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Abstract— Change detection (CD) in remote sensing (RS) aims
to consistently track alterations in specific regions over time.
While current methods employ hierarchical architectures to
analyze semantic details, they often miss crucial changes across
different semantic levels, resulting in partial representations of
environmental shifts. Addressing this, we propose AdaptFormer,
uniquely designed to adaptively interpret hierarchical semantics.
Instead of a one-size-fits-all approach, it strategizes differ-
ently across three semantic depths: employing straightforward
operations for shallow semantics, assimilating spatial data for
medium semantics to emphasize detailed interregional changes,
and integrating cascaded depthwise attention for in-depth seman-
tics, focusing on high-level representations. The experimental
evaluations reveal that AdaptFormer surpasses many leading
benchmarks, showcasing exceptional accuracy on LEVIR-CD
and DSIFN-CD datasets. AdaptFormer showcases impressive
performance with F1 and intersection over union (IoU) scores
of 92.65% and 86.31% on the LEVIR-CD dataset, and 97.59%
and 95.29% on the DSIFN-CD dataset, respectively. The datasets
are available at https://github.com/aigzhusmart/AdaptFormer.

Index Terms— Change detection (CD), deep learning, hierar-
chical representation learning, remote sensing (RS), representa-
tion fusion.

I. INTRODUCTION

CHANGE detection (CD) has emerged as a crucial field
of remote sensing (RS), primarily focusing on the sys-

tematic identification of alterations within a region [1], [2].
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This identification is realized through the comparative anal-
ysis of images captured at distinct temporal intervals [3].
By leveraging the concept of binary labeling for each pixel,
CD techniques facilitate the automated extraction of pertinent
information [4]. The strength of contemporary CDs largely
stems from their ability to extract and compare semantic
information [5]. This process empowers the techniques to iden-
tify, characterize, and comprehend changes within RS data.
The insights gleaned from this process are invaluable, driving
informed decision-making across a plethora of applications,
including urban development [6], disaster management [7],
deforestation [8], environmental surveillance [9], [10], etc.

The CD in RS represents a significant challenge due
to the need for meticulous analysis and comparison of
coregistered images obtained at different time points. Exist-
ing methodologies [11], [12] employ complex hierarchical
architectures, where semantic information is dissected and
compared across various levels. A common category of CD
techniques emphasizes detecting changes predominantly at the
deepest levels [13], [14]. Although this approach yields a
detailed understanding of advanced-level changes, it may over-
look critical alterations at more rudimentary layers, potentially
resulting in an incomplete depiction of overall environmental
transformations.

An alternative set of CD techniques involves a systematic
and repeated extraction of semantic information at each hier-
archical level, followed by an exhaustive comparison of this
data [15], [16]. However, this method tends to lack nuanced
interpretation across the levels and may result in inaccuracies.
Specifically, the simplistic and repeated comparison process
might fail to detect intricate inter-level relationships, or it
might disproportionately emphasize certain changes, thereby
affecting the overall quality and accuracy of change detection
(CD). The existing challenges highlight the urgent need for
an efficient investigative manner for ensuring accurate and
comprehensive analysis across all semantic levels in RS appli-
cations.

The hierarchical structure of RS image analysis allows for
the extraction of semantic information at various depths, each
possessing distinct characteristics and challenges [17], [18],
[19]. Shallow semantic information, gleaned from the initial
layers of the hierarchy, is adept at identifying rudimentary
features such as edges and basic shapes but may struggle with
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intricate details, particularly when considering the tiny objects
frequently found in RS images [20], [21]. Medium seman-
tic information, sourced from intermediate layers, recognizes
complex shapes and patterns with increased accuracy but can
overlook subtler details or minor objects. Conversely, deep
semantic information from advanced layers can comprehend
broader contextual relationships and substantial structures but
can neglect smaller objects or nuanced changes [22], [23].
Given the unique challenges presented by the numerous small
objects common in RS images, it is crucial to develop an
adaptive method that efficiently extracts semantic information
at different levels based on their inherent properties. Such an
approach to CD would improve accuracy and efficiency and
would be of particular value in RS applications.

In order to solve the above challenges, we present Adapt-
Former, a novel framework that probes into hierarchical
semantic interpretations. The AdaptFormer deviates from the
conventional method by systematically and repetitively investi-
gating semantic information at each hierarchical level. Instead,
it adopts an adaptive technique for interpreting hierarchical
representations at three distinct semantic stages: shallow,
medium, and deep, as illustrated in Fig. 1. This framework pro-
gressively captures salient semantic representations, aligning
with the idiosyncrasies of different hierarchical architecture
states in RS imagery. For shallow semantics associated with
small objects, AdaptFormer employs straightforward opera-
tions to identify local representations. In contrast, for medium
semantics, it assimilates spatial information to accentuate finer
interregional details across different temporal intervals. Fur-
thermore, it introduces cascaded depthwise attention for deep
semantics, thereby enabling the effective learning of high-
level representations. Rigorous testing against 11 established
benchmarks on popular CD datasets, including LEVIR-CD
and DSIFN-CD, attests to the superior performance of Adapt-
Former, marking it as a trailblazer in the realm of CD.
In addition, AdaptFormer holds significant potential value in
the industrial domain, with applications extending to areas
such as agricultural CD [24], land use change analysis [25],
deforestation monitoring [8], flood monitoring [26], climate
change impact assessment [27], and water body CD [28].

The main contributions in this article are summarized as
follows.

1) We present an innovative, end-to-end approach called
AdaptFormer enables the adaptive interpretation of hier-
archical representations for CD on RS imagery.

2) Designed for precise and differentiated semantic inter-
pretation at multiple hierarchical levels, AdaptFormer
implements unique strategies across shallow, medium,
and deep semantic layers, showcasing its versatility and
specificity.

3) The AdaptFormer outperforms various established CD
baselines, setting new records on two benchmark
datasets, LEVIR-CD and DSIFN-CD.

II. RELATED WORK

In the field of CD, techniques have emerged in tandem
with the rise of aerial imagery technology, increasingly gaining

importance in managing large-scale image data [1], [29]. The
FC series approaches, encompassing FC-EF, FC-Siam-DI, and
FC-Siam-Conc, first incorporate the fully convolutional neural
network architecture into CD tasks [30]. These methodologies
are remarkable for their ability to be applied to any RS CD
dataset. However, their performance is often compromised by
disruptive elements like shadows and backgrounds, leading to
misinterpretation of image features. Responding to these chal-
lenges, newer techniques such as DTCDSCN, STANet, and
DASNet [6], [31], [32] integrate attention modules into their
frameworks, leveraging interdependencies between channels
and spatial positions to enhance feature perception.

As we transition into a newer era of CD, the robust
representational capabilities of the Transformer model have
received increased attention, showcasing comparable perfor-
mance to convolutional models in various visual tasks. In fact,
BiT [33] integrates the Transformer model with convolution
layers. The ChangeFormer [15] supports the idea that the
Transformer encoder on its own is capable of extracting
fundamental features, analyzing intricate details from dual-
temporal images, and integrating feature differences at various
scales. Then, Changer [34] introduces feature interaction to
allow the sharing of feature information between two branches
of a network, thereby improving the perception of contextual
semantic information differences. Despite these advancements,
both ChangeFormer and Changer fall short in differentiating
cross-level feature information due to their uniform module
usage for semantic extraction at varying levels. Addressing
these limitations, our proposed AdaptFormer emphasizes the
differences in semantic information between different lev-
els and adaptively employs selective modules for shallow,
medium, and deep semantic layers, thereby demonstrating its
versatility and specificity.

III. METHOD

In this section, we introduce the architecture of a pioneer-
ing framework designated as AdaptFormer, devised for the
purpose of CD. This framework harnesses the power of an
adaptive, transformer-based model arranged in a hierarchical
fashion, which is described in detail in Section III-A.

A. Hierarchical Adaptive Mechanism

AdaptFormer is a cutting-edge architecture that prioritizes
adaptive feature learning and comparative analysis. Designed
to cater to the intrinsic hierarchical semantic features, it delves
into various representation levels: shallow, medium, and deep.
This methodical approach to feature learning unfolds across
three distinct stages, with the pivotal difference module bol-
stering each stage’s unique operations. The intricate details
of its structure, inclusive of the operational nuances and the
integral role of the difference module, are depicted in Fig. 1.

AdaptFormer’s operational flow begins with the intake of
two sets of images, which represent the same geographical
region captured at different time intervals, referred to as
pre-change and post-change images. These images are pro-
cessed through a sequence of three differentiated stages. Each
stage involves the essential tasks of downsampling and feature
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Fig. 1. Schematic representation of the AdaptFormer architecture. The proposed AdaptFormer employs distinct strategies from straightforward operations
for shallow levels, spatial data assimilation for medium levels, to cascaded depthwise attention for deeper semantics.

selection, applied in a manner that respects the semantic
depth associated with each stage. As a culmination of these
stages, the differences in the resulting outputs are fused by the
difference module. This module computes the dissimilarities
between the stage outputs and then undergoes an upsampling
process to match the size of the original input images. This
systematic approach ensures a comprehensive analysis and
comparison of changes at various semantic levels, reinforcing
the accuracy of the CD process.

Our proposed AdaptFormer implements an ingenious design
to facilitate adaptive feature learning and comparison, effec-
tively catering to the varied levels of representation, i.e.,
shallow, medium, and deep, inherent in hierarchical semantic
features. In essence, the system integrates a local merge
module at each stage, enhancing the model’s feature extrac-
tion capabilities, and thus optimizing the utility of semantic
information across different levels in RS images. These stages
also encompass the introduction of stage-specific modules,
such as the spatial exchange module in stage 2, designed
to augment the model’s performance by bolstering precise
semantic interpretations.

Moving deeper into the system, stage 3 benefits from the
addition of the channel exchange module [34] and the hierar-
chical collaborative attention (HCA) module. These modules
are instrumental in adapting to more abstract information
encapsulated within deeper-level semantics, leading to favor-
able segmentation results. Remarkably, AdaptFormer’s design
provides for the relative independence of the encoders that
process pre-change and post-change images, contributing to
the system’s robustness. Each stage within an encoder oper-
ates on a distinct set of images, employing the difference
module to facilitate difference detection of image processing
results across various time domains. Such a methodology,
harnessing both the independence of image processing and
the interconnectedness of module application, contributes to
AdaptFormer’s superior performance in CD.

1) Stage 1—Shallow Semantic: As the initiating phase
of the AdaptFormer, stage 1 is integral for the selection
and extraction of rudimentary, or shallow, semantic fea-
tures. The image being processed, denoted as X in with
dimensions W × H × C (representing width, height, and
channels, respectively), is subjected to downsampling by the
Downsample module. The Downsample module, employ-
ing a 3 × 3 convolution operation and group normalization

Fig. 2. Structure of local merge.

with a stride of 2, modifies X in to a dimensionality of
(W/2) × (H/2) × C . The output tensor, consequent to the
downsampling process, primarily encapsulates basic shallow
semantic information such as shapes and textures. To effi-
ciently manage these features, we integrate the local merge
module at this juncture of the framework.

Local merge prioritizes dual learning in spatial and channel
dimensions of the data, as shown in Fig. 2. Utilizing depthwise
separable convolution, it aggregates local features across both
domains, enriching data analysis. This approach promotes the
integration of channel-specific information into input features,
thereby elevating the predictive accuracy of the CD model.
Equation (1) provides an in-depth mathematical insight into
the local merge module’s operations

X1 = PW(BN(PE(X in)))

X2 = DW(X1)

X3 = PW(BN(DW(X2))

Y = PW(ϕ(PW(X3))) (1)

where BN and ϕ denote batch normalization and GELU activa-
tion functions [35]. Y represents the output of the local merge
module that employs a position-wise (PW) and a depth-wise
(DW) convolutional layer, designed for effective local feature
aggregation. The PW convolves input data across spatial
dimensions, while DW focuses on local feature aggregation.
This structure is augmented by a depthwise convolution layer,
or PE, extracting relative positional information to enhance
image understanding. Through this configuration, the local
merge module efficiently generates rich semantic features, vital
for precise CD.

2) Stage 2—Medium Semantic: In stage 2 of our model,
the emphasis is placed on the adept extraction and process-
ing of intermediate-level semantics, characterized by their
abstract and semantically rich attributes. This contrasts with
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the more rudimentary characteristics inherent to shallow-level
semantics. In order to address the challenges associated with
extracting these complex features, we have integrated the
spatial exchange module into stage 2. This module is an
enhancement over stage 1, capitalizing on the associational
strength inherent to intermediate-level semantics by evaluating
diverse spatial perspectives present in data channels. Conse-
quently, this strategic augmentation facilitates a more robust
capability for the extraction and interpretation of abstract
features synonymous with intermediate-level semantics. The
details of spatial exchange are as follows.

Spatial exchange plays a pivotal role in CD models by
adeptly integrating change region features. These features are
learned through a dual-encoder system, highlighting the intri-
cate interplay of correlations across varied temporal domains.
A defining characteristic of this integration is the exchange of
grayscale images stemming from the double temporal domain
processing outcomes, all while operating at half the spatial
dimension. This strategic inclusion bolsters the CD model’s
proficiency and amplifies its capability to forge spatial object
associations [34]. Specifically, the execution flow of spatial
exchange is shown in the following equation:

Mi =

{
1, if i mod α = 0
0, otherwise

Ye = Xe ⊙ M + X̂ e ⊙ (1 − M)

Ŷ e = Xe ⊙ (1 − M) + X̂ e ⊙ M (2)

where e represents the dimension that the input feature needs
to be exchanged, α represents the channel exchange mask
displacement, Mi represents the i th element of the 1-D mask
M , and Xe, X̂ e, Ye, Ŷ e represent the representation of X , X̂ ,
Y , Ŷ in the channel dimension, respectively.

In stage 2, we designate e as the width (W ) dimension of
the input features and α = 2. This deliberate selection enables
the effective comparison and fusion of middle-level semantic
features across distinct temporal instances, effectively captur-
ing the relational information between diverse spatial regions.

Subsequently, the exchanged feature vectors continue to
undergo further processing through the Downsample module
and the local merge module. The resulting processed feature
vectors are then fed into the difference module and subse-
quently passed on to the next stage for subsequent analysis or
utilization.

3) Stage 3—Deep Semantic: After stage 2, stage 3 pro-
cesses semantic features related to objects, scenes, or advanced
concepts. These features’ global information is vital for quality
CD results. Understanding the interplay between encoders
representing the same region at different times enhances the
model’s grasp of temporal relations between spatial elements
in a scene. Consequently, we integrated channel exchange
and HCA modules in stage 3. Details of these modules are
presented below.

Channel exchange contrasts with spatial exchange by oper-
ating in the channel dimension, where it swaps half of the
input images from both sides based on (2) with e set as the
channel (C) dimension. This approach avoids the potential
spatial ambiguity that might arise from exchanging features in

Fig. 3. Overview of HCA.

the plane dimension. Exchanging along the channel dimension
enhances the capture of deep semantic interactions across
temporal instances within a specific region. Following this
exchange, the feature vectors proceed to the local merge and
HCA modules.

HCA is designed to discern spatial relationships in the input
image through feature clipping and attention computations.
It extracts refined global features from a feature vector rich
in temporal and abstract semantic information. The HCA’s
workflow is depicted in Fig. 3, with its computational details
provided in the following equation:

[X1, X2, . . . , X i−1, X i , . . . , Xn]d = X in

X i = X̃ i−1 + X i

X̃ i = Attn
(
X i W

Q
i , X i W K

i , X i W V
i

)
Y = X̃1 ∥ X̃2, . . . , ∥ X̃ i−1 ∥ X̃ i , . . . , ∥ X̃n (3)

where n denotes the number of segments and Y represents
the output, with X i as the i th segment of input X in. After
the Attn operation, X i yields X̃ i . Here, W Q

i , W K
i , and W V

i
are projection layers mapping input features into distinct
subspaces, and the ∥ indicates the concatenation.

The HCA is designed to enhance the handling of feature
vectors. By partitioning data along the channel dimension,
C , it allows for individualized attention computations on
each segment, streamlining the computational process and
boosting model parallelism. The model’s understanding of
local structures in input images is further enriched by incorpo-
rating a sequence of convolution, batch normalization, and the
GELU activation function after the query phase. To preserve
information throughout the process, a residual connection is
integrated.

A significant trait of HCA is its feedback mechanism. The
output from one attention computation serves as the input for
the subsequent one, reinforcing feature representation. Given
the depth of semantic feature analysis, the model determines
that a partition count (n) of four is optimal for extracting global
features. Within stage 3, the combination of three HCAs with
local merge modules forms the backbone, drawing out deep
semantic features and enhancing the model’s proficiency in
CD.



HUANG et al.: AdaptFormer: AN ADAPTIVE HIERARCHICAL SEMANTIC APPROACH FOR CD 5502612

4) Difference Module: The difference module calculates the
variance between pre-change and post-change image encod-
ings produced at each stage. By merging the two outputs in
the channel CC dimension, their distinctions are discerned
using convolutional operations. This computation procedure
is detailed in the following equation:

X = DW(X1 ∥ X2)

D = DW(BN(σ (X)) (4)

where X1 and X2, respectively, represent the output of two
encoders in the same stage, the σ is the RELU function [36],
and D represents the output of the difference module.

B. Loss Function

To facilitate the CD task, we consider employing the
cross-entropy loss function [37] for training the model, which
is expressed by the following equation:

Lce(G, Y ) = −
1
N

N∑
i=1

[
Y (i) log(G(i))

+ (1 − Y (i)) log(1 − G(i))
]

(5)

where N represents the number of pixels in the input binary
masks, G represents the real binary masks of the changed
region, and Y represents the predicted CD mask.

Since the outputs of different levels contain feature repre-
sentations with different levels of abstraction, by using the
multilayer output to calculate the loss, these features can be
considered comprehensively, thereby improving the modeling
ability of the target task. This loss calculation can be expressed
by the following equation:

L3 = Lce(G, Up(fuse(D3))

L2 = Lce(G, Up(fuse(D2 + D3))

L1 = Lce(G, Up(fuse(D1 + D2 + D3)))

Ltotal = λ1L1 + λ2L2 + λ3L3 (6)

where D1, D2, and D3 represent the results of each stage after
passing through the difference modules. The Up operation is
to upsample the input tensor size to G size. The details of the
fuse operation are as follows:

D = BN(σ (DW(Din)))

fuse(Din) = DW(D) (7)

where L j indicates that the output of the j th stage is
cross-entropy calculated with G, and the coefficient λ j before
each layer loss (λ j > 0) j ∈ {1, 2, 3}. We use the total loss
Ltotal to measure model capability.

IV. EXPERIMENTS AND DISCUSSION

A. Datasets

We evaluate the performance of the CD task using two
large-scale remote building CD sensing datasets.

LEVIR-CD [6], a benchmark dataset for building CD, com-
prises 637 bitemporal image patch pairs sourced from Google

Earth, each having a very high resolution of 0.5 m/pixel and
dimensions of 1024 × 1024 pixels. Spanning a time frame of
5–14 years, these images vividly capture significant land-use
transformations, especially construction growth. The dataset
encompasses a variety of building morphologies, from villa
residences and tall apartments to small garages and large
warehouses. Primarily emphasizing building-related dynam-
ics, it specifically categorizes changes as building growth or
decline. Expert RS interpreters annotated these images with
binary labels, denoting change (1) or no change (0), with
every annotation undergoing a rigorous double-check process
to ensure accuracy. For experimental divisions, patches of size
256 × 256 yielded 7120, 1024, and 2048 samples for training,
validation, and testing sets, respectively.

DSIFN-CD [38] dataset comprises six large, bitemporal,
high-resolution images that span six Chinese cities, namely
Beijing, Chengdu, Shenzhen, Chongqing, Wuhan, and Xian.
Initially obtained manually from Google Earth, the images are
pre-processed into default pairs with dimensions of 512 ×

512 pixels. For experimental consistency, these are further
segmented into non-overlapping 256 × 256 blocks, yielding
14 400 training, 1360 validation, and 192 test samples.

B. Evaluation Metrics

F1-score (F1) [39] is a statistical measure used in the
context of binary and multiclass classification to evaluate
a model’s accuracy. The F1-score combines recall, which
gauges correct change identification, with the minimization
of false detection, serving as an overall indicator of a model’s
accuracy in detecting RS image changes [40]. Metric formu-
lations are as follows:

F1 =
2 TP

2 TP + FN + FP
(8)

where TP represents true positives, FP denotes false positives,
TN signifies true negatives, and FN refers to false negatives.

Intersection over union (IoU) [41] is a widely adopted
metric in the domain of CD using RS imagery to gauge the
agreement between predicted change areas and ground-truth
(GT) annotations [40]. It quantifies the ratio of the intersecting
area to the union area of the predicted and actual change
regions, providing a value ranging from 0 (no overlap) to 1
(complete overlap). Metric formulations are as follows:

IoU =
Y ∩ G
Y ∪ G

. (9)

Overall accuracy (OA) [42] serves as a performance metric
to evaluate the proportion of correctly classified pixels relative
to the total number of pixels in RS imagery. It provides
a comprehensive measure of the model’s effectiveness in
accurately detecting both changed and unchanged areas across
the entire spatial extent of the image under the CD task [43].
Metric formulations are as follows:

OA =
TP + TN

TP + TN + FP + FN
. (10)

Recall [44] evaluates the fraction of true positive changes
that were correctly identified by a model relative to the
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total actual changes [45]. This metric is crucial to gauge the
model’s proficiency in capturing all pertinent alterations within
the satellite images, ensuring that no significant changes are
overlooked [46]. Metric formulations are as follows:

Recall =
TP

TP + FN
. (11)

C. Implementation Details

AdaptFormer is trained on eight NVIDIA A100-PCIE-40G.
Each GPU has a batch size of 24 with a patch size of 256 ×

256. The AdamW optimizer is utilized with a cosine annealing
strategy, setting an initial learning rate of 0.0006 and a weight
decay of 0.05. The training procedure is configured for a total
of 600 epochs. Additionally, we have configured the weights
for model multilayer output and label calculation loss in a ratio
of 5:5:5:8 during training, and our data loader utilizes four
subprocesses to load data in parallel, improving data loading
speed and efficiency.

D. CD Performance

Our experimental evaluation benchmarked AdaptFormer’s
performance on the LEVIR-CD and DSIFN-CD datasets,
as shown in Table I. Performance was assessed using four
critical metrics: F1, IoU, OA, and Recall, and juxtaposed
with 11 established CD methods, including notable performers
such as ChangeFormer, P2V-CD, and Changer. Each of these
employed unique strategies for CD: ChangeFormer utilized the
difference module to gauge the variance in decoder output fea-
ture maps, P2V-CD resolved the problem via temporal–spatial
transformations, and Changer integrated feature interaction
strategies, achieving metrics of 92.24%, 85.59%, 99.20%, and
91.20%, respectively.

AdaptFormer, however, through its innovative methodolo-
gies, presents an evident advancement in the performance
metrics across both datasets. Specifically, on the LEVIR-CD
dataset, AdaptFormer manifests scores of 92.65%, 86.31%,
99.19%, and 92.59% for the F1, IoU, OA, and Recall metrics,
respectively. Despite a marginal decrement of 0.01% in the OA
metric compared to Changer, the F1, IoU, and Recall metrics
exhibit enhancements of 0.41%, 0.72%, and 1.39%, respec-
tively. The superiority of AdaptFormer is further emphasized
in the DSIFN-CD dataset. Here, it significantly surpasses P2V-
CD, the runner-up, with an impressive F1-score of 97.59%—a
striking 5.77% advancement.

E. Ablation Study

1) Stage Depth Setting: This section is dedicated to assess-
ing the impact of depth at each model stage, denoted as N1,
N2, and N3, for the first, second, and third stages, respectively.
As shown in Fig. 4 with an initial configuration of [3, 3,
3], the F1, IoU, OA, and Recall values register at 92.65%,
86.31%, 99.19%, and 92.59%. It is notable that any decrease
in depth at each stage reflects in a consequent decrease in all
performance metrics, exemplified when N1, N2, and N3 are
set to [1, 1, 3], causing decreases of 1.31%, 2.25%, 0.12%,
and 2.31% in F1, IoU, OA, and Recall, respectively. This

Fig. 4. Quantitative comparison with different stage depths of AdaptFormer
on the LEVIR-CD dataset.

scenario implies a shortfall in feature extraction by shallow
models, thereby negatively affecting accuracy. Conversely,
an attempt to increase depth also instigates similar metric
decreases, such as when N1, N2, and N3 are set to [3, 3,
6], resulting in decreases of 0.62%, 1.07%, 0.12%, and 1.71%
in F1, IoU, OA, and Recall, respectively. Interestingly, with
the configuration [4, 4, 4], the F1-value slightly elevates to
99.25%, outperforming the base by 0.06%, yet other metrics
underperform, suggesting an over-extraction of deep semantic
features due to excessive stages. After a thorough examination
of all these dynamics, the configuration of [3, 3, 3] is retained
as the optimal choice.

2) Feature Splits: Splitting input features into a specified
number affects the model performance. The goal of this
section is to evaluate the impact of feature splits on the
model performance. As shown in Fig. 5(a), we notice that
the model achieves the best performance when the feature
splits are set to 4, with F1, IoU, OA, and Recall of 92.65%,
86.31%, 99.19%, and 92.59%, respectively. When the feature
splits are less than 4, the model’s performance decreases. For
example, when the feature splits are 1, the model’s F1, IoU,
OA, and Recall decrease by 0.82%, 1.42%, 0.11%, and 1.42%,
respectively. This is because fewer feature hierarchies are not
conducive to the model learning feature representations from
multiple perspectives, which leads to performance degradation.
On the other hand, when the feature splits are greater than 4,
the model’s performance also decreases. For example, when
the feature splits are set to 16, the four indicators of the model
decreased by 0.50%, 0.87%, 0.05%, and 0.73%, respectively.
This is due to an excessive number of feature splits causing the
model to easily overfit the training data, leading to a decrease
in generalization performance. Considering the above factors,
we believe that setting the feature hierarchy to 4 is a reasonable
choice.

3) Spatial Exchange Setting: The objective of this section
is to evaluate the impact of spatial swapping positions on the
model’s performance for the spatial exchange module. The
experimental results are shown in Fig. 5(b). When perform-
ing spatial swaps only in the h-dimension, the model’s F1
and IoU are 92.45% and 85.97%, respectively. When swap-
ping in the w-dimension, the model’s performance improves,
with F1 increasing by 0.20% and IoU increasing by 0.34%.
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TABLE I
PERFORMANCE OF EACH MODEL IN THE LEVIR-CD DATASET AND THE DSIFN-CD DATASET. ALL VALUES ARE REPORTED IN PERCENTAGE (%).

* SYMBOL INDICATES THAT THE CHANGER MODULE UTILIZES THE EXCHANGE MODULE, AND THE BACKBONE OF THE MODEL EMPLOYS
RESNEST-101. THE PERFORMANCE OF OUR PROPOSED MODEL IS MARKED IN GRAY

TABLE II
IMPACT OF EXCHANGE OPERATIONS ACROSS DIFFERENT STAGES ON THE LEVIR-CD DATASET. FOR EACH PERFORMANCE METRIC, PERFORMANCE

DECLINES ARE DENOTED IN GREEN, WHILE ENHANCEMENTS ARE HIGHLIGHTED IN RED. THE PERFORMANCE OF THE RECOMMENDED CHOICE
IS MARKED IN GRAY

However, when both the h-dimension and w-dimension are
swapped simultaneously, compared to swapping only in the
w-dimension, the model’s F1 and IoU decrease by 0.41% and
0.71%, respectively. This is because the spatial exchange mod-
ule’s effectiveness lies in providing the encoder with semantic
information from another temporal aspect, while the encoder
itself plays a crucial role in extracting semantic features
from the current temporal aspect. The excessive information
exchange during swapping in both the h-dimension and w-
dimension causes the encoder to lose too much image feature
information, leading to a suboptimal extraction of semantic
features for the current temporal aspect and resulting in perfor-
mance degradation. Therefore, we choose the w-dimension as
the spatial swapping position for the spatial exchange module.

4) Exchange Positions: Building on the established spa-
tial exchange settings from earlier experiments, this section
specifically investigates how spatial and channel exchanges
are positioned across stages 2 and 3, with findings outlined
in Table II. The baseline performance metrics, derived from
a model without either exchange module and serving as a
control, are as follows: 91.93% for F1, 85.02% for IoU,
99.06% for OA, and 92.01% for Recall, as indicated in the
first row of Table II.

In the first comparative experiment (Group I), the model
was tested with only a spatial exchange in stage 2 or a channel
exchange in stage 3. Results reflected a slight increase of less
than 0.1% in F1 and IoU, while observing substantial drops

Fig. 5. Conducting a comparative quantitative analysis involves examining
(a) various feature splits within the HCA module and (b) diverse dimensional
configurations in the spatial exchange module. Both aspects are evaluated
using the LEVIR-CD dataset. FS: feature split.

in OA and Recall by 1.19% and 0.95%, respectively, hinting
that isolating feature dimension transformations might hamper
the overall model efficiency.

The second comparison (Group II) aimed to discern the
effect of utilizing identical exchange modules, either channel
or spatial, in both stages. Introducing the channel exchange too
prematurely, especially when semantics were not adequately
deep, led to a retention of redundant information from the
medium stage, which negatively influenced the deep-stage
feature comparison. Specifically, this resulted in a decline in
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Fig. 6. Comparative display of CD performance from divergent CD frameworks applied to LEVIR-CD and DSIFN-CD datasets.

Fig. 7. Visual journey through our model’s three stages in AdaptFormer.

all four metrics, with Recall dropping by 1.18%. Conversely,
replacing channel exchange with spatial exchange in stage 3
revealed that simplistic exchanges at this depth adversely
affected high-level semantic representation, witnessing the
steepest metric drops, particularly with IoU and Recall plum-
meting to 83.31% and 90.53%.

Based on these outcomes, the third comparison (Group III)
was conceptualized. The spatial exchange was positioned in
stage 2, showing an increase in F1, IoU, and OA by 0.57%,

0.96%, and 0.02%, respectively, although Recall decreased by
0.65%. This highlighted the efficacy of the spatial exchange
in enhancing CD accuracy at a mid-level semantic layer. Fur-
thermore, deploying the channel exchange in stage 3 proved
most effective, registering the best performance among the
comparative groups with metrics soaring to 92.65% for F1,
86.31% for IoU, 99.19% for OA, and 92.59% for Recall.
This underscored that the spatial exchange is more potent
for abstract mid-level semantics in stage 2, while the channel
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Fig. 8. Comparison of error maps resulting from different CD frameworks on the LEVIR dataset. The error maps are computed by subtracting the GT from
the CD predictions. The lower the value at a position point, the more confident the model is about that point.

exchange is optimal for deep-level semantics related to objects,
scenes, or advanced concepts in stage 3.

5) Evaluation of the HCA Module: The HCA module stands
out for its innovative design tailored to interpret complex,
deep representations. Utilizing advanced feature clipping and
attention-based computations, it excels at distilling a more
precise set of features that are temporally coherent and seman-
tically rich. This feature refinement is particularly vital at
stage 3, where the model is expected to make high-level
semantic interpretations.

The efficacy of the HCA module is validated through a set of
performance metrics. In the absence of the HCA module, the
model demonstrated an F1-score of 91.28%, IoU at 83.96%,
OA at 98.98%, and Recall at 91.72%. After incorporating
the HCA module, each of these metrics showed significant
improvement: F1 increased by 1.37%, IoU by 2.35%, OA by
0.21%, and Recall by 0.87%. These measurable gains, detailed
in Table III, affirm the HCA module’s pivotal role in enhancing
the model’s capability to make accurate and context-rich
semantic judgments.

F. Visualization

1) Qualitative Performance: As illustrated in Fig. 6, a range
of CD models undergo application to the LEVIR-CD and
DSIFN-CD datasets, creating a broad canvas for compari-
son. The initial columns of the figure showcase pre-change
and post-change images, offering the bedrock for evaluation.
Notably, AdaptFormer, our proposed model, receives represen-

TABLE III
EFFECT OF INCORPORATING OR EXCLUDING THE HCA MODULE IN

ADAPTFORMER ON THE LEVIR-CD DATASET. IN THIS TABLE,
“W/O” STANDS FOR “WITHOUT” WHILE “W” INDICATES “WITH.”

FOR EACH PERFORMANCE METRIC, PERFORMANCE DECLINES
ARE DENOTED IN GREEN, WHILE ENHANCEMENTS ARE

HIGHLIGHTED IN RED. THE PERFORMANCE OF THE
RECOMMENDED CHOICE IS MARKED IN GRAY

tation amidst an array of top-performing models presented in
columns 3–7. The red and yellow boxes serve to highlight the
areas of maximum variance in the output across the various
models on the two datasets. When these results are compared
with the GT, provided in the last column, AdaptFormer visibly
outperforms others, demonstrating superior overall quality
and accuracy, particularly within the designated regions. This
juxtaposition thus emphasizes the powerful performance and
substantial potential of AdaptFormer in executing CD tasks.

2) Progressive Visualization Through AdaptFormer’s CD
Stages: Fig. 7 offers a visual journey through our model’s
three stages in CD. In our analytical framework, the model
traverses through a hierarchical structure of semantic analysis
across three stages, each delineated by its depth of seman-
tic processing and its implications for CD in RS imagery.
Initially, stage 1 lays the groundwork by leveraging shallow
semantic insights to pinpoint basic yet pivotal features like
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edges and shapes, proving instrumental for the identification
of minor changes. However, this stage is limited in its ability
to unravel more intricate details. Advancing to stage 2, the
model deepens its semantic exploration to intermediate levels,
thereby refining its detection capabilities to encompass moder-
ate changes through the discernment of more complex shapes
and patterns, albeit with remaining challenges in capturing the
finest nuances. The culmination occurs in stage 3, where an
intensive dive into deep semantic realms enables the model to
grasp comprehensive contextual relationships and substantial
structural shifts, thus extending its detection acumen to sub-
stantial changes. This graduated approach aligns closely with
GT data, indicating minimal discrepancies and highlighting the
model’s adaptability and scalability. The framework effectively
addresses the diverse requirements of CD in RS imagery,
accommodating changes across a wide range of magnitudes.

3) Error Maps: We employ error maps as a visual tech-
nique to rigorously assess the effectiveness of CD on RS
images, highlighting discrepancies between predicted and true
values. Fig. 8 elucidates the confidence visualization results for
various CD models when applied to the LEVIR-CD dataset.
Primarily, the majority of the figures—columns 1 to 6—
display error analysis from several mainstream models on their
respective test images, whereas the concluding column distinc-
tively represents the outcomes of our AdaptFormer approach.
A unique measurement system was employed wherein the
differences between the model outputs and the GT were
visualized on a scale from 0 to 1. A shade closer to blue
(indicating a value nearer to 0) epitomizes high confidence in
detection, while a hue leaning toward red (signifying a value
approaching 1) designates lesser assurance.

In this visualization, AdaptFormer’s adeptness is consis-
tently evident across various test images. Particularly notable
is its proficiency in small object detection, where the near
absence of the red hue in the first row suggests its enhanced
capability to identify scattered minor entities. For medium-
sized objects, many contemporary models manifest continuous
red zones, indicating lapses in their detection confidence.
In stark contrast, AdaptFormer’s results, especially in the
fourth row, underscore its superiority by almost flawlessly
identifying these areas. This prowess extends to large object
detection as well, as observed in the fifth row, where the dearth
of red regions in our method’s visualization stands testament
to its exceptional confidence and accuracy in recognizing
substantial object changes.

V. CONCLUSION

This study presents AdaptFormer, a groundbreaking solu-
tion to CD in RS imagery. Distinctly adaptive, AdaptFormer
systematically interprets hierarchical semantics, tailoring its
operations across three depth levels: simple techniques for
shallow semantics, spatial data assimilation for medium
details, and cascaded depthwise attention for in-depth insights.
Our experimental evaluations, particularly on the LEVIR-CD
and DSIFN-CD datasets, showcase AdaptFormer’s superior
accuracy and performance over other models, underscore its
potential in applications from urban development to environ-
mental surveillance. In essence, AdaptFormer emerges as a

benchmark in CD, ushering in new avenues for future research
and development in the domain. In future work, we aim
to enhance the computational efficiency of the AdaptFormer
model to better support real-time analysis, while maintaining
its accuracy and effectiveness in CD tasks.

REFERENCES

[1] A. Singh, “Review article digital change detection techniques using
remotely-sensed data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003,
Jun. 1989.

[2] Z. Lv et al., “Land cover change detection with heterogeneous
remote sensing images: Review, progress, and perspective,” Proc. IEEE,
vol. 110, no. 12, pp. 1976–1991, Dec. 2022.

[3] L. Ding, H. Guo, S. Liu, L. Mou, J. Zhang, and L. Bruzzone, “Bi-
temporal semantic reasoning for the semantic change detection in HR
remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5620014.

[4] H. Chen, W. Li, S. Chen, and Z. Shi, “Semantic-aware dense represen-
tation learning for remote sensing image change detection,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022, Art. no. 5630018.

[5] Y. Liang, C. Zhang, and M. Han, “RaSRNet: An end-to-end relation-
aware semantic reasoning network for change detection in optical remote
sensing images,” IEEE Trans. Instrum. Meas.

[6] H. Chen and Z. Shi, “A spatial–temporal attention-based method and a
new dataset for remote sensing image change detection,” Remote Sens.,
vol. 12, no. 10, p. 1662, 2020.

[7] J. Z. Xu, W. Lu, Z. Li, P. Khaitan, and V. Zaytseva, “Building damage
detection in satellite imagery using convolutional neural networks,”
2019, arXiv:1910.06444.

[8] P. de Bem, O. de Carvalho Junior, R. F. Guimar aes, and R. T. Gomes,
“Change detection of deforestation in the Brazilian Amazon using
Landsat data and convolutional neural networks,” Remote Sens., vol. 12,
no. 6, p. 901, Mar. 2020.

[9] L. Bruzzone and D. F. Prieto, “Automatic analysis of the difference
image for unsupervised change detection,” IEEE Trans. Geosci. Remote
Sens., vol. 38, no. 3, pp. 1171–1182, May 2000.

[10] Y. Pang et al., “Improved crop row detection with deep neural network
for early-season maize stand count in UAV imagery,” Comput. Electron.
Agricult., vol. 178, Nov. 2020, Art. no. 105766.

[11] M. Liu, Z. Chai, H. Deng, and R. Liu, “A CNN-transformer network
with multiscale context aggregation for fine-grained cropland change
detection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 15, pp. 4297–4306, 2022.

[12] G. Pei and L. Zhang, “Feature hierarchical differentiation for remote
sensing image change detection,” IEEE Geosci. Remote Sens. Lett.,
vol. 19, pp. 1–5, 2022.

[13] Y. Feng, J. Jiang, H. Xu, and J. Zheng, “Change detection on remote
sensing images using dual-branch multilevel intertemporal network,”
IEEE Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 4401015.

[14] T. Lei et al., “Ultralightweight spatial–spectral feature cooperation
network for change detection in remote sensing images,” IEEE Trans.
Geosci. Remote Sens., vol. 61, 2023.

[15] W. G. C. Bandara and V. M. Patel, “A transformer-based Siamese
network for change detection,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., Jul. 2022, pp. 207–210.

[16] Y. Pang et al., “Slim UNETR: Scale hybrid transformers to efficient
3D medical image segmentation under limited computational resources,”
IEEE Trans. Med. Imag., vol. 43, no. 3, pp. 994–1005, Mar. 2024.

[17] Y. Zhang, Y. Yuan, Y. Feng, and X. Lu, “Hierarchical and robust
convolutional neural network for very high-resolution remote sensing
object detection,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 8,
pp. 5535–5548, Aug. 2019.

[18] H. Sun, S. Li, X. Zheng, and X. Lu, “Remote sensing scene classification
by gated bidirectional network,” IEEE Trans. Geosci. Remote Sens.,
vol. 58, no. 1, pp. 82–96, Jan. 2020.

[19] Z. Chen et al., “A new approach for detecting urban centers and their
spatial structure with nighttime light remote sensing,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 11, pp. 6305–6319, Nov. 2017.

[20] X. Zhang, S. Cheng, L. Wang, and H. Li, “Asymmetric cross-attention
hierarchical network based on CNN and transformer for bitemporal
remote sensing images change detection,” IEEE Trans. Geosci. Remote
Sens., vol. 61, 2023.



HUANG et al.: AdaptFormer: AN ADAPTIVE HIERARCHICAL SEMANTIC APPROACH FOR CD 5502612

[21] H. Yao, R. Qin, and X. Chen, “Unmanned aerial vehicle for remote
sensing applications—A review,” Remote Sens., vol. 11, no. 12, p. 1443,
Jun. 2019.

[22] H. Yin et al., “Attention-guided Siamese networks for change detection
in high resolution remote sensing images,” Int. J. Appl. Earth Observ.
Geoinf., vol. 117, Mar. 2023, Art. no. 103206.

[23] Z. Wang et al., “Toward learning joint inference tasks for IASS-MTS
using dual attention memory with stochastic generative imputation,”
IEEE Trans. Neural Netw. Learn. Syst.

[24] R. S. Lunetta, J. F. Knight, J. Ediriwickrema, J. G. Lyon, and
L. D. Worthy, “Land-cover change detection using multi-temporal
MODIS NDVI data,” in Geospatial Information Handbook for Water
Resources and Watershed Management, vol. 2. Boca Raton, FL, USA:
CRC Press, 2022, pp. 65–88.

[25] S. I. Toure, D. A. Stow, H.-C. Shih, J. Weeks, and D. Lopez-Carr,
“Land cover and land use change analysis using multi-spatial resolution
data and object-based image analysis,” Remote Sens. Environ., vol. 210,
pp. 259–268, Jun. 2018.

[26] S. Schlaffer, P. Matgen, M. Hollaus, and W. Wagner, “Flood detection
from multi-temporal SAR data using harmonic analysis and change
detection,” Int. J. Appl. Earth Observ. Geoinf., vol. 38, pp. 15–24,
Jun. 2015.

[27] T. Peterson, C. Folland, G. Gruza, W. Hogg, A. Mokssit, and
N. Plummer, Report on the Activities of the Working Group on Climate
Change Detection and Related Rapporteurs. World Meteorological
Organization Geneva, 2001.

[28] K. Rokni, A. Ahmad, A. Selamat, and S. Hazini, “Water
feature extraction and change detection using multitemporal
Landsat imagery,” Remote Sens., vol. 6, no. 5, pp. 4173–4189,
2014.

[29] M. Hussain, D. Chen, A. Cheng, H. Wei, and D. Stanley, “Change
detection from remotely sensed images: From pixel-based to object-
based approaches,” ISPRS J. Photogramm. Remote Sens., vol. 80,
pp. 91–106, Jun. 2013.

[30] R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional Siamese
networks for change detection,” in Proc. 25th IEEE Int. Conf. Image
Process. (ICIP), Oct. 2018, pp. 4063–4067.

[31] Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Build-
ing change detection for remote sensing images using a dual-
task constrained deep Siamese convolutional network model,”
IEEE Geosci. Remote Sens. Lett., vol. 18, no. 5, pp. 811–815,
May 2021.

[32] J. Chen et al., “DASNet: Dual attentive fully convolutional Siamese
networks for change detection in high-resolution satellite images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1194–1206,
2020.

[33] H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection
with transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–14,
2021.

[34] S. Fang, K. Li, and Z. Li, “Changer: Feature interaction is what you
need for change detection,” IEEE Trans. Geosci. Remote Sens., vol. 61,
2023.

[35] D. Hendrycks and K. Gimpel, “Gaussian error linear units (GELUs),”
2016, arXiv:1606.08415.

[36] A. F. Agarap, “Deep learning using rectified linear units (ReLU),” 2018,
arXiv:1803.08375.

[37] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tuto-
rial on the cross-entropy method,” Ann. Oper. Res., vol. 134, no. 1,
pp. 19–67, Feb. 2005.

[38] C. Zhang et al., “A deeply supervised image fusion network for
change detection in high resolution bi-temporal remote sensing
images,” ISPRS J. Photogramm. Remote Sens., vol. 166, pp. 183–200,
Aug. 2020.

[39] Q. Shi, M. Liu, S. Li, X. Liu, F. Wang, and L. Zhang, “A deeply
supervised attention metric-based network and an open aerial image
dataset for remote sensing change detection,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022.

[40] N. Chinchor and B. Sundheim, “MUC-5 evaluation metrics,” in Proc.
5th Conf. Message Understand., 1993, pp. 1–10.

[41] X. Song, Z. Hua, and J. Li, “Remote sensing image change detection
transformer network based on dual-feature mixed attention,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2022.

[42] J. Huang, Q. Shen, M. Wang, and M. Yang, “Multiple attention Siamese
network for high-resolution image change detection,” IEEE Trans.
Geosci. Remote Sens., vol. 60, 2021.

[43] G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, J. L. Rojo-Alvarez,
and M. Martinez-Ramon, “Kernel-based framework for multitemporal
and multisource remote sensing data classification and change detec-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 46, no. 6, pp. 1822–1835,
Jun. 2008.

[44] H. Chen, F. Pu, R. Yang, R. Tang, and X. Xu, “RDP-net: Region detail
preserving network for change detection,” IEEE Trans. Geosci. Remote
Sens., vol. 60, 2022, Art. no. 5635010.

[45] D. M. W. Powers, “Evaluation: From precision, recall and
F-measure to ROC, informedness, markedness and correlation,”
2020, arXiv:2010.16061.

[46] S. H. Khan, X. He, F. Porikli, and M. Bennamoun, “Forest change
detection in incomplete satellite images with deep neural networks,”
IEEE Trans. Geosci. Remote Sens., vol. 55, no. 9, pp. 5407–5423,
Sep. 2017.

[47] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A densely connected
Siamese network for change detection of VHR images,” IEEE Geosci.
Remote Sens. Lett., vol. 19, pp. 1–5, 2021.

[48] M. Lin, G. Yang, and H. Zhang, “Transition is a process: Pair-to-
video change detection networks for very high resolution remote sensing
images,” IEEE Trans. Image Process., vol. 32, pp. 57–71, 2022.

Teng Huang received the Ph.D. degree in computer
science from Beihang University, Beijing, China,
in 2019.

Currently, he is working at the Institute of
Artificial Intelligence and Blockchain, Guangzhou
University, Guangzhou, China. His research interests
include computer vision, RS, and blockchain.

Yile Hong received the B.S. degree from Huizhou
University, Huizhou, China, in 2022. He is currently
pursuing the master’s degree with Guangzhou Uni-
versity, Guangzhou, China.

His research areas of interest span computer
vision, remote sensing and smart contract.

Yan Pang (Member, IEEE) received the Ph.D.
degree from the University of Colorado, Denver, CO,
USA, in 2021.

From April 2021 to May 2022, he was a Machine
Learning Scientist at Moffett AI, Los Altos, CA,
USA. From August 2018 to May 2021, he was an
Instructor with the Department of Electrical Engi-
neering, University of Colorado Denver, and the
Department of Electrical Engineering Technology,
Metropolitan State University of Denver, Denver. His
research interests span machine learning, computer

vision, and efficient deep learning.



5502612 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Jiaming Liang received the B.S. degree from Fos-
han University, Foshan, China, in 2021. He is cur-
rently pursuing the master’s degree with Guangzhou
University, Guangzhou, China.

His research areas of interest span computer
vision, remote sensing, and medical image analysis.
As a master’s student, he focuses on advancing the
field through innovative research and applications,
leveraging his background in electronic technology
and a keen interest in the computer vision domain.

Jie Hong received the B.S. degree from Nanjing
Institute of Technology, Nanjing, China, in 2021.
He is currently pursuing the master’s degree with
Guangzhou University, Guangzhou, China.

His research areas of interest span computer
vision, remote sensing, and medical image analysis.

Lin Huang is a Professor with the Metropoli-
tan State University of Denver, Denver, CO, USA.
Her research interests include the areas of biomet-
rics, pattern recognition, signal processing, computer
vision, machine learning, embedded system design,
and VLSI.

Dr. Huang has been an Active Member of Interna-
tional Conference on Machine Learning and Com-
puting (ICMLC) as a Conference Chair/Keynote
Speaker/Session Chair, since 2011. She is a Program
Chair of the International Conference on Signal

Processing (ICOSP 2023 & 2024). She has been an Editor Board Member of
several international journals, for example, she has been the Editor-in-Chief
of the International Journal of Machine Learning and Computing (IJMLC),
since 2012. And she has been reviewing papers on regular basis for some
conferences and journals since 2008.

Yuan Zhang received the B.S., M.S., and Ph.D.
degrees from Beijing University of Aeronautics and
Astronautics, Beijing, China, in 2004, 2008, and
2017, respectively.

He was a joint Ph.D. Student with German
Aerospace Center, Cologne, Germany, and the Tech-
nical University of Munich, Munich, Germany,
from 2015 to 2016. He is an Associate Professor
with the North China University of Technology,
Beijing, China. His main research direction is syn-
thetic aperture radar (SAR) imaging.

Yan Jia received the double M.S. degree in telecom-
munications engineering and computer application
technology from Politecnico di Torino, Turin, Italy,
and Henan Polytechnic University, Jiaozuo, China,
in 2013, and the Ph.D. degree in electronics engi-
neering from Politecnico di Torino in 2017.

Now she is working with Nanjing University of
Posts and Telecommunications. In 2013, she was
with the Department of Electronics and Telecom-
munications, Politecnico di Torino, where she
performed research on GNSS system construction

and GNSS antenna analysis. In 2014, she worked with the SMAT project,
mainly focusing on the retrieval of soil moisture and vegetation biomass
content by GNSS-R. Her research interests include microwave remote sensing,
soil moisture retrieval, and Global Navigation Satellite System Reflectometry
(GNSS-R) applications to land remote sensing and antenna design.

Patrizia Savi (Senior Member, IEEE) received the
Laurea degree in electronic engineering from the
Politecnico di Torino, Turin, Italy, in 1985.

In 1986, she was a Consultant with Alenia, Caselle
Torinese, Italy, where she conducted research on
the analysis and design of dielectric radomes.
From 1987 to 1998, she was a Researcher with
Italian National Research Council, Rome, Italy.


