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Abstract— Modern power systems are characterized by fast
dynamics, due to the massive presence of power electronics-
based converters. In this scenario, the present article proposes
an approach for measuring synchrophasor, frequency, and rate
of change in frequency (ROCOF) that allows to effectively cope
with abrupt transients. The method is based on Taylor–Fourier
models, which typically consider an observation interval centered
on the reporting instant. In this article, the Taylor expansion is
performed on asymmetric windows, which look either at the left
or at the right of the measurement instant. A reconstruction
algorithm enables a seamless blend between left and right
estimates that, while preserving accuracy during steady-state
or slowly varying conditions, leads to an exemplary behavior
in amplitude and phase step tests, also in the presence of
wideband noise. In particular, an M-class compliant estima-
tor is designed to highlight the potentialities of the proposed
approach. Zero synchrophasor, frequency, and ROCOF response
times are obtained, since steady-state accuracy limits are never
exceeded in the presence of step variations. From a differ-
ent point of view, the proposed technique does not return
invalid estimates, thus it is capable of also tracking abrupt
transitions.

Index Terms— Amplitude step, phase step, phasor measure-
ment unit (PMU), response time (RT), Taylor–Fourier (TF)
expansion, TF multifrequency (TFM).
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I. INTRODUCTION

IN RECENT years, power systems are experiencing a rapid
and significant transformation due to the integration of

renewable energy sources [1]. Such resources are typically
connected via dedicated power converters that do not con-
tribute to the overall system inertia [2]. The consequence
is that power systems are more prone to highly dynamic
conditions, as proven by the recent contingencies occurred in
California [3] and Australia [4].

In this context, a distributed measurement infrastructure is
the backbone of any monitoring and control application [5],
[6]. Phasor measurement units (PMUs) represent a promis-
ing solution, thanks to their capability of providing accurate
estimates with update rates in the order of tens of frames
per second (fps). In this regard, the reference standard—
IEC/IEEE 60255-118-1, briefly PMU Std [7]—introduces two
performance classes (P and M) and the corresponding require-
ments in terms of estimation accuracy, response time (RT), and
reporting latency.

It is worth noting that the PMU Std was originally conceived
for transmission systems networks, characterized by slowly
changing operating conditions and low waveform distortion.
In accordance with this assumption, the PMU Std prescribes
accuracy requirements that are significantly relaxed in the
presence of dynamics or transients.

The new operating scenario, though, is pushing for the
development of enhanced PMUs, capable of optimizing at
the same time estimation accuracy, reporting latency and RT.
Examples of different approaches and research directions can
be found, for instance, in [8], [9], [10], and [11].

A still open issue is represented by PMU response to step
changes in magnitude and phase [12] that can be interpreted as
sudden transitions between two steady-state conditions. Such
discontinuities can be hardly represented with slowly modu-
lated sinusoidal signal models, which are those traditionally
used in many PMUs [13]. A possible solution consists in
applying a step detection technique and adapting the esti-
mation algorithm accordingly [14]. This approach was also
adopted in [15] to switch between a P-class and an M-class
measurement channel and in [16] to define an algorithm that
is simultaneously compliant with classes P and M.

By means of the Hilbert transform (HT), it is possible
to define the underlying analytic signal and check either its
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envelope, like in [17] and [18] where reference step location
is intended for calibration purposes, or its spectrum [19].
An alternative solution relies on the use of dictionaries of
predefined set of waveforms, either inspired by the PMU
Std test conditions [20] or by suitably modified wavelet
functions [21].

However, both these solutions suffer from different short-
comings. The first one requires a precise and effective
method for the computation of the analytic signal associ-
ated with the considered window [22]. The second one is
computationally demanding (i.e., not easily implementable
in real-time applications) and depends on the dictionary
granularity [23].

For these reasons, in this article we focus on a promising
PMU estimation algorithm that, depending on the configura-
tion, has been proven to be compliant with P- and M-class
requirements, and we try to improve its performance during
fast transients. More precisely, we consider a Taylor–Fourier
multifrequency (TFM) model [24] that includes the funda-
mental component and its first four harmonic terms. This
solution represents an extension of the Taylor–Fourier filters
(TFFs) introduced in [25], where it was proposed to track
the fundamental component oscillations. By properly setting
the expansion degrees, a bank of TFFs can also be used to
promptly detect and classify fault events [26].

Instead of applying the TFM on the entire window, which
is symmetric with respect to the reporting instant, in [27]
the authors investigated the possibility of limiting the TFM
expansion only to a portion. Based on a simple yet effective
discontinuity detection algorithm, which allows for choosing
the best part (left-half, right-half, or full window) for the TFM
expansion, a P-class compliant algorithm was proposed with
the target of minimizing estimation errors during transients,
featuring zero phasor measurement RT during magnitude and
phase-angle steps as those prescribed by the PMU Std.

In this article, which is a technical extension of [27],
the algorithm is generalized to also address the design
of algorithms with better measurement and noise-rejection
performance, as those M-class compliant, which rely on
longer windows, usually resulting in slower step responses.
The main contribution is to provide, even for this scenario,
zero or quasi-zero RTs during abrupt changes, thanks to a
measurement-oriented fusion of the estimates obtained with
the left and right TFM expansions. The aim is to propose
a solution for synchrophasor, frequency, and rate of change
of frequency (ROCOF) measurements that is both accurate
in steady-state conditions and under slow dynamics, and
remarkably prompt to react to transients. It is important to
highlight that the proposal is intended to reduce the number
of “invalid” measurements, i.e., measurements affected by
large errors that must be discarded, since they may lead to
misleading results when used in any application. Indeed, many
methods, even though compliant with the PMU Std, give,
around abrupt transients, large intervals of inaccurate and
even nonmetrologically sound measured values, which can be
avoided or limited by adopting the presented idea.

This article is organized as follows. Section II presents the
main principles of TFM models for PMUs. In Section III,

we introduce the proposed method. Section IV shows the
performance of the proposed method and illustrates a qual-
itative and quantitative comparison with other state-of-art
methods. Finally, in Section V, we provide some closing
remarks.

II. TF MODELS FOR PMU ALGORITHMS

Let us consider an electric signal x(t) in an ac power
system having rated frequency f0, corresponding to the angu-
lar frequency ω0. Typically, whatever method is considered,
x(t) is assumed to be generated as the projection on the
real axis of a complex-valued function having slowly varying
magnitude (when compared to f0), whose angular speed in
the complex plane is close to ω0. In terms of equations, we
have

x(t) =
√

2ℜ
{

X̄0(t)e jω0t}
+ d(t) (1)

where X̄0(t) is the synchrophasor (overline denotes complex-
valued quantities), while frequency deviation and ROCOF are
obtained straightforwardly from the first- and second-order
derivatives of ̸ X̄0(t). The term d(t) embeds all the residual
signal contributions, e.g., wideband noise and other spectral
components; typically |d(t)| ≪ |X̄0(t)|.

An important class of estimation methods relies on a TF
model of the signal [25], [28]. Let us suppose that mea-
surements should be performed in t = tr , which is the
measurement or reporting instant. In this case, M = 2N +

1 samples in an observation window having length Tw = MTs

and centered on tr are expressed through the Taylor expansions
of the real and imaginary parts of the synchrophasor around
tr , truncated to the K0th degree. Using matrix notation, the
M-size vector of the samples (collected with sampling interval
Ts) is written as

x(tr ) =



x(tr + N Ts)
...

x(tr )
...

x(tr − N Ts)

 = B̄p̄(tr ) + r(tr ) (2)

having introduced the M-size residual vector r(tr ) and the
(2K0 + 2)-size vector of the model parameters

p̄(tr ) =
[
X̄ (0)

0 (tr ) · · · X̄ (K0)
0 (tr ) X (0)

0 (tr ) · · · X (K0)
0 (tr )

]⊺
(3)

where X̄ (k)
0 is the kth-order derivative of the synchrophasor

(and X̄ (0)
0 = X̄0), while underline indicates complex conjuga-

tion. All these parameters refer to the instant tr , even if from
here on it will often be omitted for the sake of brevity. The
M × (2K0 + 2) matrix B̄ can be partitioned as

B̄ =
[
8̄(ω0)A(K0) 8(ω0)A(K0)

]
(4)

where

8̄(ω) = diag
[
e jωN Ts · · · e− jωN Ts

]
e jωtr (5)
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is the M × M phase rotation matrix, while

A(K ) =

√
2

2



1 N Ts
(N Ts )

2

2 · · ·
(N Ts )

K

K !

...
...

...
...

1 0 0 0
...

...
...

...

1 −N Ts
(−N Ts )

2

2 · · ·
(−N Ts )

K

K !


(6)

is an M × (K + 1) matrix.
An estimate ˆp̄(tr ) of the TF model parameters can be

obtained by minimizing the Euclidean norm of the misfit,
namely, the deviation between the samples in the current time
window and their reconstructions obtained from the model.
If the number of parameters defining the TF model (namely,
2(K0 + 1)) is lower than M , the optimization problem can be
solved in the least squares (LS) sense by computing H̄ = B̄†,
with † denoting the Moore–Penrose inverse. The mth element
of ˆp̄ is obtained by convolving the samples with the mth row of
H̄, and thus, its elements correspond to the (complex-valued)
coefficients of an FIR filter, often known as TFF [25]. If
K0 ≥ 2, the estimates of the synchrophasor, frequency, and
ROCOF in tr can be obtained from the first three components
of ˆp̄(tr ), i.e., {

ˆ̄X (k)
0 }k∈{0,1,2}.

The quality of the estimates strongly depends on how well
the adopted TF model is able to match the actual signal in the
considered observation interval. In particular, the estimate is
exact if the signal in the observed time window belongs to the
subspace spanned by the selected TF model, thus implying that
x(tr ) can be expressed as a linear combination of the columns
of B̄.

However, in practical situations, the model is not exact,
and therefore, x(tr ) is outside the subspace generated by the
columns of B̄. Under these conditions, it is beneficial to favor
a smaller residual in the neighborhood of the measurement
instant tr , at the expense of a worse fitting near the edges
of the samples record. For this purpose, it is possible to
introduce a weighting vector w (see [29], [30] for TFFs,
and [31] for TFM, which is better discussed in what follows)
while minimizing the Euclidean norm of the weighted residual
rw(tr ) = Wr(tr ), with W = diag(w). From a mathematical
point of view, it corresponds to a weighted LS (WLS) problem,
i.e., a minimization of the residuals norm, which can be written
as

ˆp̄(tr ) = arg min
p̄

∥B̄wp̄ − xw(tr )∥ (7)

where

B̄w = WB̄ xw(tr ) = Wx(tr ). (8)

The solution of (7) results as

ˆp̄(tr ) = B̄†
wxw(tr ) = H̄wx(tr ) (9)

with H̄w defining a new bank of TFFs, generally having wider
passbands because of the introduction of weighting.

The above-described TFFs can also be designed starting
from a different reference frequency ω ̸= ω0 using seamlessly
(5), (6), and w to build a new B̄w(ω) and, as a consequence,

a new H̄w(ω) to solve the estimation problem. This results in
a frequency shift of both passband and zeros of TFFs.

When looking at (1), the presence of significant narrowband
components (such as harmonics) in the term d(t) generates
mismatch between the signal and TF model. Under these
conditions, the WLS solution (9) is not able to effectively
separate the signal from the disturbance subspace; the result
is that the obtained estimates are affected by the presence of
d(t), and thus, accuracy is degraded.

A possible solution to overcome this problem is enlarging
the signal model subspace to include the most relevant narrow-
band components, whose spectral content is located around
each frequency in the set {ωq}q∈{1,...,Q}. Their interference on
fundamental synchrophasor, frequency, and ROCOF estimates
is thus dramatically mitigated. From an implementation point
of view, thanks to the narrowband assumption, the signal
contribution coming from the generic qth disturbance can be
written through a Taylor expansion of the corresponding syn-
chrophasor around tr , truncated to the Kq th degree. This leads
to the so-called TFM models [24], which can be expressed in
the form (2), but now

p̄ =
[
p̄⊺

0 p̄⊺
1 · · · p̄⊺

Q

]⊺
(10)

with

p̄q =

[
X̄ (0)

q · · · X̄(Kq)
q X (0)

q · · · X(Kq)
q

]⊺

B̄ =
[
8̄(ω0)A(K0) 8(ω0)A(K0) · · · 8

(
ωQ

)
A

(
K Q

)]⊺
. (11)

The spectral components to be embedded in the signal model
(namely, its spectral support) can be either retrieved through
an iterative procedure or they can be included ex-ante. In this
respect, significant low-order harmonics are often present in
power system waveforms, and they may have notable impact
on the estimates. For this reason, the adopted TFM model
often considers components whose frequencies are the first
multiples of f0.

III. PROPOSED METHOD

PMU algorithms based on TFM models assume that the
time evolutions of the magnitude and phase angle of the fun-
damental term are smooth. Under this condition, given the
typical length of the observation window (bounded by the
maximum latency constraint), the fundamental component can
be accurately tracked with K0 typically equal to 2 or 3 (see,
for instance, [11], [16], [25]). As mentioned above, K0 ≥ 2 is
needed to compute the first- and second-order derivatives of
the phase angle. Higher expansion degrees are not generally
adopted: on one hand, measurement bandwidth is increased,
but on the other hand estimates become more prone to spec-
tral interference from both the narrowband components and
wideband noise. In some cases, this drawback can outweigh
the potential advantage.

During faults, switching, or in case of sudden load vari-
ations, voltage and current waveforms may exhibit an abrupt
transition between two different steady-state conditions, which
could be idealized as a step-like change in magnitude or
phase of the underlying phasor. To asses performance in the
presence of such events, the PMU Std prescribes compliance
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tests where the applied sinusoidal signal at nominal frequency
contains jumps either in amplitude or in phase; let us assume
that a step occurs in the time instant tstep. When tr < tstep,
an ideal PMU algorithm should return the synchrophasor
value corresponding to the steady-state before the step, zero
frequency deviation (with respect to the nominal value), and
zero ROCOF; when tr > tstep, the measured synchrophasor
should switch to the steady-state value after the step change,
while frequency deviation and ROCOF should remain zero.

In general, this does not happen with real-world PMU
algorithms: the relationship between input samples and mea-
surements is dynamic, hence it unavoidably slows down the
transition between the two steady-state conditions. For exam-
ple, in case of PMU methods based on FIR filtering, the
duration of the transition corresponds to the length of the
filter. The PMU Std quantifies this phenomenon in terms of
RT, defined as the duration of the time interval across the step
event where steady-state accuracy limits for synchrophasor,
frequency, and ROCOF measurements are violated.

A. Left and Right TF Estimates

It is immediately evident that a TFM model of the observed
samples does not represent an effective tool to deal with step
changes, just as a Taylor expansion struggles in approximating
discontinuities. As previously pointed out, improving respon-
siveness by enlarging the bandwidth of the TFFs (namely,
increasing the Taylor expansion degree or adopting proper
weights) is not a good choice. Therefore, different approaches
should be developed to enhance performance of TFM-based
PMU algorithms during step variations.

From a different point of view, the reporting instant splits
the 2N+1 sample window into two N+1 sample subwindows:
one located at the left and the other at the right of tr (both
of them include the sample in tr ). In the presence of a step
within the full window, if tr < tstep, the left subwindow does
not contain the step, and all its samples are related to the
steady-state condition before the step. Conversely, when tr >

tstep, the right subwindow does not include the step event, while
the corresponding samples are tied to the steady-state after the
step. Therefore, if one were able to perform measurements
using just the left subwindow for tr < tstep, while switching to
the right subwindow as tr exceeds tstep, it would be possible to
approach the ideal behavior in the presence of step changes.

The starting point of the idea is having available a method
that enables obtaining the measurements in tr by process-
ing just the samples in either the left or right subwindow.
A possible solution is adopting the TFM approach, but con-
sidering asymmetric expansions of the embedded components,
looking exclusively at the left or right of tr . Let us first define
the left and right subwindows xL(tr ) and xR(tr ), corresponding
to the last and first N + 1 components of xw(tr ), respectively.
The left and right TFM models can be written as

xS(tr ) = B̄Sp̄S(tr ) + rS(tr ) (12)

with S ∈ {L, R} while B̄L and B̄R correspond to the last and
first N +1 rows of B̄, respectively. p̄L(tr ) and p̄R(tr ) represent
the synchrophasors and their derivatives in the left and right
subwindows, respectively.

Let us also introduce the weighting vectors wL and wR
(and the corresponding diagonal matrices WS = diag (wS))
made of the last and first N + 1 components of w. Under the
usual assumptions, the estimates ˆp̄L(tr ) and ˆp̄R(tr ) of the syn-
chrophasors and their derivatives in tr computed, respectively,
from the left and right portions of the samples (which will be
often referred to as the left and right estimates) are obtained
with the WLS approach, hence minimizing the Euclidean norm
of rw,S(tr ) = WSrS(tr ). Their general expression is given by

ˆp̄S(tr ) = B̄†
w,Sxw,S(tr ) = H̄w,SxS(tr ) (13)

with B̄w,S = WSB̄S and xw,S(tr ) = WSxS(tr ).
From (13), two different banks of filters, represented by

the rows of H̄w,L and H̄w,R, for left and right estimations,
respectively, are found. It is interesting to note that H̄w,L
corresponds to causal filters, while H̄w,R defines purely non-
causal ones, with respect to tr . Through this complementarity,
it is guaranteed that one of the two sets of estimates (phasor,
frequency, and ROCOF) is free from artifacts due to the step.

B. Blending Left and Right Estimates

The next problem to be faced is how to exploit the esti-
mates computed in the left and right subwindows to achieve
exemplary responsiveness in the presence of fast dynamics,
without sacrificing disturbance rejection under slowly varying
conditions. In [27], the proposed PMU algorithm computes
the estimates obtained from three TFM models: one covering
the full observation window, the second considering the left
subwindow, and the third based on the right subwindow,
as explained in the previous Section III-A. Proper decision
rules enable returning the best estimate, according to the
peculiar operating condition, by processing the norms of the
left and right residuals. In the presence of slow dynamics,
both the residuals are either very small or extremely similar;
in this case, the method returns the results obtained from the
whole set of samples, which is the most robust with respect
to superimposed disturbances. Conversely, in the presence of
an abrupt transition in either the left or right subwindow, the
corresponding residual is considerably higher than the other;
the estimate associated with the smallest residual is returned.

As from the results reported in [27], the technique has
proven to be extremely effective, but such performance is
attained thanks to the careful tuning of two threshold values.
Such thresholds depend on several factors, including the
structure of the adopted TFM model, the noise and disturbance
level, and the minimum amplitude step that has to be detected.
To overcome this limitation, the target of the present article is
proposing a new method to blend the left and right estimates
into a unique value not affected by user-selected thresholds.
The basic ideas are summarized in what follows.

1) The returned estimate should rely more on ˆp̄L or ˆp̄R

according to their relative quality level;
2) If the quality of ˆp̄L and ˆp̄R is virtually identical, the

estimate should correspond to that obtained from a TFM
model fitted on the whole set of samples;

3) The transition between left, full, and right estimates
should be seamless.
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To reach this target, let us select a proper TFM model
and vector w, typically generated from a window function.
For a given vector of samples, the WLS estimates of the
synchrophasors and their derivatives (that is ˆp̄) are obtained
through (9), but adopting a new, dynamically adjusted vector
of weights wLR = wα ◦ w, where ◦ denotes the Hadamard
product, while

wα =

 αR1N

1
αL1N

 (14)

having introduced 1N as the size N column vector of ones.
The coefficients αL and αR appearing in (14) are

αL = min(1 − λ, 1)

αR = min(1 + λ, 1). (15)

Both αL and αR depend on a real-valued parameter λ ∈

[−1, 1], which should reflect the relative quality of the left
and right estimates. In this respect, λ = −1 means that it is
worth trusting exclusively the left estimate; in fact, in this case
αL = 1, αR = 0, hence the WLS solution obtained with the
weighting vector wLR corresponds to the left estimate given
by (13) with S = L. The opposite situation should result in
λ = 1: it implies αL = 0, αR = 1, hence ˆp̄ =

ˆp̄R. Finally,
if λ = 0, we have αL = αR = 1, so that wLR = w: in that
case, the usual WLS estimate computed from the whole set of
samples is obtained.

Having explained the foundation of the method, it is inter-
esting to derive the analytic expression of ˆp̄, thus investigating
its connection to ˆp̄L and ˆp̄R. Reminding the WLS solution (9)
with the newly defined weighting vector wLR, introducing H

as the conjugate transpose operator, it requires computing

ˆp̄(tr ) = H̄w,LRx(tr ) =
(
B̄H

wW2
αB̄w

)−1B̄H
wW2

αxw(tr ) (16)

where Wα = diag (wα), while B̄w and xw(tr ) are still given
by (8). H̄w,LR represents a bank of FIR filters, whose behavior
can be modified on the run by acting on the parameter λ. Let
us partition B̄w and xw(tr ) as

B̄w =

 B̄w,R-C
b̄⊺

w,C
B̄w,L-C

 xw(tr ) =

 xw,R-C(tr )
xw,C(tr )

xw,L-C(tr )

 (17)

b̄⊺
w,C = B̄w[N+1, ∗] is the central row of B̄w, while B̄w,R-C and

B̄w,L-C contain its first and last N rows, respectively. Similarly,
xw,C(tr ) is the central element of xw(tr ), while xw,R-C(tr )
and xw,L-C(tr ) are made of the first and last N components.
Substituting (17) into (16) allows obtaining

ˆp̄(tr ) =
(
α2

LḠw,L-C + Ḡw,C + α2
RḠw,R-C

)−1

×
(
α2

LB̄H
w,L-Cxw,L-C + bw,Cxw,C + α2

RB̄H
w,R-Cxw,R-C

)
(18)

having defined the matrices Ḡw,S-C = B̄H
w,S-CB̄w,S-C and

Ḡw,C = bw,Cb̄⊺
w,C.

It is worth noting that B̄w,R-C and B̄w,L-C can be, respec-
tively, obtained by removing the last row from B̄w,R and the

first row from B̄w,L, as defined in Section III-A. Manipulat-
ing (18) while using (13), we obtain

ˆp̄(tr ) =
(
α2

LḠw,L +
(
1 − α2

L − α2
R

)
Ḡw,C + α2

RḠw,R
)−1

×
(
α2

LḠw,L
ˆp̄L +

(
1 − α2

L − α2
R

)
bw,Cxw,C + α2

RḠw,R
ˆp̄R

)
(19)

with Ḡw,S = B̄H
w,SB̄w,S . According to the previous equation,

ˆp̄(tr ) can be computed as a linear combination of the estimates
obtained from the left and right subwindows. A correction
related with the central sample xw,C is also present, since it
corresponds to the overlap between xw,L(tr ) and xw,R(tr ) that
have been processed to obtain ˆp̄L and ˆp̄R.

The last aspect to be discussed is the definition of the coef-
ficient λ, which should affect the balance between the left and
right estimates on the basis of their relative trustworthiness.
In particular, it should dramatically reduce the weight of a
subwindow as long as it is likely to include an abrupt transient.
Such a fast transition is clearly well outside the TFM model
subspace: this results in a notable increase in the Euclidean
norm of the corresponding weighted residual, which is the
cost function minimized by the WLS problem. ∥rw,L∥ and
∥rw,R∥ could thus be considered as inversely proportional to
the quality level of the corresponding estimates. It is therefore
reasonable to choose αL and αR, namely, the scaling of the
weights of the samples in the left and right subwindows,
so that they are inversely proportional to ∥rw,L∥ and ∥rw,R∥.
According to this choice, using (15), we have

λ =


−1 +

∥rw,L∥

∥rw,R∥
if ∥rw,R∥ ≥ ∥rw,L∥

1 −
∥rw,R∥

∥rw,L∥
if ∥rw,R∥ < ∥rw,L∥.

(20)

Summarizing, once the TFM model (thus matrix B̄) and the
weighting vector w are defined, the steps required to obtain
synchrophasor, frequency, and ROCOF estimates from x(tr ) by
adopting the proposed method, called TFMWRLR (TFM with
weighted reconstruction from the left and right estimates), are
the following.

1) Apply w to x(tr ), obtain ˆp̄L(tr ), ˆp̄R(tr ) with (13).
2) Evaluate the norms of the left and right residuals,

which enable obtaining λ (i.e., also αL and αR) and
thus computing ˆp̄(tr ) from (19).

3) Synchrophasor, frequency, and ROCOF estimates in the
measurement instant tr are finally derived from the first
three components of ˆp̄(tr ) (see [25]).

These stages are also schematically summarized by means
of the flowchart shown in Fig. 1. For the sake of clarity, the
recombined estimate ˆp̄ is shown in yellow, while quantities
referring to the left or right subwindow are represented in
blue and green, respectively. From now on, these colors will
be used.

One important novelty of the proposed method is that it
does no longer rely on thresholds to choose between the
left and right estimates. Now a merging procedure based on
weighting is adopted, without a dedicated step detection stage.
A minimum residual threshold might be used to address clean
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Fig. 1. Flowchart of the proposed TFMWRLR algorithm.

Fig. 2. Weight coefficients (components of wLR) parameterized by
−1 ≤ λ ≤ 0.

signals as in [27] (if ∥rw,R∥ and ∥rw,L∥ are very small, λ is
ill-defined) but this becomes irrelevant as soon as wideband
noise, even very low, is present.

IV. TEST RESULTS

The proposed method TFMWRLR has been implemented in
MATLAB environment considering f0 = 50 Hz, adopting
Tw = 180 ms + Ts . This corresponds to a window of about
nine nominal cycles (and thus left and right half windows of
about 4.5 cycles), while keeping an odd number of samples
according to the assumption of Sections II and III. The target
reporting rate (RR) is 50 fps and this value is used for setting
the limits in terms of PMU pass-bandwidth and standard
requirements. A third-degree expansion has been adopted for
the fundamental term, hence K0 = 3. Like in [27], harmonics
up to the fourth order have been included in the TFM model
using first-degree expansions (i.e., Kq = 1, q ∈ {1, 2, 3}), and
thus higher order harmonics are not part of it regardless their
possible presence in the signals. The reason for this choice
is that, thanks to the frequency separation and the decaying
sidelobes of the filters, they produce weak interference with
the fundamental estimates. Different windows can be chosen,
but an optimization of window weights is beyond the scope
of this article. In the following tests, vector w is generated as
the square root of the Hamming window.

Fig. 2 shows, for −1 ≤ λ ≤ 0, the resulting values of
the weight coefficients applied to the samples, namely, the
elements of vector wLR. Opposite (positive) values of λ would
have resulted in mirrored weights with respect to sample index
n = 0.

Having defined the TFM model, for a given value of λ it
is possible to compute the frequency responses of the FIR

Fig. 3. Magnitude response of the family of filters that enable estimating
X̄0 parameterized by −1 ≤ λ ≤ 0.

filters defined by the rows of matrix H̄w,LR. In this respect,
Fig. 3 shows the magnitude response of the filter that allows
extracting the synchrophasor for −1 ≤ λ ≤ 0 (the shape
is not affected by the sign of λ). Amplitude is unitary at
the reference fundamental frequency, while multiple zeros are
present at the harmonic frequencies included into the model.
It is worth highlighting that as |λ| increases, a significant rise
of the sidelobes occurs. This results in higher sensitivity to
wideband disturbances, hence it has key importance that λ is
close to zero, except in the presence of abrupt transients.

The reference frequency of the TFM model is updated
according to the previous frequency measurement using a
coarse 1 Hz grid to address large frequency deviations as
in [16], [32]. This means that when frequency undergoes
strong variations with respect to its rated value, like in
off-nominal frequency and ramp tests, a few TFM model
transitions can occur. Being them based on precomputed
filters, they do not affect computational burden.

To reduce the slight fluctuations that can occur in noisy
conditions, the value of |λ| can be rounded to 1, e.g., when
|λ| > 0.86 (i.e., when a 2 % ratio among left and right, or vice
versa, residual energies is obtained) at run time.

It is important to highlight that the specific method config-
uration is mainly considered here as an example of settings
that allow the solution found using the TFM model on the
full window to be compliant with class M requirements of
the PMU Std. The parameters (expansion degrees, window
length, included components, weighing, etc.) arise from a
tradeoff between different needs (harmonics or interharmonic
rejection, dynamics tracking, etc.), and thus different settings
allow compliance.

Moreover, the proposed approach can also be combined with
other techniques, in particular those based on an adaptive TFM
model for canceling narrowband interferers [24], [31]: in this
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TABLE I
WORST CASE ERRORS FOR M-CLASS STEADY-STATE AND DYNAMIC COMPLIANCE TESTS (TFM AND TFMWRLR ALGORITHMS)

case, M-class compliance can be achieved with lower latency.
However, these solutions have not been considered here for
the sake of a more concise explanation. In this respect, there
is no presumption to reach “optimal” performance, but rather
to clearly illustrate the potentialities of the proposal based
on merging left and right TF expansions. From a different
point of view, it is very significant to implement the method
starting from a rather long TFM model, typically implying
slow responsiveness.

A. Steady-State and Dynamic Tests
To validate the proposed method, its performance has been

characterized over the entire test set for M-class compliance
prescribed by the PMU Std. The results are compared with
those achieved by the conventional TFM approach. If not
otherwise specified, the test waveforms have 10 s overall
duration and estimates have been computed sample by sample.
This measurement rate has been used only for testing purposes
since, for each condition, this yields a statistically relevant
sample of phasor, frequency and ROCOF measurements. The
results are thus more representative and define a conservative
scenario in terms of errors. Indeed, this also allows for con-
sidering the dependence on different combinations of signal
parameters (i.e., frequency and initial phase). Nevertheless,
it is important to note that the algorithm is intended to operate
with an RR of 50 fps, and this value is adopted when looking
at the PMU Std limits. For step tests, in particular, the sample-
by-sample approach allows a better excitation of the algorithm
and a finer description of the step response with respect to the
usual PMU testing procedure.

For each test, performance is assessed in terms of ampli-
tude error (AE), phase error (PE), total vector error (TVE),
frequency error (FE), and ROCOF error (RFE). In this regard,
Table I reports the worst case values in all the static and
dynamic compliance tests and, when applicable, it com-
pares them against the corresponding PMU Std requirements.
To account for the measurement noise introduced by the
acquisition process, if not explicitly mentioned, error indexes
are obtained in the presence of additive white uniform noise
with 80-dB signal-to-noise ratio (SNR).

Considering all the test conditions, the proposed method
proves to be fully M-class compliant. In the static tests,
it provides virtually the same results as TFM, which are
thus not reported in Table I. This proves the validity and

robustness of the method. It is important to highlight that in
such conditions, the left and right estimates are combined with
similar weights, and thus it is like computing the expansion
on the entire window. Very low errors are achieved both
under off-nominal frequency conditions (thanks to the adaptive
reference frequency of the TFM model) and in the harmonic
distortion test. In that case, the highest error occurs in the
presence of the 5th-order harmonic, namely, the lowest that has
not been embedded in the signal model. Worst performance
is obtained in the out-of-band test. This result derives directly
from the selected structure for the TFM model, which only
includes the first four harmonics, and thus, it does not account
for possible interharmonics. The uncompensated effect of the
interharmonics causes a nonnegligible error, particularly in
terms of FE and RFE, but it still remains within class M
requirements.

Considering dynamic conditions, the TFMWRLR method still
reconstructs almost exactly the TFM estimate (i.e., λ is always
close to zero), thus achieving the same errors (not reported
in Table I). All the maximum errors are largely within the
corresponding requirements, thanks to the inherently dynamic
model of the fundamental component embedded in the TFM
expansion. This is particularly effective for modulated signals,
while during frequency ramp tests (from 45 to 55 Hz or vice
versa) the frequency tuning also comes into play for keeping
the errors low. As previously mentioned, the change in the
TFM reference frequency does not impact the computational
burden.

The next step is analyzing the impact on the proposed
algorithm of different noise levels and sampling rates under
nominal conditions. Let us suppose that samples are affected
by additive, independent noise having variance σ 2

≪ |X̄0|
2.

For given values of the parameters λ and length Tw, it is
possible to prove that for M large enough, the estimation
errors induced by superimposed noise have Gaussian distri-
butions, whose variances are proportional to σ 2 and inversely
proportional to M . Moreover, it is interesting to stress that
∥rw,L∥

2 and ∥rw,R∥
2 are purely due to noise: therefore, remind-

ing (20), λ approaches zero. For this very reason, noise
rejection of the TFMWRLR algorithm is expected to be virtually
identical to that of the conventional TFM method.

These considerations are fully confirmed by the simulation
results. Table II reports the maximum (Max) and root mean
square (rms) values of TVE, FE, and RFE obtained with TFM
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Fig. 4. Maximum TVE for TFM and TFMWRLR algorithms with different
SNRs and sampling frequencies.

TABLE II
MAXIMUM AND RMS ERRORS FOR DIFFERENT SNRS IN NOMINAL

CONDITIONS (TFM AND TFMWRLR ALGORITHMS)

and TFMWRLR methods (values are identical), which exhibit a
linear increase with noise variance. Furthermore, Fig. 4 shows
the maximum TVE achieved by both TFMWRLR and TFM
as a function of the SNR for different sampling frequencies.
As expected, the TVE has a linear trend in the log–log plot,
being it proportional to the noise standard deviation. Moreover,
the graph shows that as the sampling rate increases, the impact
of SNR on TVE reduces proportionally to (Ts)

1/2.

B. Amplitude and Phase Step Tests
As previously discussed, the main advantage of the pro-

posed method consists in its capability of minimizing the
estimation errors resulting from filter dynamics triggered by
abrupt transients. To prove that, we perform the step change
tests of the PMU Std both without and with additive noise. The
first case enables verifying the validity of the mathematical
treatise under ideal conditions. The second case assesses
the robustness of the proposed method in the presence of
wideband disturbances, other than evaluating possible degra-
dation of the equivalent noise bandwidth introduced by the
merging process. Tests have been carried out with both positive
and negative steps; since the obtained results and trends are
virtually identical, the analysis will be limited to positive steps.

First, the 10 % amplitude step under noiseless conditions is
considered. In this case, the TVE of the conventional TFM
implementation reaches 5 % with the RT exceeding 42.51 ms.
Conversely, TVE values are negligible if the TFMWRLR
approach is adopted, resulting in zero RT since the 1 % steady-
state limit is never reached. The parameter λ initially starts
from small values, and thus, estimation is performed on the
full window such as in the classic TFM approach. However,
its value rapidly decreases to −1 as long as the step enters in
the right half window (recombination discards automatically

Fig. 5. Phase step test in noiseless conditions. (a) Time evolution of TVE for
TFM (solid red), TFMWRLR (dash-dotted yellow), TFMR (dash-dotted green),
and TFML (dash-dotted blue) algorithms. (b) Time evolution of λ.

this part), jumps to 1 when the step moves to the left part
(measurements fully rely on the right half window) and then
it decreases again to zero when the step leaves also the
left side of the window. Similar conclusions can be drawn
when looking at the results in terms of FE and RFE, with
the TFM algorithm reaching peaks that exceed 20 mHz and
0.55 Hz/s, respectively, while the corresponding RTs are about
95 and 138 ms. Conversely, the TFMWRLR technique ensures
negligible FE and RFE, therefore zero RTs also for frequency
and ROCOF measurements.

The TFMWRLR method reaches exemplary performance also
in the presence of the 10◦ phase step, with negligible TVE, FE,
and RFE values, corresponding to zero RTs. In this respect,
the upper subplot of Fig. 5 reports the time evolution of the
TVE for both the considered algorithms and for the estimates
purely obtained from the left and right subwindows (TFML and
TFMR), respectively, with the transient occurring in t = 1 s.
The maximum TVE is well above 8 % for the TFM technique,
with an RT of nearly 50 ms; it is worth noting that the plot
shows local maxima that are not negligible with respect to
the steady-state limit, located about 45 ms before and after the
step instant. The TVEs of the TFMR and TFML allow a better
understanding of the benefits obtained recombining by means
of appropriate weights the results of the left and right TF
expansions. The perfectly mirrored TFMR and TFML curves
exhibit almost zero TVE in the time intervals after and before
the step instant, respectively, a maximum TVE of about 18 %
and some smaller local maxima in the mirrored intervals. Thus,
they have almost ideal behavior when their contribution to the
merged estimate is dominant and vice versa.

In addition, the lower subplot of Fig. 5 shows the time
evolution of λ, which blends the results of the left and right
expansions in the TFMWRLR method. The behavior is similar
to that described for the amplitude step, with λ close to 0 as
the step is not within the processed time interval. Conversely,
when the step occurrence enters the right side of the window,
λ is nearly −1, meaning that the results of the TFMWRLR are
practically the same of the left expansion. Conversely, when
the occurrence of the step enters the left side of the window, λ
is close to 1, and thus, the results of TFMWRLR are practically
the same as those of the right expansion. In this way, it is
possible to keep the TVE way below the steady-state limit.
Conversely, the classic TFM results in extremely high peaks
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Fig. 6. Amplitude step test with 80-dB SNR. (a) Time evolution of FE
(semilog scale) for TFM (solid red) and TFMWRLR (dash-dotted yellow)
algorithms. (b) Time evolution of λ.

in term of FE and RFE values, above 600 mHz and 10 Hz/s,
with RTs longer than 170 ms.

As mentioned above, the previously described step tests
have been repeated with 80 dB SNR. In this respect, the
TFM method always relies on the full vector of the samples:
therefore, thanks to the averaging effect, estimates shall be
rather immune to noise. On the contrary, TFMWRLR may
discard N samples out of 2N + 1: this unavoidably increases
noise infiltration. In turn, it may jeopardize frequency and
ROCOF estimates, notably the most affected by noise since
the estimation algorithm is asked to compute derivatives. The
results confirm that, as expected, the performance achieved
with the TFM method is barely affected by noise, in terms
of both maximum errors and RTs. However, also the behavior
of the TFMWRLR method in the presence of step variations
has proven to be robust with respect to wideband noise.
In all the cases, TVE, FE, and RFE values remain very
small when compared with the corresponding steady-state
limits prescribed by the PMU Std. Therefore, zero RT is also
attained under these more demanding (and realistic) operating
conditions.

As an example, Fig. 6(a) shows the trend of the FEs of
both the methods, with an amplitude step occurring in t = 1 s.
It is possible to see that as the FE of the TFM method starts
to rise, we have a nonnegligible increase in that achieved by
the TFMWRLR technique. In this case, the relative weights of
the left and right subwindows are becoming very different,
hence the dynamically adjusted FIR filters have worse equiv-
alent noise bandwidth under these conditions. Nevertheless,
FE remains below 0.7 mHz. With respect to the noiseless case
in Fig. 5, it is worth noting how the lambda evolution (ee
Fig. 6(b)) presents, when the step is not inside the observation
window, a noisy trend (spanning from 0.08 to −0.07). In the
presence of step changes, λ shows a slightly less abrupt
transition when compared with the noiseless case. The reason
is that noise produces virtually identical additive contributions
to ∥rw,R∥

2 and ∥rw,L∥
2 (proportional to its variance) that

reduce |λ|. Nevertheless, the proposed method is still capable
of precisely detecting the step occurrence (within few samples)
and selecting the most suitable portion of the signal window.

Considering the phase step at 80 dB SNR, Fig. 7(a)
reports the time evolution of the RFEs obtained by the

Fig. 7. Phase step test with 80-dB SNR. (a) Time evolution of RFE (semilog
scale) for TFM (solid red) and TFMWRLR (dash-dotted yellow) algorithms.
(b) Time evolution of λ.

Fig. 8. Amplitude step test with 72-dB SNR, fs = 50 kHz. (a) Time evolu-
tion of RFE (semilog scale) for TFM (solid red) and TFMWRLR (dash-dotted
yellow) algorithms. (b) Time evolution of λ.

considered algorithms. The same behavior previously observed
in Fig. 6(a) here becomes more notable. ROCOF computation
is based on a second-order differentiation, thus being even
more sensitive to wideband noise. The increase in RFE that
occurs when the TFMWRLR method starts trusting only one
of the subwindows is evident, but its peak value remains
an order of magnitude below the steady-state limit, whereas
TFM strongly suffers step infiltration. When compared with
Fig. 6(b), in the presence of step changes, λ (see Fig. 7(b))
exhibits a smoother trend, but this does not affect the effec-
tiveness of TFMWRLR.

The robustness of the proposed algorithm has been assessed
through phase and amplitude steps with higher noise level.
In this respect, 72-dB SNR with fs = 50 kHz has been
considered, thus mimicking a 12-bit acquisition stage like,
e.g., in [33]. The results show that the RTs to amplitude and
phase step are virtually identical to those obtained in noiseless
conditions; in particular, the TFMWRLR method still features
zero RT. As an example, the higher subplot of Fig. 8 reports
the RFE achieved by TFM and TFMWRLR during an amplitude
step. The lower subplot of Fig. 8 shows the evolution of λ,
which is less sharp with respect to the previous amplitude
step case of Fig. 6, but this does not impact on the overall
performance.

The step tests with 80 dB SNR have been repeated when
the transition between the two steady-states has finite slope.
In particular, a fast but not nil transient duration is considered,
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TABLE III
RT OF TVE, FE, AND RFE FOR TFM AND TFMWRLR

IN LINEAR AMPLITUDE TRANSITIONS OF
DIFFERENT DURATIONS

where the quantity of interest (magnitude or phase angle)
linearly varies between pre- and post-transient values in 1t
milliseconds. Table III reports the RT obtained in repeated
tests with different 1t values. TVE RT is almost constant for
both TFM and TFMWRLR, corresponding to the value already
found with instantaneous step (1t = 0 ms in the table). Indeed,
TFMWRLR RT slightly increases since few measurements may
exceed the steady-state threshold limit (1t = 4 ms). This is
due to the reduced leverage of balancing in the middle of
the window, coupled with the decreased sensitivity of the
weights in the presence of slower transients. Anyway, there
is also the compensating effect that a TFM model better
represents a less steep transition and this justifies the zero
RT for 1t = 8 ms. As for FE and RFE, the behavior of the
two methods is opposite: while TFM reduces the RT when 1t
increases (the TFM model is closer to the signal dynamics),
TFMWRLR starts showing a less prompt reaction. Once again,
the steady-state error thresholds can be exceeded near the
transition, and this effect is magnified by a longer duration.
Obviously, the behaviors of TFM and TFMWRLR approaches
tend to converge for a long transient duration since, in the
presence of slow variations, their measurements are the same.
However, as indicated by Table III results, with 1t = 8 ms
the RTs of TFMWRLR are still more than seven times smaller
than those achieved by TFM for both FE and RFE.

As a final comment, it is worth mentioning that RT value is
strongly linked to the chosen threshold level, but, as it is patent
from Figs. 5–8, the overall quality of the measurements pro-
vided by TFMWRLR, when compared with a filtering algorithm
like TFM, can be even better than what emerges from the
mere indexes chosen by the PMU Std and this corresponds
to the aim of the proposal, i.e., guaranteeing many more
valid and accurate measurements notwithstanding transient
conditions.

C. Analysis of Computational Burden
When dealing with the conventional TFFs, the compu-

tational load corresponds mainly (excluding frequency and
ROCOF computation) to the application of the filter bank
needed to estimate the synchrophasor derivatives. The load is
thus O(M), since, considering the filters as precomputed, it is
due to the application of 3 complex filters to M samples (3M
pairs of multiplications because samples are real-valued) to
find the synchrophasor and its first two derivatives. The TFM
model defines the TFFs including different components in the
model (4 in the above tests), and thus, the computational cost
is the same as the classic TFF.

In the proposed method instead, the window is split into
two N + 1 = (M + 1)/2 sample segments, with one sample
overlap. Thus, applying the left and right filters has almost the
same cost as the usual TFFs: 3·((M + 1)/2)·2 = 3M +3 pairs
of multiplications, i.e., only three additional pairs, regardless
the value of M . The computation cost also includes that due
to (19), which is the estimates blending equation, namely,
weights computation and recombination. The weights depend
on λ, and thus, the cost is O(N ), because it is related to the
energy computation of the left and right residuals (see (14)
and (20)). Considering the main steps, there is a matrix
computation, a matrix inversion, a vector computation, and
a final matrix–vector multiplication.

The matrix inversion is applied to an Np×Np matrix (where
Np =

∑Q
q=0(2Kq +2) is the number of parameters in the TFM

model, i.e., in p̄). In the considered implementation, the matrix
is 20 × 20, and therefore, the inversion computational com-
plexity is O(1) since it does not depend on M but only on the
number Q of components in the model and their degrees Kq .
This is an advantage since the matrix inversion, which could
otherwise become burdensome, has indeed a limited impact if
the TFM does not include many components. The matrix to be
inverted is the weighted sum of the three precomputed matrices
Ḡw,S with S ∈ {L, C, R}, and thus, cost is O(1). It is indeed
interesting to note that only some rows of the inverse matrix
need to be obtained, since just three estimates are necessary to
compute phasor, frequency, and ROCOF of the fundamental
component. Finally, vector α2

LḠw,L
ˆp̄L+(1−α2

L−α2
R)bw,Cxw,C+

α2
RḠw,R

ˆp̄R in (19) requires again O(1), since it is the sum of
three matrix–vector multiplications depending only on Np and
not on M . Without considering any optimization, the number
of complex multiplications in this step is 2Np(2Np + 4) + 1.
Then 3 · Np complex multiplications are required for the final
matrix–vector multiplication (limiting the calculation of ˆp̄ to
the parameters of interest).

It is important to highlight that no optimization relying on
the symmetry of the matrices and the presence of conjugate
numbers is considered for the sake of brevity and to focus only
on the essential concepts. However, it is worth mentioning
that by trading computation for memory, it is also possible
to speed up the processing by precomputing and storing
the intermediate matrices corresponding to discretized values
of λ, thus avoiding any matrix inversion. From the above
considerations, it is clear that the proposed method has a
computational load comparable with that of TFFs and TFM.

Furthermore, to prove the feasibility of the method, the
execution times of the TFM and the TFMWRLR algorithms
have been measured, using MATLAB environment (version
R2022a) in a computer with Intel-Core i7-11370H at 3.30 GHz
and 16-GB RAM. Considering 50 000 measurements, average
processing times of 67.7 and 119.4 µs have been obtained,
respectively, hence guaranteeing every standard RR. It is
important to also highlight that in this case the symmetry of
the matrices and the presence of conjugate numbers have not
been exploited to reduce the computational complexity. For
this reason, the previous results are only illustrative since they
can be significantly improved by simplifying the algorithms
operations.
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D. Comparison Between RTs Achieved by State-of-Art
PMU Algorithms

To better quantify the advantage of the proposed approach,
we carried out a comparison between the RTs achieved by
several M-class PMU algorithms published in the scientific
literature, and by the reference M-class method proposed
by [7] (denoted as IEEE 60255-118-1:2018 M method in the
following description). All of them are configured for 50 or
60 fps RR and are also chosen as representative of different
classes of algorithms; some reach simultaneous P- and M-class
compliance, thanks to different expedients aimed at reducing
latency. They will be briefly introduced in the following1.

1) IREQ FIR-M Noncausal: In [34], noncausal and causal
versions of a bandpass FIR filter (a Taylor window
is used in the tests) with center frequency tuning are
proposed. The noncausal algorithm (obtained through
timestamp compensation) is designed to be M-class
compliant for synchrophasor estimation.

2) M-MW-FIR: The algorithm presented in [35] is based
on the interpolation of the components extracted with
two bandpass FIR filters designed starting from the
Morlet wavelet and centered to rated frequency.

3) PMU Algorithm P+M: The algorithm in [16],
as already mentioned in Section I, includes two TFFs
(with different degrees and lengths) and a detector
to switch between them to have simultaneous P- and
M-class compliance (except for RFE out-of-band limit
of [36], however removed in 2014 amendment and in
PMU Std [7]).

4) i-IpDFT P+M: This method, discussed in [8], is based
on an enhanced three-point interpolated DFT that com-
pensates the long-range leakage due to the negative
frequency image. Location and removal of possible out-
of-band components allow complying with both P- and
M-class requirements.

5) HT-IpDFT P+M: This method, proposed in [19], sim-
ilar to that in [8], is based on a three-point interpolated
DFT and iterative removal of possible components
below 150 Hz, but it processes the signal after HT
application, using an event detector to switch between
two HT filter outputs with different performance.

6) FiIpDFT P+M: The technique described in [33] can
be considered as an extension of the previous i-IpDFT
method [8]. It performs the measurements through
three-point interpolated DFT, combined with an itera-
tive estimation and cancellation of the interference due
to out-of-band components. It achieves simultaneous
P- and M-class compliance.

7) eIpD2FT M: The algorithm presented in [37] achieves
M-class compliance with a two-cycle observation inter-
val through preliminary detection of interferers via
ESPRIT, which are suppressed by including them into a
proper dynamic model of the signal.

8) Space Vector M: This M-class method, proposed
in [38], is based on the space vector (SV) transformation

1The adopted names are only indicative and are either those used in the
referenced paper or defined for presentation purposes.

TABLE IV
AMPLITUDE AND PHASE STEP RTS OF THE TVE FOR

DIFFERENT STATE-OF-ART ALGORITHMS

of the three-phase signal adopting a reference frame
that rotates at the nominal frequency. Positive sequence
synchrophasor, frequency, and ROCOF estimates are
obtained by filtering the magnitude and phase of the
SV signal.

The results of the comparison in terms of TVE RTs are
reported in Table IV. It is important to underline that there is
no pretense of completeness, since a comprehensive compar-
ison is out of the scope for this research paper. Nevertheless,
the reported results can help better frame the potentialities
of the proposed idea. Indeed, Table IV demonstrates the lack
of algorithms that allow zero RTs for TVE, which is exactly
the aim of the proposed method. Similar considerations arise
when looking at FE and RFE RTs (not reported here), but it
is worth noting that the SV M [38] algorithm achieves zero
RT for these quantities in the amplitude step test.

V. CONCLUSION

This article has introduced a new approach to synchronized
phasor, frequency, and ROCOF estimation that enables high
measurement accuracy also during abrupt variations. It com-
bines the advantages of TFM models in terms of dynamic
tracking and disturbance rejection, with the fast response
to step events brought by asymmetric TF expansions and
recombination.

The simulation results have shown that the proposed
approach opens many possibilities to define algorithms capable
of dealing with abrupt, unexpected transitions. In particular, its
variants can lead to the design of P-class compliant methods
like in [27] or M-class solutions as that illustrated here, with
remarkable performance in the presence of step changes. Zero
or quasi-zero RT can even be obtained under realistic noise
conditions and for noninstantaneous changes in the monitored
quantity. This makes the proposal very promising to reduce
the number of measurements labeled as “bad data” and thus
discarded in real-world applications, which is extremely useful
for wide area monitoring, protection, and control applications
in power systems.
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