].

The output of each convolutional layer is called a feature
map because it is composed of the features learned by
the corresponding layer. The key layer parameter is the
convolutional kernel, which represents the vision receptors.
Because they have a limited size, they are affected by border
effects, thereby reducing the output feature map. To fix this,
padding can be employed to enlarge the input with zeros,
and thus cancel the border effects. In addition, stride is
the parameter that controls the density of the convolution
operations: the larger it is, the lower the density.

In the U-Net-based segmentation model, as temporal signals
are processed (i.e., PCGs), the convolutional layers are all
1-D. In addition, they all have a stride of one and 1-D
kernels with a size of three. The input matrix is denoted as
A ∈ RNm×nin and the output as B ∈ RNm×nout , where Nm is the
number of elements along the time axis, nin is the number of
input features, and nout is the number of output features, the
operation is defined as

Bi,k =

min (Nm−1,i+1)∑
l=max (0,i−1)

nin−1∑
j=0

Al, j Wl−i+1, j,k (1)

where the generic notation for elements in a matrix is
Ci, j , that denotes the i th element in the time axis of the
j th feature. In addition, the weights tensor is denoted by
W ∈ RNm×nin×nout and the element subscripts in the Wi, j,k

correspond to the time dimension, input features, and output
features, respectively. Besides, instead of zero-padding the
inputs, the spatial dimensions are preserved along the feature
maps in (1) by adjusting the kernel operation limits. Finally,
after the operation of the convolutional layer, a nonlinear
activation function is applied to the output matrix B. In this
study, three different activation functions are used: the rectified
linear unit (ReLU), which operates elementwise and is defined
as

ReLU(z) = max(0, z). (2)

ArgMax, which returns the index of the maximum when
operating over a vector, and SoftMax, which is defined as

σ(z)i =
ezi∑
j ez j

. (3)

3https://github.com/eneriz-daniel/PCG-Segmentation-Model-Optimization/

TABLE II
HLS DIRECTIVES SUMMARY

Additionally, CNN architectures also comprise layers that
manipulate the feature maps: pooling layers that reduce their
dimensionality, up-sampling layers that operate conversely,
increasing them, and concatenation layers that allow stacking
them.

B. High-Level Synthesis

HLS tools have become popular in hardware design,
increasing abstraction from the register transfer level (RTL),
whose complexity lengthens the development time in system-
on-chip (SoC) designs. Basically, they enable hardware
synthesis from a high-level language, which automatically
generates the equivalent hardware description language
(HDL); therefore, the design is easily implemented in a
hardware platform, such as an FPGA or ASIC, without the
need to develop an RTL design [27], [28].

Specifically, Vivado HLS is a tool suitable for synthesizing
and implementing a design from an algorithmic description,
converting C/C++ code into HDL, which can be used to
program a Xilinx FPGA. This process is based on four
steps:1) HLS C simulation, which runs the description code
and validates its operation; 2) synthesis, which generates the
equivalent HDL from the C/C++ description; 3) C/RTL co-
simulation, which verifies that both designs work accordingly;
and 4) HDL exportation. A key feature of Vivado HLS is that
it allows the use of different directives to optimize the C/C++

code in an FPGA-friendly manner during the synthesis step.
Different directives should be selected in different sections of
the code, depending on the goal (area, throughput, or latency).
A summary of the directives used in this work is included in
Table II. In addition, the original code must sometimes be
modified to guide the synthesis process and take advantage of
FPGA characteristics [29].

III. RELATED WORK

Renna et al. [10] presented the first PCG segmentation
model based on CNN. Specifically, it is an adaptation
of U-Net [9], a model developed for biomedical image
segmentation. To work with PCGs, the model was modified
to operate with 1-D signals. A detailed schematic of the
architecture is presented in Fig. 2.

Prior to the model analysis, the data must be preprocessed.
First, each heart sound is bandpass filtered between 25 and
400 Hz. The spike removal method described in [6] is then
applied. The next step is the generation of four different
envelograms, as in [7] and [10]:

1) Hilbert envelope: extracts the absolute value of the
Hilbert transform.



ENÉRIZ et al.: LOW-COST FPGA IMPLEMENTATION OF DEEP LEARNING-BASED HEART SOUND SEGMENTATION 2003616

Fig. 2. Segmentation architecture scheme. The channels are represented in the ordinate axis, the time is on the abscissa axis. N is the input window length
and n0 is the base number of filters. This representation shows nenc =4 encoders and decoders. For visualization purposes, the concatenation of the skip
connections is drawn in the time axis, while in fact is done in the channels’ axis. The list of studied values for the parameters N , n0, and nenc are also
included.

2) Homomorphic envelogram: computed by exponentiating
the low-pass filtered natural logarithm of the Hilbert
envelope.

3) Power spectral density (PSD) envelope: calculated from
the signal spectrogram between 40 and 60 Hz with 50%
overlapping windows of 0.05 s width.

4) Wavelet envelope computes the Shannon energy of
a decomposition level after applying a Daubechies
wavelet.4

Finally, the envelograms are downsampled to 50 Hz to
reduce the computational impact and normalized to have a
zero mean and unit variance. A visual example of the pre-
processing step is presented in Fig. 3.

In this way, after preprocessing, a signal with four features is
obtained: x(t) ∈ R4 for t = 0, . . . , T−1, where t indicates the
time instant, and T is the total time of the PCG. Denoting s(t)
as the sequence containing the state labels for each time instant
(s(t) ∈ {1, 2, 3, 4}, where state 1 corresponds to S1, state 2
corresponds to the systole interval, state 3 to S2 and state 4 to
the diastole interval) and given x(t), the segmentation model
provides an estimation of its corresponding state sequence
s(t). Patches of fixed length N are extracted from x(t) with
a specific stride τ = N/8 to be used as the input for the
model, which are expressed as X(n) ∈ RN×4 and obtained
as follows:

X(n) =

 x(n · τ)
...

x(n · τ + N − 1)

 (4)

for n = 0, . . . , ⌊(T − 1 − N/τ)⌋, where ⌊a⌋ indicates the
greatest integer lower than or equal to a.

The first stage of the network consists of four encoding
blocks, where the signal is compacted in the time dimension
while the number of channels is increased. This keeps only the
most relevant information for PCG segmentation and reduces
the impact of noise. Each encoding block is composed of two
consecutive 1-D-convolutional layers with ReLU activation

4In [8] the Daubechies 10 wavelet at decomposition level three was used,
but in our case, we used Daubechies 1 wavelet at decomposition level 4 as
done in [30].

Fig. 3. PCG preprocessing example, where four different normalized
envelopes-envelograms are extracted from the normalized PCG.

and a max-pooling layer that halves the time dimension. The
number of filters of the convolutional layers in the first encoder
is eight, which is doubled in each encoder to increase the
number of channels. After the encoder part, two consecutive
1-D-convolutional layers with ReLU activation and 128 filters
are placed in the architecture section with the highest temporal
compression. It is then followed by the decoding stage, where
information is expanded back in the time dimension, omitting
irrelevant information from the input signals.

In more detail, each decoder has two inputs, the
previous feature map, and a skip connection, allowing direct
information transfer from the encoded layers to the decoded
ones. First, the time dimension is doubled by an up-sampling
layer followed by a 1-D-convolutional with ReLU activation,
which halves the number of channels. Then, its output is
concatenated along the channel axis with the skip connection



2003616 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

originating at the analog encoder block, doubling the channels
again. Subsequently, two consecutive 1-D-convolutional layers
with ReLU activation are placed to decode the information and
reduce the number of channels to half of the decoder input.
The number of filters in each decoder layer is fixed to obtain
an output with the same shape as their encoder counterparts.

As mentioned earlier, the kernel size of all convolutional
layers in both the encoder and decoder blocks is fixed at 3.
Additionally, a stride equal to 1 with padding “same” is used
to preserve the shape of the feature maps between the layers.

Finally, there is an extra 1-D-convolutional layer with
four filters and SoftMax activation, which provides the
probability of being in each fundamental heart state per time
instant of the input patch n, Y(n) ∈ RN×4. Because the
patch size N and stride τ for a given time instant t will
influence Y(n), overlapping patches are used to minimize the
influence of border data samples. Therefore, the information
obtained from the patches is combined by averaging the state
probabilities associated with different Y(n) values. This allows
the computation of y(t) ∈ R4 for t = 0, . . . , T − 1, which are
the probabilities of each fundamental heart state at each time
instant of the input recording.

The goal of the model is to estimate the sequence of heart
states s(t). In [10], different temporal modeling solutions
were evaluated, forcing the output sequence to contain only
admissible transitions between cardiac cycle states. In this
work, sequential max temporal modeling is selected owing to
its simple implementation and low computational complexity,
providing performance comparable to the other strategies
studied. First, a coarse estimation of s(t) is obtained as
follows:

s̃(t) = argmax y(t). (5)

Then, the output sequence ŝ(t) is forced to contain only
admissible transitions by setting ŝ(0) = s̃(0) and using the
rule

ŝ(t) =

{
s̃(t), if s̃(t) = s̃(t − 1) mod 4+ 1
s̃(t − 1), otherwise

(6)

for t > 0.

IV. METHODOLOGY

There are two main ways to optimize the model
implementation to achieve real-time performance. One is the
reduction of the model architecture, which can be enabled with
model parameterization in the case of hierarchical architectural
models. The other is during the implementation itself, where
some paradigms can be followed to optimize the model. Fig. 4
shows a summary of these two optimization routes, described
in Sections IV-A and IV-B. The fixed-point representation
analysis is also included in the diagram as part of the
optimization, which will be discussed in Section V.

A. Model Reduction Strategy

As mentioned in Section I, one of the advantages of deep
learning models is their reduction capacity. In this case, the
original model is already parameterized by N , the input

Fig. 4. Summary of the optimization strategies addressed in this study.

window length, which takes values of 64, 128, 256, and 512.
This enables slight control of the model size in terms of the
number of operations and feature map memory, which has
n f m =328·N elements. In contrast, the number of parameters
remains the same, nw =179 904, because all kernels are
dependent only on the kernel size and the number of input
and output filters present in each layer.

Two more parameters are identified to further control the
model size: the number of filters used in the first encoder,
n0, and the number of encoders/decoders, nenc, as illustrated
in Fig. 2.

The first one controls the number of filters in all layers
because it is duplicated at each encoding step and halved
at each decoding step until the original number of filters is
recovered. This parameter was initially set to 8, but it is
reduced to 4 in steps of 1. Note that reducing the filter size
below 4 is useless, since there are four input features, and the
output size is 4. The second, the number of encoding/decoding
stages, is a coarse control of the model. It was originally set to
4 and, in this work, varies from 4 to 1 in steps of 1. With these
reductions, the number of weights nw, and the total number
of elements in the feature maps n f m , are respectively, given
by

nw = 3 · n0

[
8+ n0

(
1+ 11

nenc−1∑
i=0

4i

)]
(7)

nfm = N ·
[
8+ n0(2+ nenc(19/2))

]
. (8)

Hence, 80 different models are considered (4·N × 5·n0 ×

4·nenc), ranging from the minimal model with nw =

672 elements and n f m = 3456 elements to the largest model
with nw = 179 904 elements and n f m = 167 963 elements.

B. Implementation Optimization Strategies

One of the main reasons for implementing a computa-
tionally intensive model, such as the U-Net-based model,
in an FPGA is the capability this technology offers to
parallelize tasks while enabling the possibility of working
with arbitrary-length fixed-point data types, which can save
resources in the final hardware implementation. Because this
algorithm is aimed at helping physicians in real-time, in this
case, the latency is considered the main key performance
indicator (KPI), together with the logic resources usage,
which are mainly block random access memory (BRAM),
digital signal processing (DSPs) slices, flip-flops (FFs), and
look-up tables (LUTs).



ENÉRIZ et al.: LOW-COST FPGA IMPLEMENTATION OF DEEP LEARNING-BASED HEART SOUND SEGMENTATION 2003616

Algorithm 1 Memory-Based Implementation of the Conv1D
Layers

Inputs: Matrix A∈ RNm×nin (either in a dedicated or shared
memory space); Matrix W∈ RNm×nin×nout (in a dedicated
memory space).

Outputs: Matrix B∈ RNm×nout (either in a dedicated or
shared memory space).

Initialize scalars: acc, lmin, lmax
for all k = 0 to nout−1 do

for all i = 0 to Nm−1 do #(unroll, pipeline)
lmin = max(0, i–1)
lmax = min(Nm−1, i+1)
acc = 0
for all l = lmin to lmax do

for all j = 0 to nin do
acc + = Al, j ·Wl−i+1, j,k

end for
end for
Bi,k = ReLU(acc)

end for
end for

The unroll and pipeline directives are used only in the Conv1D layers
of selected encoders and decoders of the optimized memory-sharing
implementation.

To set a reference, a baseline implementation without any
optimization strategy is developed. The implementation of the
Conv1D layer under this paradigm is shown in Algorithm 1,
where the input and output matrices A and B, respectively,
have unique memory spaces. As shown in the algorithm,
the convolution operation is based on nested loops. Thus,
one of the more potential ways to accelerate this model is
to perform loop unrolling and pipelining [31], which are
the basic directives used in any loop optimization process.
The first one, loop unrolling, is based on the physical
implementation of more than one loop epoch, enabling a
certain parallelization level. In HLS, loop unrolling was
implemented using the unroll directive in the loops that were a
bottleneck for the model latency. The second one, pipelining,
enables concurrent execution using the same hardware. For
this, the operations schedule is tailored to maximize hardware
usage and minimize latency. The HLS directive employed
to pipeline the desired section of the code was pipeline.
Usually, the usage of these directives rapidly scales resource
consumption, which makes them a poor-quality optimization
control.

Fortunately, in addition to the basic optimization directives,
other strategies can be followed in HLS to further improve the
implementation optimization. These strategies are commonly
related to the way the description code is written and/or
the kind of resources it uses for its synthesis. In this study,
two different strategies are tested to optimize the U-Net-
based heart-sound segmentation algorithm: a memory-sharing
strategy, where there is a common memory space where the
feature maps are stored, and a streaming dataflow strategy,
where the feature maps are treated as data streams that flow
through the network. The former is similar to the optimized

code that would be implemented on a CPU, whereas the latter
treats the feature maps as a first-in-first-out (FIFO) queue,
which requires a specific way to compute the model layer
operations. Both implementation strategies are explained in
detail in the following subsections.

1) Memory-Sharing Optimization Strategy: The baseline
model implementation, wherein each feature map is stored
in an independent array, extensively uses other FPGA logical
resources. To reduce this usage, only two unique arrays are
used to store all the different feature maps generated by the
model. These arrays have the largest size in both dimensions
(i.e., N × 16 n0, as shown in Fig. 2), so the largest and
the smallest feature maps can use the same arrays. Thus,
optimization directives can be added to reduce latency by
taking advantage of the saved resources.

The reason for using two different arrays is to avoid conflicts
between readings and writings in the same array, which would
lead to a malfunction of the algorithm because previous time
instants of the input feature maps are used to compute a given
time instant of the output feature map. In addition, because
the model employs skipped connections, the feature maps that
must be concatenated in the decoding layers must be stored
in separate arrays.

The Conv1D implementation under this paradigm is also
shown in Algorithm 1, although in this case, the input and
output matrices, A and B, respectively, are saved in one of the
two feature map memory spaces.

2) Streaming Dataflow Optimization Strategy: There are
two main reasons for testing the streaming dataflow
optimization strategy. First, with this paradigm, each feature
map is treated as a FIFO, significantly reducing memory
usage and access. This is expected to translate into a
significant latency reduction and logic resource decrease,
which would allow further optimizations by applying the
previously mentioned basic optimization directives in more
sections because more free logic is available in the device.
Conversely, the code is less optimizable, because the
data stream can only be accessed once per clock cycle.
However, pipeline and loop unrolling directives can further
optimize the remaining operations performed, such as multiple
accumulations (MACC) and buffer accesses, can be further
optimized.

Second, under this dataflow paradigm, the execution of
different layers of the model can overlap, that is, before
finishing the calculations of one layer, the following layer
can start executing when enough input elements have been
generated. This is a crucial advantage of this strategy, as it
was not possible in the memory-based implementation, which
limits the execution of a given layer after the completion of
the previous layer.

As illustrated in Algorithm 2, significant differences exist
between this implementation and the memory-based ones
(i.e., the baseline and memory-sharing implementations). The
HLS Stream Library allows the use of streams, which are
the C constructs that enable the employment of FIFO with
configurable depths in this way. Because the convolution
kernel of the model is 3, the input feature map time instants
are used up to three times. To enable this under the dataflow



2003616 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Algorithm 2 Streaming Dataflow Implementation of the
Conv1D Layers

Inputs: Stream a (in a FIFO buffer), with the values of
A∈ RNm×nin with priority of the feature dimension; Matrix
W∈ RNm×nin×nout (in a dedicated memory space).

Outputs: Stream b (in a FIFO buffer), with the values of
B∈ RNm×nout with priority of the feature dimension.

Initialize scalars: inval, bu f fval
Initialize vector with zeros: acc ∈ Rnout

Initialize matrix: BUFF ∈R2×nin

#(dataflow)
for all i = −1 to Nm do

for all j = 0 to nin−1 do
if i > −1 and i < Nm then

inval ← a
else

inval = 0
end if
for all l = 0 to 2 do

if l = 2 then
bu f fval = inval

else
bu f fval = BUFFl, j

end if
for all k = 0 to nout−1 do #(pipeline)

acck + = bu f fval · Wl, j,k

if j = nin−1 and l = 2 then
if i ≥ 1 then

b ← ReLU(acck)

end if
acck = 0

end if
end for
if l > 0 then

BUFFl−1, j = bu f fval
end if

end for
end for

end for
The pipeline directive is used only in the Conv1D layers of selected encoders
and decoders of the optimized streaming dataflow implementation.

paradigm, small memory buffers are used to store and reuse
the samples.

V. EXPERIMENTS

In this section, the procedure for performing model
training and the implementation results is described. First,
a subsection describing the datasets used in this study and
the target FPGA is presented. Subsequently, the training
process and performance metrics are described, and the
model performance results are reported. Then the results of
the HLS C simulation of the models with fixed-point data
types, their synthesis, and C/RTL co-simulation results are
discussed. Next, another subsection analyzes the effect of
the fixed-point data type on the model performance, latency,
and FPGA resource consumption. Finally, a comparison with

other deep-learning-based heart sound segmentation model
implementations is included.

A. Materials

1) Datasets: Two different datasets are used in this
study. The first is the publicly available data5 from
the 2016 Physionet/CinC Challenge dataset [22], [23]. It is
composed of 792 PCGs from 135 patients with and without
pathologies recorded in clinical and nonclinical environments.
To identify the ground-truth segmentation labels, the dataset
also provides the estimated positions of the R-peak and
end-T-wave points in an Electrocardiogram (ECG) recorded
simultaneously with the PCG [7]. The R-peak and end-T-wave
positions corresponded to the S1 and S2 states, respectively.

The second dataset is the public data6 from the
CirCor DigiScope PCG dataset [23], [24], released for
the 2022 George B. Moody Physionet challenge. It is
composed of 3163 PCGs from 942 patients with and
without pathologies recorded during two mass screening
campaigns conducted in the state of Paraíba, Brazil, between
July and August 2014 and June and July 2015. These
recordings have noise sources typical of an ambulatory
environment, making this dataset a representative sample
of real-world environments in which a PCG diagnostic aid
device would be used. In this case, segmentation annotations
were obtained from a semi-supervised scheme. First, the
algorithms proposed in [7] and [8] and the U-Net-based model
presented in [10] were used to obtain baseline labels, and then,
a cardiac pathologist inspected their automatic annotations
and re-annotated the misdetections. Unfortunately, labels were
retained only in the segments indicated by the expert as a high-
quality representative; therefore, there may or may not be a
segmentation annotation at a given time in the recording.

2) Target FPGA: The target FPGA to map the U-Net-based
model is the Xilinx XC7Z020, which is the programmable
logic (PL) of the Xilinx Zynq 7020 low-end SoC. It includes
85 K PL cells, 53.2 K LUTs, 106.4 K FFs, 4.9 MB of
BRAM, and 220 DSP slices of 18 × 25 MACC blocks. The
SoC also includes a processing system (PS) consisting of a
dual-core ARM Cortex-A9 with a maximum clock frequency
of 667 MHz and 512 MB RAM [18].

B. Model Evaluation Methodology

To properly compare the performance of the models trained
for this work with previously published results [10], the same
data partition is performed for both datasets: ten-fold cross-
validation with patient-exclusive splits. To reduce the HLS C
simulation of the generated models (which is especially time-
consuming), another partition with patient-exclusive splits for
training (60%), validation (20%), and testing (20%) is also
performed. The resulting model parameters of this second
training are used to test the implementation of the HLS tool.

For both data partition schemes with both datasets, the
categorical cross-entropy is used as the loss function for

5https://physionet.org/content/hss/1.0/
6https://physionet.org/content/circor-heart-sound/1.0.3/



ENÉRIZ et al.: LOW-COST FPGA IMPLEMENTATION OF DEEP LEARNING-BASED HEART SOUND SEGMENTATION 2003616

the Adam optimizer, as done in [10], and the same training
hyperparameters are used: learning rate of 10−4, batch size
of 1, and 15 epochs. The model weights at the minimum
validation loss are saved.

All the training experiments are run with the Keras Python
package [32] with a Tensorflow 2.8.0 backend over computing
nodes with 24-core AMD EPYC 7443P CPUs, NVIDIA
GeForce RTX 3090 GPUs, and 64 GB of RAM.

1) Performance Metrics: The performance metrics used for
both data partition schemes include those used in [10]: the
recording accuracy (AR), defined as the fraction of instants in
the entire recording output sequence ŝ(t) that are correctly
assigned to the corresponding label in the ground truth
sequence s(t), the positive predicted value (P+), and the
sensitivity (S), which are computed as

P+ =
Tp

Tp + Fp
(9)

S =
Tp

Ttot
(10)

where a true positive (Tp) is counted when the center of an
S1 (or S2) sound in the estimated sequence ŝ(t) is closer
than 60 ms from the corresponding sound in the ground-truth
sequence s(t). All others are considered false positives (Fp),
and Ttot is defined as the total number of S1 and S2 sounds
in the ground-truth sequence s(t).

Another way to compute accuracy is also considered in
this study. As can be seen from the previous description, the
state sequence of the entire recording is used to compute
the recording accuracy AR . This requires a reconstruction
step to obtain the recording output probabilities y(t) and
temporal modeling to obtain the estimated sequence ŝ(t). This
is undesirable in the HLS C simulation process, which is
time consuming. Therefore, we define the global accuracy
(AG) as the fraction of instants in each output probability
patch n, Y(n) ∈ RN×4 that have been correctly estimated
compared with the ground-truth one-hot encoding state patch
n, S(n) ∈ RN×4 defined as

S(n) =

 s(n · τ)
...

s(n · τ + N − 1)

 (11)

where s(t) is the one-hot encoding version of s(t).
2) Results: A comparison of the ten-fold cross-validation

results of the models with n0 = 8 and nenc = 4 over the
2016 dataset with their equivalents from [10] is presented in
Table III. As shown, a similar performance is achieved in
both works, although our work reports slightly better results
at lower N values. This may be related to the differences in
random sampling of the data partition.

Fig. 5 shows the distribution of the models resulting from
each reduction parameters combination in terms of total
recording accuracy and the number of MACC operations.
It is remarkable how the N = 64 models rapidly scale
in accuracy while maintaining a constrained number of
operations. Also, it can be noticed that slightly better
performance is reached for higher N values. This is an effect

TABLE III
PERFORMANCE COMPARATION OF THE MODELS WITH n0 = 8 AND

nenc = 4 TRAINED WITH TEN-FOLD CROSS-VALIDATION OVER
THE 2016 DATASET WITH RENNA ET AL. [10] RESULTS.

BEST RESULTS FOR BOTH MODELS ON
EACH METRIC ARE HIGHLIGHTED

Fig. 5. Total recording accuracy of each model parameters combination for
the ten-fold cross-validation trainings over the 2016 dataset in function of
the number of MACC operations. The diameter of each point represents the
number of weights in each model, nw .

of the reduction of the dataset due to the necessity of samples
with longer segmentation annotations, and thus not an intrinsic
improvement due to the model architecture. For these reasons,
only the results of N = 64 models are considered in the
remainder of the article, although a complete report is available
in the GitHub code repository.

The results of the ten-fold cross-validation of the models for
the 2016 and 2022 datasets are presented in Table IV. In terms
of the models’ reduction strategy, it is noticeable the effect
of the coarse parameter nenc. Its reduction from nenc = 4 to
nenc = 3 barely decreases the model performance, and when
it is further reduced to nenc = 2, the effect remains contained.
At nenc = 1, the model is truly limited, showing significant
downgrades, especially for lower n0 values. Meanwhile, the
effect of n0 on model performance is smoother than that
of nenc. Generally, negligible downgrades are observed when
n0 is reduced, although it becomes relevant at nenc = 1,
as previously mentioned.

The results of the training with the second data partition
scheme, where training, validation, and testing splits are used,
show the same parameter effects as the cross-validation ones,
and thus, they are not fully reported. Only the global accuracy
AG is included, which is contained in the HLS C simulation



2003616 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

TABLE IV
PERFORMANCE METRICS AVERAGES AND STANDARD DEVIATIONS COMPUTED FROM THE TEN-FOLD CROSS VALIDATION EVALUATION OF

THE N = 64 MODELS FOR BOTH DATASETS. BEST RESULTS FOR BOTH DATASETS IN EACH METRIC ARE HIGHLIGHTED

TABLE V
GLOBAL ACCURACY OF THE N = 64 MODELS FROM THE DEFINITIVE TRAININGS USING FLOATING-POINT AND Q8.8 FIXED-POINT REPRESENTATIONS

AND THEIR DIFFERENCES FOR THE BOTH DATASETS. BEST RESULTS FOR BOTH DATATYPES ARE HIGHLIGHTED FOR BOTH MODELS

results available in Table V and labeled as floating-point
accuracy. Note that these results are slightly different from the
cross-validation results owing to the different ratios between
the training and testing splits. In this case, it is 60/20, while
for the cross-validation is 90/10.

C. HLS C Simulation

Once the model is validated in the training stage, it is
manually ported to C++ to enable its implementation through
Vivado HLS for the inference stage. This tool allows the
use of arbitrary-length fixed-point data types through the
Arbitrary Precision Data Type Library. A model represented by
lower-resolution data types is expected to show a downgrade
in performance compared to the model described in the
higher-level training framework that uses 32-bit floating-
point representation. This is owing to the quantization effect
that appears when arithmetic operations are performed with
lower-resolution fixed-point data types. To characterize this
downgrade, the HLS C simulation feature can be used to
virtualize the model implementation using the selected data
type. In this stage, a Q8.8 data type is used, that is, eight
integer bits and eight fractional bits, for a total of 16 bits.

In addition, the activation function of the last convolutional
layer, SoftMax, is substituted. This function is beneficial
during the training stage because it is a smoother version of
ArgMax, enabling faster training processes. However, because
it requires exponential operations, it is computationally

expensive; therefore, for implementation purposes, it is better
to use ArgMax which can be easily implemented with
comparators and small memory elements.

To measure the performance of the models on both datasets,
HLS C simulations are conducted for each model parameter
combination on each dataset. Note that the model performance
is independent of the model implementation because they are
all equivalent to the Keras model. Thus, only the HLS C
simulation results for the baseline implementation are reported
herein. The results are presented in Table V. It is remarkable
that the difference between the floating-point and Q8.8 fixed-
point performance is independent of the model parameters
N , n0, and nenc. The average downgrades in the 2016 dataset
are 0.04 ± 0.13% and 0.01 ± 0.04% for the 2022 dataset.

D. Synthesis

This subsection presents the synthesis results obtained after
applying HLS directives to reduce the model latency and
memory consumption, as well as some code modifications
to fully exploit the parallelization capabilities of the FPGA.
To obtain realistic resource consumption results, the source file
includes basic interface directives that set the input and output
interfaces as AXI4-Lite slaves [33], except for the input and
output streams of the dataflow version, which are set as AXI4
Stream [34].

To properly assess the effect of optimization strategies on
different combinations of model parameters, the synthesis



ENÉRIZ et al.: LOW-COST FPGA IMPLEMENTATION OF DEEP LEARNING-BASED HEART SOUND SEGMENTATION 2003616

TABLE VI
SYNTHESIS RESULTS OF THE DIFFERENT IMPLEMENTATIONS WITHOUT OPTIMIZATIONS OF THE N = 64 MODELS USING Q8.8 FIXED-POINT

DATA TYPES. RESOURCES CONSUMPTIONS OVER THE AVAILABLE IN THE XC7Z2020 ARE MARKED IN RED

results of the baseline, memory-sharing, and streaming
dataflow implementations without any optimizations are
presented in Table VI. Remarkably, the limiting resource in
all implementations is the BRAM, which is almost or above
100% for the models with n0 ∈ {8, 7} and nenc = 4. Also,
it can be noticed that this resource has a stepped scaling.
This is probably due to the instantiation of memory blocks,
which must have a power-of-two depth. In terms of DSP,
it is shown that this resource is only dependent on the nenc
parameter, and the same consumption appears across different
implementations. This is because of the lack of optimization
directives, which means that only a single slice is used for
each Conv1D layer. Finally, the dependence on nenc is also
the main effect in FF and LUT consumption, although it
is noticeable that they consume less for n0 = {4, 8}. This
may also be related to memory organization in power-of-
two blocks, where memory accesses are inherently optimized.
Additionally, in memory-based implementations, LUTs also
have a slim dependence on N .

However, latency is affected by all model parameters. For
memory-based implementations, it scales linearly with N ,
and in the streamed implementation is slightly lower. In the
case of the n0 and nenc parameters, the latency decreased
rapidly. Overall, these dependencies enable an extensive range
of latency values, as indicated in the complete results. In the
case of memory-based implementations, the highest measured
latency is 406.39 ms, while the lowest is 1.26 ms. For
the streamed implementation, this range is more constrained,
from 100.62 ms down to 0.42 ms. This is due to the
remarkable latency reduction this implementation strategy
presents compared with the memory-based implementations,
which achieves an average latency decrease factor of 3.71 ±
0.61, with a minimum of 2.69 and a maximum of 4.81.

To better characterize the maximum potential of each
implementation strategy, the N = 64, n0 = 8, and nenc = 4
models are implemented with the maximum optimization
available, using both strategies. The procedure followed in
each paradigm is presented in the following subsections,

TABLE VII
SYNTHESIS, C/RTL CO-SIMULATION AND POWER CONSUMPTION

RESULTS OF THE N = 64, n0 = 8, AND nenc = 4 MODEL USING
Q8.8 FIXED-POINT DATA TYPES FOR DIFFERENT IMPLEMENTA-

TIONS. THE LOWEST CONSUMPTIONS AND LATENCIES
ARE HIGHLIGHTED

and the FPGA resource consumption, latency, and power
consumption results are presented in Table VII. The power
consumption results are estimated by the Vivado tool.

1) Memory-Sharing Implementation Optimization: Using
HLS to reduce model latency in the memory-sharing paradigm,
optimizations based on the aforementioned directives are
performed from the central part of the network (the one
that requires more clock cycles) to the borders until the
model implementation reaches the maximum logic resources
available in the FPGA. As labeled in Algorithm 1, loop
unrolling (unroll) and pipelining (pipeline) directives are
included in the second outer loop of the Conv1D layers (i loop)
of the last encoder, central part, and two first decoders. This
shows the best results after loop-by-loop and layer-by-layer
exhaustive analyses. Other optimization paths have also been
explored: loop unrolling and pipelining in the max-pooling and
up-sampling layers, ArgMax and ReLU activation functions,
and feature map array partitions. None of these modifications



2003616 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Fig. 6. BRAM, FF, and LUT consumption in each implementation paradigm and global accuracy (AG) drop (respect to the floating-point performance) over
the 2022 dataset for each tested fixed-point data type.

led to significant improvements in latency. These optimizations
reduced the model latency by approximately 8% during the
synthesis.

Including these directives has led to a significant increase
in FPGA resource consumption, resulting in a 36% increase
in total power consumption.

2) Streaming Dataflow Implementation Optimization: As
expected, under the streaming dataflow paradigm using the
HLS Stream Library under the dataflow directive, the latency
decreases significantly while resource consumption remains
similar to the baseline implementation values. As in the
memory-sharing implementation, the limiting layers are the
central part and its nearest neighbors. In this case, this effect
is so relevant that the latency of the second central Conv1D
layer is 99.99% of the total latency, followed by the two next
Conv1D layers, from the first decoder, both with a latency of
83.61% of the total.

Therefore, the optimization of Conv1D layer is based on
the usage of the pipeline directive, which inclusion in the
innermost loop (k loop in Algorithm 2) significantly decreases
the latency of the layer by allowing the overlapped operation of
different sections of the code. With this directive, the latency
of the second Conv1D layer of the central part decreases by a
factor of three, ceasing to be the layer with the largest latency.
Given this, the model can be further optimized by using the
pipeline directive in the innermost loops of the Conv1D layers
with more latency than the already pipelined Conv1D of the
central part. These layers are the other layers in the central
part, the layers of the last encoder, and those in the first two
decoders. With these directives, the model latency is newly
limited by the second Conv1D layer of the central part, making
the model three times faster with a reduction of 3.9% of
BRAM, which is the critical resource of this design.

Thanks to this reduction in BRAM consumption and
the constrained increase in other resources, the total power
consumption of this implementation is 14% lower than the
baseline.

E. C/RTL Co-Simulation

To verify that the RTL design generated by the HLS
tool works according to the C description, C/RTL co-
simulation analysis are assessed. In addition, this provides
more realistic latency values than those estimated during the
synthesis stage. Because this process is time-consuming, only
the baseline and optimized memory-sharing and streaming
dataflow implementations of the N = 64, n0 = 8, and
nenc = 4 models are launched. The results are listed in
Table VII. As shown, there is an increase in the co-
simulation latency compared with the synthesis results. This
is mainly because, during synthesis, model interfaces are
not considered for latency computation. Furthermore, Vivado
HLS does not correctly compute the latency of dataflow
systems during synthesis, which explains the larger increase
in the co-simulation latency of the stream implementation.
Nevertheless, an overall decrease in latency of 64% is achieved
when the baseline and the optimized streaming dataflow
implementations are compared.

Considering that the batch size (i.e., the number of samples
the model evaluates per inference) was set to 1, the co-
simulation latency directly results in the model latency.
In the optimized streaming implementation, the model takes 2
926 713 cycles to process a sample at a clock frequency
of 100 MHz, which means an inference time of 29 ms. The
model input is a window of 64 samples sampled at 50 Hz, i.e.,
a signal of 1.28 s duration. Hence, a 29 ms processing time
can be considered as real time with a significant margin for
this task.

F. Low-Resolution Fixed-Point Datatype Effects

Finally, different low-resolution fixed-point data types
between 16 and 8 bits have been considered for both HLS C
simulation and synthesis. To simplify this analysis, the model
parameters are set as N = 64, n0 = 8, and nenc = 4. The
results are shown in Fig. 6, where the data types are sorted
according to the global accuracy drop. Generally, in terms



ENÉRIZ et al.: LOW-COST FPGA IMPLEMENTATION OF DEEP LEARNING-BASED HEART SOUND SEGMENTATION 2003616

TABLE VIII
COMPARISON BETWEEN THIS WORK AND OTHER HARDWARE

IMPLEMENTATION OF DEEP LEARNING-BASED MODEL
FOR HEART SOUND SEGMENTATION

of resource consumption, slight reductions appear when the
number of bits of the data type is reduced. Only at 8-bit
representations, the BRAM drops significantly. This is due
to the Vivado HLS packing method for the elements of the
input AXI Lite interfaces, which forces them to use the nearest
greater power-of-two bits. Therefore, the 14-, 12-, and 10-bit
data types use the same BRAM as the 16-bit data type,
which is the most significant usage. In addition, the global
accuracy drop (compared with the floating-point performance)
is affected by the combination of two effects: quantization,
which is more significant when the number of fractional bits is
low, and overflow, which appears when the number of integer
bits is low. If an accuracy drop of less than 0.2% is considered
acceptable, at least six bits are required for the decimal part
to reduce the accuracy drop due to quantization. In the case of
overflow, the integer part must have at least six bits; otherwise,
the accuracy drop starts to increase owing to this effect.

G. Comparison With Other Implementations

Table VIII shows a comparison between the optimized
streaming implementation of the U-Net-based heart sound
segmentation algorithm and other existing implementations
of heart sound segmentation algorithms using deep learning.
It is worth noticing that, to the best of our knowledge, all
other existing implementations found in the literature are
based on CNNs. Additionally, as far as we know, this work
is the only one that has been implemented on an FPGA,
while the other two reported works have been deployed
on a CPU. This platform diversity limits the fairness of
the comparison. Nonetheless, it shows the state-of-the-art
in this field, setting the basis for further research to improve
accuracy, reduce inference times, or lower power consumption.
First, the clock frequency of this implementation is 4.8 times
lower than the one employed in [20] and 15 times lower

than in [21]. This, together with the fact that FPGAs
are less power demanding than CPUs would expectedly
imply a significant decrease in the power consumption of
this implementation compared to the other two. However,
because only this work has reported a power consumption
estimation, a comparative study was not possible. All works
have used a CNN to perform the segmentation, differing
in their architecture. Kwiatkowski et al. [20] used three
convolutional layers with intercalated max-pooling and batch-
normalization layers, and Vakamullu et al. [21] implemented
just two convolutional layers followed by max-pooling layers.
Our model has 23 convolutional layers and uses the U-Net
architecture, with encoding and decoding stages. Given this,
it is clear that our model is significantly more complex than the
other two. For this reason, the classification results reported in
this work achieved a more accurate segmentation considering
the four heart sound components of a PCG, whereas [20]
distinguished between S1, S2, and the rest of the signal,
and [21] limited the model to only systole and diastole
detection. Note that the three models have been trained with
different datasets, so performance may depend on this factor.
Finally, [20] reported a lower model inference time than this
work. However, this could be related to the fact that they used
a significantly smaller model with only three convolutional
layers, halving the number of bits used in their implementation
(8-bit representation against 16-bit), and they used 4.8 times
the frequency employed in this work. Thus, equivalent or
even lower inference times could be achieved by porting this
design to an FPGA with a higher clock frequency. The work
presented in [21] did not report any inference times for their
implementation.

VI. DISCUSSION AND CONCLUSION

To the best of our knowledge, this work presents for
the first time an exhaustive optimization study of the
U-Net-based heart sound segmentation algorithm, which is
the current state-of-the-art in this field, being tested in both
the 2016 Physionet/CinC Challenge dataset and the CirCor
DigiScope PCG dataset. To enable its implementation in
an FPGA, an HLS tool was used to achieve significant
improvements in terms of latency and logical resource usage,
which allow its implementation on a low-end FPGA with
real-time performance. As far as we know, there are not
previously reported works that contain an implementation on
this platform for heart-sound segmentation. The main result
of this work is the reduction in inference time achieved by
the optimized streaming implementation, compared to the
baseline version. The co-simulation results showed that it was
reduced from 82.12 to 29.27 ms, which is a 64% reduction
of the original inference time. Additionally, the use of BRAM,
the limiting FPGA resource, was also reduced by 3.9% in
the optimized streaming implementation, which reported 99%
BRAM usage, compared to 103% in the baseline. These two
results have led to a significant 70% reduction in energy per
inference, which was 69 mJ in the baseline and 21 mJ in the
optimized streaming implementation. To achieve this, different
optimizations have been evaluated.



2003616 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

First, the fact that hierarchical deep learning models can
be easily reduced was considered. This had a direct impact
on the number of MACC operations and, thus, on FPGA
resource consumption. Two additional reduction parameters
were identified in this study, proving that FPGA resource
consumption can decrease significantly while maintaining
segmentation model performance.

Second, two different implementation optimization strate-
gies were tested: a memory-sharing paradigm and a streaming
dataflow paradigm. Both strategies showed improvements in
FPGA resource consumption and execution latency compared
with the baseline implementation. Between them, this study
demonstrates that the streaming dataflow implementation
strategy obtains significantly better results than memory-
based implementations because it treats the feature maps
as a flow using FIFO queues, enabling the overlapping
execution of consecutive layers. This drastically reduces the
latency compared with memory-based approaches but requires
a redesign of the description code.

In addition, both implementation paradigms were optimized
with high-level directives, which were included in the
bottlenecks of the designs. This reduction in latency came at
the cost of increased FPGA resource consumption, with the
BRAM close to 100% for both optimized implementations.
If a larger model with better accuracy is released in the
future, its implementation would require either a reduction
of the FPGA consumption at the expense of latency (fewer
optimization directives) or the use of larger FPGAs, which
would increase the cost of the system and its power
consumption.

Through the development of the model optimization, some
limitations of the Vivado HLS tool were identified. For
example, HLS might not consider the AXI interfaces declared
at a high level to compute the latency and the latency
derived from the streaming dataflow strategy at synthesis is
not reproduced in the C/RTL co-simulation, but it is still
significantly better than the memory-shared alternative. Hence,
even though this tool boosts the hardware design and has been
useful in significantly accelerating this model, manual fine-
tuning of the generated HDL might be necessary to optimize
this design completely.

As mentioned in Section I, few studies have implemented
deep learning models to segment PCGs, and they have
used small-sized architectures. Thus, to the best of our
knowledge, this work is the first to exhaustively study different
optimization strategies for implementing a large 1-D U-Net-
based model with an estimated inference time of 29 ms
using a 16-bit fixed-point representation. Considering that the
length of the input window for these models was N = 64
and the sampling frequency was 50 Hz, a real-time response
required less than N /50 ≈ 1.28 s. Hence, it is feasible
to implement this model in a computer-aided decision
system to automatically identify the heart states in a PCG
and potentially help physicians identify abnormalities in
the patient’s heart recordings with more complex analysis
algorithms. The comparison with the state-of-the-art hardware
implementations of similar algorithms evidenced the impact
that the hardware optimization of this model had in the final

results, outperforming them in accuracy and achieving real-
time performance with significantly lower clock frequency.
This is related to lower power consumption, thus being a more
suitable solution for a low-cost and low-power computer-aid
system.

Finally, note that this is also reproducible for any U-Net-
based architecture, including the different model reduction
parameters and the two tested implementation optimization
strategies, which have been proven to accelerate the model in
a low-end FPGA.

In future works, to obtain a functional heart-sound
segmentation device attached to the stethoscope for real-
time processing of the PCG, the preprocessing stage should
also be optimized and implemented on the same hardware
platform. To achieve this, an analog-to-digital converter
should be introduced in the design without compromising the
temporal restrictions. Since the estimated inference time of
the segmentation part is 29 ms, there is a feasible temporal
margin of more than 1.2 s to read and preprocess the data
obtained by the sensor. Then, it is intended to perform an
online evaluation of the physical platform, thus validating
the prototype of a hand-held device capable of automatically
detecting cardiac abnormalities from a PCG at an early
stage.

ACKNOWLEDGMENT

The authors thank I3A (Aragon Institute of Engineering
Research) for the use of High-Performance Computing (HPC)
cluster HERMES.

REFERENCES

[1] World Health Org. (WHO). Cardiovascular Diseases (CVDs). Accessed:
Nov. 13, 2023. [Online]. Available: https://www.who.int/news-
room/fact-sheets/detail/cardiovascular-diseases-(cvds)

[2] S. Mangione, “Cardiac auscultatory skills of internal medicine
and family practice trainees: A comparison of diagnostic
proficiency,” JAMA, vol. 278, no. 9, p. 717, Sep. 1997, doi:
10.1001/jama.1997.03550090041030.

[3] S. Li, F. Li, S. Tang, and F. Luo, “Heart sounds classification based on
feature fusion using lightweight neural networks,” IEEE Trans. Instrum.
Meas., vol. 70, pp. 1–9, 2021.

[4] A. Bhardwaj, S. Singh, and D. Joshi, “Explainable deep convolutional
neural network for valvular heart diseases classification using PCG
signals,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–15, 2023.

[5] H. Vermarien, “Phonocardiography,” in Encyclopedia of Medical
Devices and Instrumentation, 1st ed. Hoboken, NJ, USA: Wiley, 2006.

[6] S. E. Schmidt, C. Holst-Hansen, C. Graff, E. Toft, and J. J. Struijk,
“Segmentation of heart sound recordings by a duration-dependent hidden
Markov model,” Physiological Meas., vol. 31, no. 4, pp. 513–529,
Apr. 2010.

[7] D. B. Springer, L. Tarassenko, and G. D. Clifford, “Logistic
regression-HSMM-based heart sound segmentation,” IEEE Trans.
Biomed. Eng., vol. 63, no. 4, pp. 822–832, Apr. 2016, doi:
10.1109/TBME.2015.2475278.

[8] J. Oliveira, F. Renna, T. Mantadelis, and M. Coimbra, “Adaptive sojourn
time HSMM for heart sound segmentation,” IEEE J. Biomed. Health
Informat., vol. 23, no. 2, pp. 642–649, Mar. 2019.

[9] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional
networks for biomedical image segmentation,” in Lecture Notes in
Computer Science. Cham, Switzerland: Springer, 2015, pp. 234–241.

[10] F. Renna, J. Oliveira, and M. T. Coimbra, “Deep convolutional
neural networks for heart sound segmentation,” IEEE J. Biomed.
Health Informat., vol. 23, no. 6, pp. 2435–2445, Nov. 2019, doi:
10.1109/JBHI.2019.2894222.

http://dx.doi.org/10.1001/jama.1997.03550090041030
http://dx.doi.org/10.1109/TBME.2015.2475278
http://dx.doi.org/10.1109/JBHI.2019.2894222


ENÉRIZ et al.: LOW-COST FPGA IMPLEMENTATION OF DEEP LEARNING-BASED HEART SOUND SEGMENTATION 2003616

[11] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA: Is CUDA the parallel programming model
that application developers have been waiting for?” Queue, vol. 6, no. 2,
pp. 40–53, Mar. 2008, doi: 10.1145/1365490.1365500.

[12] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming
standard for heterogeneous computing systems,” Comput. Sci. Eng.,
vol. 12, no. 3, pp. 66–73, May 2010.

[13] E. Wang et al., “Deep neural network approximation for custom
hardware: Where We’ve been, where We’re going,” ACM Comput.
Surveys, vol. 52, no. 2, pp. 1–39, Mar. 2020, doi: 10.1145/3309551.

[14] C. N. Coelho et al., “Automatic heterogeneous quantization of deep
neural networks for low-latency inference on the edge for particle
detectors,” Nature Mach. Intell., vol. 3, no. 8, pp. 675–686, Jun. 2021,
doi: 10.1038/s42256-021-00356-5.

[15] Y. Umuroglu et al., “FINN: A framework for fast, scalable binarized
neural network inference,” in Proc. ACM/SIGDA Int. Symp. Field-
Programmable Gate Arrays, Feb. 2017, pp. 65–74.

[16] S. I. Venieris and C. Bouganis, “fpgaConvNet: A framework for
mapping convolutional neural networks on FPGAs,” in Proc. 24th
Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM), 2016,
pp. 40–47.

[17] A. Huang, Z. Cao, C. Wang, J. Wen, F. Lu, and L. Xu, “An FPGA-based
on-chip neural network for TDLAS tomography in dynamic flames,”
IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021.

[18] Xilinx Inc. Zynq-7000 SoC Data Sheet: Overview. Accessed: Sep. 21,
2023. [Online]. Available: https://www.xilinx.com/content/dam/xilinx/
support/documents/data_sheets/ds190-Zynq-7000-Overview.pdf

[19] A. C. Hernandez-Ruiz, D. Enériz, N. Medrano, and B. Calvo, “Motor-
imagery EEGNet-based processing on a low-spec SoC hardware,” in
Proc. IEEE Sensors, Sydney, NSW, Australia, 2021, pp. 1–4, doi:
10.1109/SENSORS47087.2021.9639747.

[20] K. K. Kwiatkowski, D. P. Pau, T. Leung, and O. Di Marco,
“Phonocardiogram segmentation with tiny computing,” in Proc. IEEE
Int. Conf. Consum. Electron. (ICCE). NV, USA: IEEE, Jan. 2023,
pp. 1–4, doi: 10.1109/ICCE56470.2023.10043562.

[21] V. Vakamullu, S. Trivedy, M. Mishra, and A. Mukherjee, “Con-
volutional neural network based heart sounds recognition on edge
computing platform,” in Proc. IEEE Int. Instrum. Meas. Technol.
Conf. (I2MTC). ON, Canada: IEEE, May 2022, pp. 1–6, doi:
10.1109/I2MTC48687.2022.9806693.

[22] C. Liu et al., “An open access database for the evaluation of heart sound
algorithms,” Physiol. Meas., vol. 37, no. 12, pp. 2181–2213, Dec. 2016.

[23] A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex physiologic
signals,” Circulation, vol. 101, no. 23, pp. 1–11, Jun. 2000, doi:
10.1161/01.cir.101.23.e215.

[24] J. Oliveira et al., “The CirCor DigiScope dataset: From murmur
detection to murmur classification,” IEEE J. Biomed. Health Informat.,
vol. 26, no. 6, pp. 2524–2535, Jun. 2022.

[25] A. Dhillon and G. K. Verma, “Convolutional neural network: A review
of models, methodologies and applications to object detection,” Prog.
Artif. Intell., vol. 9, no. 2, pp. 85–112, Jun. 2020.

[26] S. M. Anwar, M. Majid, A. Qayyum, M. Awais, M. Alnowami,
and M. K. Khan, “Medical image analysis using convolutional neural
networks: A review,” J. Med. Syst., vol. 42, no. 11, p. 226, Nov. 2018,
doi: 10.1007/s10916-018-1088-1.

[27] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 4,
pp. 473–491, Apr. 2011, doi: 10.1109/TCAD.2011.2110592.

[28] S. Lahti, P. Sjövall, J. Vanne, and T. D. Hämäläinen, “Are we there yet?
A study on the state of high-level synthesis,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 38, no. 5, pp. 898–911, May 2019.

[29] Xilinx Inc. (2020). Vivado Design Suite User Guide: High-
Level Synthesis (UG902), V2019.2. Accessed: Sep. 21, 2023.
[Online]. Available: https://docs.xilinx.com/v/u/2019.2-English/ug902-
vivado-high-level-synthesis

[30] L. Huiying, L. Sakari, and H. Iiro, “A heart sound segmentation
algorithm using wavelet decomposition and reconstruction,” in Proc.
19th Annu. Int. Conf. IEEE Eng. Med. Biol. Society. Magnificent
Milestones Emerg. Opportunities Med. Eng., Jul. 1997, pp. 1630–1633,
doi: 10.1109/IEMBS.1997.757028.

[31] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proc. ACM/SIGDA Int. Symp. Field-Program. Gate Arrays, Feb. 2015,
pp. 161–170.

[32] F. Chollet et al. (2015). Keras. Accessed: May 2, 2023. [Online].
Available: https://keras.io

[33] (2013). Chapter B1: AMBA AXI4-Lite. Accessed:
Sep. 21, 2023. [Online]. Available: https://developer.arm.
com/documentation/ihi0022/e/AMBA-AXI4-Lite-Interface-
Specification/AMBA-AXI4-Lite?lang=en

[34] ARM Ltd. (2021). AMBA AXI-Stream Protocol Specification.
Accessed: Sep. 21, 2023. [Online]. Available: https://developer.
arm.com/documentation/ihi0051/b/?lang=en

[35] P. Bentley, G. Nordehn, M. Coimbra, and S. Mannor. (2011).
The PASCAL Classifying Heart Sounds Challenge. Accessed:
Jan. 30, 2024. [Online]. Available: http://www.peterjbentley.com/
heartchallenge/index.html

[36] 3M Littman. Littman Library. Accessed: Jan. 30, 2024. [Online].
Available: https://web.archive.org/web/20200223212248/http

[37] Med. School Univ. Michigan. Heart Sound and Murmur Library.
Accessed: Jan. 30, 2024. [Online]. Available: https://www.med.umich.
edu/lrc/psb_open/html/repo/primer_heartsound/primer_heartsound.html

Daniel Enériz (Graduate Student, IEEE) received
the B.S. degree in physics and the M.S. degree in
physics and physical technologies from the Uni-
versity of Zaragoza, Zaragoza, Spain, in 2019 and
2020, respectively, where he is currently pursuing
the Ph.D. degree.

His current research at the Group of Power
Electronics and Microelectronics, Aragon Institute
for Engineering Research (GEPM-I3A) includes the
design of electronic systems, intelligent instrumen-
tation, and the edge computing of Neural Networks.

Antonio J. Rodriguez-Almeida received the B.S.
degree in telecommunications engineering from the
Universidad de Las Palmas de Gran Canaria, Las
Palmas de Gran Canaria, Spain, in 2018, and the
M.S. degree in biomedical engineering from the
Universitat Politècnica de València, València, Spain,
in 2020. He is currently pursuing the Ph.D. degree
with the Institute for Applied Microelectronics,
University of Las Palmas de Gran Canaria. His
research interests include the development of deep
learning models for chronic disease management and
their hardware implementation.

Himar Fabelo received the master’s degree
in telecommunication engineering and the Ph.D.
degree in telecommunication technologies from the
University of Las Palmas de Gran Canaria, Las
Palmas de Gran Canaria, Spain, in 2014, and 2019,
respectively.

Since then, he has conducted his research
activity at the Institute for Applied Microelectronics,
University of Las Palmas de Gran Canaria. In 2022,
he obtained the Juan de La Cierva Formación Post-
Doctoral Grant at the Fundación Canaria Instituto de

Investigación Sanitaria de Canarias. His research interests include the use of
machine learning techniques applied to hyperspectral images in tumor tissue
analysis in real-time during surgery.

http://dx.doi.org/10.1145/1365490.1365500
http://dx.doi.org/10.1145/3309551
http://dx.doi.org/10.1038/s42256-021-00356-5
http://dx.doi.org/10.1109/SENSORS47087.2021.9639747
http://dx.doi.org/10.1109/ICCE56470.2023.10043562
http://dx.doi.org/10.1109/I2MTC48687.2022.9806693
http://dx.doi.org/10.1161/01.cir.101.23.e215
http://dx.doi.org/10.1007/s10916-018-1088-1
http://dx.doi.org/10.1109/TCAD.2011.2110592
http://dx.doi.org/10.1109/IEMBS.1997.757028


2003616 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Samuel Ortega received the B.Sc. degree in
telecommunication engineering and the M.Sc. and
Ph.D. degrees in telecommunication technologies
from the University of Las Palmas de Gran Canaria,
Las Palmas de Gran Canaria, Spain, in 2015, 2016,
and 2021, respectively.

In 2021, he started to work as a Post-Doctoral
Researcher at the Norwegian Institute of Food
Fisheries and Aquaculture Research (NOFIMA),
Tromsø, Norway, where he was established as a
permanent Research Scientist in 2022. In 2023,

he began working part-time as a Research Scientist at UiT The Arctic
University of Norway, Tromsø, while continuing his main position at
NOFIMA. His research interests include the use of hyperspectral imaging
and machine learning for medical and food quality applications.

Francisco J. Balea-Fernandez received the B.Sc.
and Ph.D. degrees in psychology from the Pontifical
University of Salamanca, Salamanca, Spain, in 2001
and 2007, respectively, the B.M. degree in medicine
from the University of Las Palmas de Gran Canaria
(ULPGC), Las Palmas de Gran Canaria, Spain, in
2011, the M.Sc. degree in clinical medicine from
Camilo Jose Cela University, Madrid, Spain, in
2016, and the Ph.D. degree in biomedical research
specializing in geriatrics from the ULPGC, Las
Palmas de Gran Canaria, in 2021.

From 2001 to 2003, he did a course in the doctoral program of clinical
neuropsychology at the University of Salamanca, Salamanca. He has been a
Part-time Professor at ULPGC, since 2011.

Gustavo M. Callico (Senior Member, IEEE)
received the M.S. degree in telecommunication
engineering and the Ph.D. and European Doctorate
degrees from the University of Las Palmas de Gran
Canaria (ULPGC), Las Palmas de Gran Canaria,
Spain, in 1995 and 2003, respectively.

In 2022, he was a Full Professor at ULPGC and
developed his research activities Institute for Applied
Microelectronics. His current research interests
include hyperspectral systems for cancer detection,
artificial intelligence algorithms, real-time super-

resolution algorithms, synthesis-based design for SOCs, and circuits for
multimedia processing and video coding standards.

Nicolás Medrano (Senior Member, IEEE) received
the B.Sc. and Ph.D. degrees in physics from
the University of Zaragoza, Zaragoza, Spain, in
1989 and 1998, respectively.

He is currently a Full Professor of electronics with
the Faculty of Physics, University of Zaragoza, and
a member of the Group of Power Electronics and
Microelectronics of the Aragon Institute for Engi-
neering Research (GEPM-I3A). His current research
interests include hardware implementation of neural
network models for signal processing, smart sensor

interfaces, wireless sensor networks, and intelligent instrumentation.

Belén Calvo (Senior Member, IEEE) received the
B.Sc. degree in physics and the Ph.D. degree
in electronic engineering from the University of
Zaragoza, Zaragoza, Spain, in 1999 and 2004,
respectively.

She is currently a Full Professor of electronics
with the Faculty of Physics, University of Zaragoza,
and a member of the Group of Power Electronics
and Microelectronics of the Aragon Institute for
Engineering Research (GEPM-I3A). Her research
interests include low-voltage low-power CMOS

design, on-chip smart sensor interfaces, and edge neural network models.


