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Adaptive Kalman Filter Based on Online ARW
Estimation for Compensating Low-Frequency

Error of MHD ARS
Yunhao Su , Junfeng Han , Caiwen Ma , Jianming Wu , Xuan Wang , Qinghua Zhu , and Jie Shen

Abstract— Magnetohydrodynamic angular rate sensor
(MHD ARS) can precisely detect angular vibration information
with a bandwidth of up to one kilohertz. However, due to
secondary flow and viscous force, it experiences performance
degradation when measuring low-frequency angular vibrations.
This article presents an adaptive Kalman filter that uses
online angular random walk (ARW) estimation to correct
for the low-frequency error of MHD ARS, where a
microelectromechanical system (MEMS) gyroscope is used
to measure low-frequency vibrations. The proposed algorithm
determines the signal frequency based on the ARW coefficients
and adjusts the measurement noise covariance to achieve
accurate fusion results. Thus, the method solves the problem
of frequency-dependent variation of the amplitude response of
the sensors in data fusion. Initially, the algorithm calculates the
ARW coefficient recursively utilizing the measurement signals
of both sensors. Then, the operational frequencies of both
sensors are determined by analyzing the correlation between the
ARW coefficient and frequency. Subsequently, in the Sage-Husa
adaptive Kalman filter (SHAKF), the Kalman gain matrix is
adjusted by modifying the measurement noise variances of
both sensor signals individually. Moreover, the stability of the
proposed algorithm is achieved by introducing an adaptive
matrix to constrain the measurement noise covariance estimation.
In the experiment, the fusion effects of single-frequency and
mixed-frequency signals are tested separately. The experimental
results show that for frequency variation and frequency mixing,
the proposed algorithm in this study significantly improves the
fusion results.

Index Terms— Angular random walk (ARW), magnetohydro-
dynamic angular rate sensor (MHD ARS), microelectromechani-
cal system (MEMS) gyroscope, Sage-Husa adaptive Kalman filter
(SHAKF), signal fusion.
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I. INTRODUCTION

IN DEEP space exploration, some projects require very
stable laser links, so the requirements for pointing and

aiming the laser beam are increasing. High-precision aiming is
essential for laser links in free-space laser communication [1]
and gravitational wave detection [2]. There are usually two
main factors that interfere with the aiming stabilization of
the laser link. The first is atmospheric turbulence [3], which
affects the density of the transmission medium of the laser
link and causes refraction of the laser. This phenomenon
occurs in the laser link between the ground-based terminal and
the on-orbit terminal. The second factor involves mechanical
vibrations that result from the various components of the satel-
lite platform during its operational phase, such as the harmonic
vibration produced by the solar panel or reaction wheel [4].
Typically, the amplitude of the high-frequency mechanical
vibration varies from a few to several tens of microradians.
The vibration frequency spectrum ranges from zero to several
hundred Hz. Mechanical vibrations can disrupt the pointing
position of the laser beam and negatively affect the stability
of the laser link.

The measured vibration information can be used for
feedforward compensation in the control system, effectively
suppressing laser jitter. At present, attitude sensors commonly
used on satellite platforms include sun sensors, gyroscopes,
and star trackers. These sensors typically operate within
frequency ranges of a few to tens of Hz [5]. The ability
of the optical system to actively suppress laser beam jitter
is limited by its inability to detect high-frequency micro-
vibrations. Magnetohydrodynamic angular rate sensor (MHD
ARS) has an operational bandwidth of kilohertz and mea-
surement accuracy on the order of nanoradians [6]. It is
also characterized by small size, lightweight, durability, and
no mechanical loss. MHD ARS has been applied to various
high-precision optical pointing and aiming systems, such as
the Lunar Laser Communication Terminal [7], [8] and the
Mars Laser Communication Terminal [9]. However, because
of secondary flow and viscous force, the response of MHD
ARS decreases in the low-frequency range (<2 Hz) [10].

Combining MHD ARS with a low-frequency attitude
sensor, such as a microelectromechanical system (MEMS)
gyroscope, is one method of compensating for its low-
frequency error. MEMS gyroscopes are small, lightweight,
and can meet the measurement of low-frequency and large-
magnitude vibration of satellite platforms. Therefore, it meets
the development direction of miniaturization and lightweight
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laser communication terminals. To achieve data fusion, new
methods are constantly being proposed. Iwata et al. [11] pro-
posed to obtain wide-bandwidth attitude information by fusing
the measurement signals from a star tracker, gyroscopes, and
a MHD angular displacement sensor on the Advanced Land
Observing Satellite using a Kalman filter. Usually, the classical
Kalman filter is a simple and feasible algorithm of signal
fusion. However, the statistical properties of its measurement
noise remain constant while the system model may be inaccu-
rate, resulting in error. Therefore, the classical Kalman filter
encounters challenges in signal fusion for complex multisig-
nals. Sun et al. [12] proposed a data fusion method based
on extended Kalman filtering for star trackers and MEMS
gyroscopes, which realizes the mutual compensation of the
accuracy of the two sensors. Liang et al. [13] proposed a nested
Kalman fusion-based method for data fusion of MEMS gyro-
scopes to optimize the Allan variance results. The Sage-Husa
adaptive Kalman filter (SHAKF) enables on-line updating of
the statistical properties of the noise by recursively calculating
the variances of both measurement and system noise [14].
However, it should be noted that satellite platforms have a
wide frequency range of vibration and sensors have different
measurement frequency ranges. The change in vibration fre-
quency will cause each sensor to produce different response
results, such as the attenuation of the response of the MHD
ARS at low frequencies and the MEMS gyroscope at high
frequencies. The system needs to adjust the filter according to
the change in the signal frequency to cope with the change in
the different measurement signals.

In this article, an adaptive Kalman filter based on online
angular random walk (ARW) estimation is proposed. First,
the algorithm utilizes the measurement signals to iteratively
calculate the ARW coefficients of both MHD ARS and MEMS
gyroscopes. Then, the frequency of the measurement signal is
determined by analyzing the relationship between the ARW
coefficient and frequency. Next, the main diagonal elements
of the measurement noise covariance matrix are modified,
respectively, to adjust the Kalman gain. This changes the
degree of trust that the filter places in the measurement signals
of both sensors, respectively. As a result, it will adjust the
operation of the SHAKF algorithm to ensure accuracy. Finally,
the introduction of an adaptive matrix for the measurement
noise covariance matrix estimation enhances the stability of
the proposed algorithm.

The low-frequency response attenuation of MHD ARS is
analyzed in Section II, the details of the proposed algorithm
are presented in Section III, the experimental results are pre-
sented in Section IV, and the effect of the proposed algorithm
and conclusion obtained from the experiment are summarized
in Section V.

II. MHD ARS LOW-FREQUENCY ERROR ANALYSIS

The basic principle of MHD ARS is shown in Fig. 1.
The conducting fluid fills the space between the inner and
outer tubes. The permanent magnet in the inner tube forms a
magnetic field B perpendicular to the sensitivity axis. When
the annular channel generates an angular rate v around the
sensitive axis, the conducting fluid will remain in place due

Fig. 1. Schematic of the principle of MHD ARS.

to the low friction between the tube surface and the fluid,
as well as the high inertia of the conducting fluid. In this case,
the conducting fluid generates a relative angular rate to the
magnetic field B. The conducting fluid incises the magnetic
flux, and the upper and lower electrodes generate an induced
electromotive force [15].

Assuming a constant density of the fluid and a uniform
magnetic field, the conducting fluid motion of the above
process satisfies the following equation [16]:

ρ

[
∂v

∂t
+ (v · ∇)v

]
= ρg − ∇ P +

1
µ

(B · ∇)B + µ f ∇
2v

∂ B
∂t

= ∇ × (v × B) +
1

µσ
∇

2 B

(1)

where v = (vr , vθ , vh) is the fluid velocity vector, in (r, θ, h).
r is the radial direction, h is the axial direction, and θ is the
circumferential direction. ρ is the conducting fluid density,
g is the gravity, P is the total pressure, µ is the magnetic
permeability, µ f is the dynamic viscosity coefficient, σ is an
electrical conductivity.

vθ≫vr∼O[0], vθ≫vh∼O[0], O means the two equations
in the same order of magnitude. Assume that vθ is linearly
dependent on r , the motion of the conducting fluid in that
direction can be simplified as

∂vθ

∂t
= −

σ B2
r uθ

ρ
+ η f

∂2vθ

∂h2 (2)

where σ is an electrical conductivity. uθ = vθ −v is the relative
velocity. η f = µ f

/
ρ is the kinematic viscosity coefficient.

The induced electromotive force E is proportional to the
integral of the difference between the fluid velocity and the
fluid channel velocity in the axial direction h. E can be
simplified as follows:

E(t) =
k
l

∫ l

0
uθdh (3)

where k is the ratio of the induced electromotive force E to
the relative velocity between the fluid and the channel and l
is the height of the annular channel.
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Fig. 2. Error extreme eM variation curve with frequency.

Assuming v = sin(ωt), ω = 2π f , f is the angular rate
frequency, then it can be calculated that E is

E(t) = K

[
ω2

ω2 +
(
π2η f / l2 + σ B2

r /ρ
)2 sin(ωt)

+
ω

(
π2η f / l2

+ σ B2
r /ρ

)
ω2 +

(
π2η f / l2 + σ B2

r /ρ
)2 cos(ωt)

]
(4)

where K = 8k/η f π
2 is the scale factor of the sensor.

The output error is expressed as follows:

e(t) =
1
K

E(t) − v(t) =
ω

(
π2η f / l2

+ σ B2
r /ρ

)
ω2 +

(
π2η f / l2 + σ B2

r /ρ
)2 cos(ωt)

−

(
π2η f / l2

+ σ B2
r /ρ

)2

ω2 +
(
π2η f / l2 + σ B2

r /ρ
)2 sin(ωt). (5)

The extreme eM is obtained by taking the derivative of the
error with respect to time t

eM(ω) =
π2η f / l2

+ σ B2
r /ρ√

ω2 +
(
π2η f / l2 + σ B2

r /ρ
)2

. (6)

Assuming Br = 0.036 T and using mercury as the con-
ducting fluid, then η f π

2
/

l2
+ σ B2

r

/
ρ≈ 0.1. The blue line in

Fig. 2 shows the trend of the eM with frequency. If Br =

0.1 T, as shown by the red line in Fig. 2, the low-frequency
performance becomes worse. The curves show that the extreme
eM of the output error increases as the frequency of the input
angular rate decreases.

III. IMPROVED ALGORITHM PRINCIPLE

A. Sage-Husa Adaptive Filter and Signal Fusion

The SHAKF consists of a mutually coupled Kalman filter
and the Sage-Husa noise estimator. The Kalman filter is a
linear minimum variance filter based on the original signal
characteristics, and the Sage-Husa noise estimator is a subop-
timal unbiased extremely large a posteriori estimator that can
estimate the noise statistics online [17].

The equations of state and measurement of both MHD ARS
and MEMS gyroscope can be expressed as follows:{

ẋ = Ax + Bx1 + δ

z = Hx + ε
(7)

where x1 is the true angular rate, δ is the system noise, and ε

is the measurement noise.
The steps of the SHAKF are as follows.
1) Update the state estimation

X̂ k,k−1 = AX̂ k−1 + Bx1. (8)

2) Update the state error covariance matrix estimation

Pk,k−1 = APk−1,k−1 AT
+ Q̂k . (9)

3) Calculate the Kalman gain

Kk = Pk,k−lHT(
HPk,k−1HT

+ R̂k
)−1

. (10)

4) Calculate the innovation covariance matrix

ek = Zk − HX̂ k,k−1 − rk . (11)

5) Update the state estimation

X̂ k = X̂ k,k−1 + Kkek . (12)

6) Update the error covariance

Pk = (I − KkH)Pk,k−1. (13)

7) Sage-Husa noise estimation

q̂k = (1 − dk)q̂k−1 + dk
(
X̂ k,k − AX̂ k−1,k−1

)
(14)

Q̂k = (1 − dk)Q̂k−1 + dk
(
KkekeT

k K T
k − APk−1,k−1 AT)

(15)

r̂ k = (1 − dk)r̂ k−1 + dk
(
Zk − HX̂ k,k−1

)
(16)

R̂k = (1 − dk)R̂k−1 + dk
(
ekeT

k − HPk,k−1HT)
(17)

where dk = (1−β)/(1−βk+1), β is the forgetting factor.
The state and measurement equations for MHD ARS and

MEMS gyroscope are as follows:{
Ẋ = AX + δ

Z = HX + ε
(18)

X =
[

x1 xgyro xMHD
]T

, Z =
[

zgyro zMHD
]T (19)

A=

 0 0 0
Bgyro Agyro 0
BMHD 0 AMHD

, H=
[

Hgyro HMHD
]T

.

(20)

In general, the sampling rate of MEMS gyroscope is lower
than that of MHD ARS, so the update sequence of SHAKF
can be shown in Fig. 3.
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Fig. 3. SHAKF update sequence.

B. Principle of Online Frequency Analysis
According to the linear system theory, ARW, bias instability

(BI), and angular rate random walk (ARRW), these three types
of noise can be described by the following model [18]:

yARW(k) = (N/1T ) · uARW(k) (21)

yBI(k) = (1 − β1T )yBI(k − 1) + β B
√

1T · uBI(k) (22)

yARRW(k) = yARRW(k − 1) + K
√

1T · uARRW(k) (23)

where uARW, uBI, and uARRW are the independent Gaussian
white noise.

Then state and measurement equations can be written as
follows:

z(k) =
[

1 1
]
×

[
yARRW(k)

yBI(k)

]
+

N
√

1T
· uARW(k). (24)

According to the results of the Allan variance, MHD ARS
contains two main types of random noise: ARW and BI [19].
After filtering out the BI using methods like de-averaging, the
noise primarily consists of the ARW characteristics. Based
on the properties of variance, the ARW coefficient N can be
expressed as follows:

N =
√

R · 1T (25)

where R is noise variance and 1T is sampling time.
The process of calculating Allan variance is equivalent to

different bandpass filters at different correlation times, and
therefore, can analyze different noise terms. The quantization
noise is uniformly distributed in the frequency band, so when
the sampling frequency is increased, the energy of the quan-
tization noise does not change, while the range of the noise
distribution in the frequency domain increases. This means
that the quantization noise decreases significantly when the
sampling rate is increased [18]. When the correlation time
τM is equal to the sampling period, the result of the Allan
variance estimator can be approximated as the variance of the
quantization noise at the current moment, and the quantization
noise term is reduced in this measurement variance

Rk ≈ σ̂ 2
k(τM) (26)

σ̂ 2
k(τ ) =

1
2(N − 1)

k∑
i=2

(
�̄i (τ ) − �̄i−1(τ )

)2
(27)

where �̄i (τ ) is a sample of the average angular rate.

In the SHAKF, only the shortest correlation time is calcu-
lated, that is, the correlation time of the Allan variance is the
sampling time. Then the Allan variance at the current moment
can be expressed as the following equation:

σ̂ 2
k(τ0) =

(
1 −

1
k − 1

)[
1

2(k − 2)

k−1∑
i=2

(Z i − Z i−1)
2

]

+
1

2(k − 1)
(Zk − Zk−1)

2. (28)

The update of the measurement noise variance can be
written in the following form [18]:

Rk =

(
1 −

1
k − 1

)
Rk−1 +

1
2(k − 1)

(Zk − Zk−1)
2. (29)

Therefore, the ARW coefficient Nk at the current moment
can be calculated recursively. The Nk is a physical quantity
that is related to the measurements at both the current and
historical moments

Nk =

(
1 −

1
k − 1

)
Nk−1 +

1T
2(k − 1)

(Zk − Zk−1)
2. (30)

The Allan variance is represented in the frequency domain
as

σ 2(τ ) = 4
∫

+∞

0
S�( f )

sin4(π f τ)

(π f τ)2 d( f ) (31)

where S�( f ) is the power spectral density of the signal. The
Allan variance is related to the statistical properties of the
stochastic process inherent in MHD ARS. In other words,
it is related to the power spectral density of the noise in the
measurement data of MHD ARS under stationary conditions.
If the angular rate is constant, the Allan variance remains
unchanged. However, when the angular rate varies, additional
power spectral components are induced, resulting in changes
to the Allan variance result.

When MHD ARS measures harmonic vibration, the angular
rate is v = 2aπ f · cos(2π f t), and a is the angular amplitude.
Equation (32) can be expressed in the following form:

Nk =

(
1 −

1
k − 1

)
Nk−1

+
1T aπ f

k − 1
{cos[2π f t] − cos[2π f (t − 1T )]}2. (32)
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Fig. 4. SHAKF flow based on online frequency analysis.

When the amplitude, current moment, and sampling time
are certain, if the angular rate frequency f is larger, the value
of the second part will be larger. Therefore, in the SHAKF,
the iteration results of the Nk can be used to determine the
operational frequency.

In the proposed algorithm, the measurement noise covari-
ance matrix R̂k is modified according to the relationship
between the Nk and frequency. Since the update of the Nk

relies only on measurements, its recursive estimation and the
Sage-Husa noise estimator are uncoupled. This ensures the
reliability of determining frequency.

The output signals of MHD ARS and MEMS gyroscope
can be divided into three frequency bands by the variation
of the Nk . The performance of MHD ARS is attenuated
in the low-frequency range, so the filter must rely on the
MEMS gyroscope measurement signal. The filter uses a low-
noise, high-accuracy MHD ARS measurement signal in the
mid-frequency range where the frequency responses of the two
sensors overlap. The MEMS gyroscope is ineffective in the
high-frequency range, so the filter must trust the MHD ARS
measurement signal.

C. Adaptive Matrix for Measurement Noise Covariance

The update of the measurement noise variance estimation
has a significant impact on the performance of the SHAKF.
Adjustment of the measurement noise covariance matrix in
a change in the update of its estimate may reduce the
efficiency of the filter or even lead to divergence. If the

SHAKF is working well, the theoretical value of the innovation
covariance matrix satisfies the following equation:

Ck = E
[
eT

k ek
]

= HPk,k−1HT
+ R̂k . (33)

When the system and measurement noise are uncorrelated
Gaussian noise, the optimal estimate for the maximum like-
lihood of the innovation covariance matrix is given by the
following equation [20]:

Ĉk =
1
n

k∑
j= j0

(
Zk − HX̂ k,k−1

)
j

(
Zk − HX̂ k,k−1

)T
j (34)

where n is the sliding window, j0 = k − n + 1. The innova-
tion covariance matrix estimate and the theoretical value are
satisfied when the prediction results of the previous moment
deviates from the current observation

Ĉk ≥ HPk,k−1HT
+ R̂k . (35)

When adjusting the measurement noise covariance, the
adjustment should be limited based on the results of the state
estimation to ensure the stability of the filter. A possible
approach is to adjust the measurement noise covariance R̂k

and, if necessary, reduce the influence of the measurements
Zk on the filtering results by introducing an adaptive matrix.
The adaptive matrix Sk is introduced

R̃k = Sk R̂k (36)

Sk > R̃k
(
Ĉk − HPk,k−1HT)−1

. (37)
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TABLE I
EQUIPMENT LIST AND PARAMETERS OF THE EXPERIMENTAL PLATFORM

Fig. 5. Experimental platform.

To ensure that the Sk is a nonnegative diagonal matrix, the
Sk is set to be an adaptive matrix with main diagonal elements
greater than 1

Sk = max
[
1, αĈk/

(
HPk,k−1HT

+ R̂k
)]

(38)

where α < 1 is the regulating factor.
The complete algorithm flow is shown in Fig. 4. The

green frame contains the online frequency analysis method,
as described in the previous section, which uses the update
of the N 1,2

k to determine the frequency of both sensors,
where 1 represents MHD ARS and 2 represents MEMS
gyroscope. In this process, six flags are set, which are the
low-frequency flag f lag1,2

LF , the mid-frequency flag f lag1,2
MF,

and the high-frequency flag f lag1,2
HF .

When the value of the N 1,2
k satisfies [A1,2,B1,2), it is

determined that MHD ARS or MEMS gyroscope is operating
in the low-frequency band, and measurement noise variance
is adaptively set to the R1,2

LF allowing the measurement signal
from the MEMS gyroscope to be effectively utilized. The
f lag1,2

LF is set to 1, at the next moment, the R̂k is updated
only in the Sage-Husa noise estimator, as shown by the blue
frame in Fig. 4. The principle is the same for the other
two operational bands. Therefore, the filter can determine the
operational bands of both sensors at the next moment. The
ARW coefficients of both sensors are iterated independently,

ensuring that the filter can still determine the operational
frequency of each sensor when measuring mixed signals.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Platform

To verify the effectiveness of the proposed algorithm,
we use the angular vibration provided by the turntable to
simulate the narrow-band harmonic vibration of the satellite
platform. The experimental platform is shown in Fig. 5. Table I
provides information on the names and specific parameters of
the devices in the experimental platform.

As shown in Fig. 5, to avoid the interference of mechanical
vibrations in the environment, the turntable was mounted on an
air-floating stabilized platform. We mounted the MEMS gyro-
scope directly above the MHD ARS so that their sensitive axes
are parallel to ensure the consistency of the two measurements
of angular rate. The sampling rate of the MHD ARS is 20 kHz
and that of the MEMS gyroscope is 2 kHz. The algorithms
are executed using the digital signal processing (DSP) board,
and the data are obtained from the host computer.

B. Measurement Models of Sensors

In this work, we obtained the frequency response points of
both sensors using the single-point frequency sweep method.
The angular rate amplitude is 1◦/s. Due to the limitations of
the turntable, we were unable to acquire all response points
within the operational bandwidth of the MEMS gyroscope
and MHD ARS. Considering the frequency characteristics of
both sensors, it can be inferred that the MEMS gyroscope
functions as a low-pass filter while the MHD ARS operates
as a high-pass filter.

Their transfer functions can be expressed as the following
equation:

Ggyro =
as + b

cs2 + ds + e
, GMHD =

gs
ms2 + ns + o

. (39)

According to the frequency response points, the values of
the constants in the transfer functions can be determined,
where a = 154.537, b = 15.626, c = 5.2175, d = 148,
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Fig. 6. Frequency response curve of the sensors.

e = 15.444, g = 2200, m = 0.255, n = 2178, o = 33900. The
frequency response points and transfer functions frequency
response curves are shown in Fig. 6. The trends of the
transfer function frequency response curves coincide with the
frequency response points so that the transfer functions can be
converted into the form of a state equation, as in (20).

C. Online Frequency Analysis

In this work, to determine the relationship between the ARW
coefficients of the MHD ARS and the MEMS gyroscope with
respect to the angular rate frequency, we chose a frequency
range from 0.1 to 25 Hz with an angular rate amplitude of
1◦/s. The results are shown in Fig. 7.

The online estimation results of the ARW coefficients
for both sensors increase as the signal frequency increases.
Therefore, it is feasible to use ARW coefficient estimation to
determine the signal frequency.

D. Single-Frequency Signal Experiment

In this test, we chose three single frequencies: 0.5, 4,
and 10 Hz, with an angular rate amplitude of 1◦/s. Where
0.5 Hz is the operational frequency of the MEMS gyro-
scope; 4 Hz serves as the operational frequency for both
sensors; and 10 Hz represents the operational frequency of the
MHD ARS. The three frequencies cover the bands where the
amplitude response of both sensors is smooth and attenuated.

The fusion results of the proposed algorithm are displayed
in Figs. 8–10. The proposed algorithm trusts the MEMS gyro-
scope measurement signal more when measuring the 0.5 Hz
signal and reduces the utilization of the MHD ARS attenuation
measurement signal. However, due to the low sampling rate
and high noise of the MEMS gyroscope, there is a significant
error in the fused signal. From Figs. 9 and 10, it is obvious that
the proposed algorithm relies more on the measurement signals
of the MHD ARS, and the fusion results are smoother and
produce fewer errors. The fusion results of the three frequency
signals demonstrate that the proposed algorithm successfully
utilizes the online estimated ARW coefficient to determine the
frequency of the signal. The fusion results can be significantly
improved by adjusting the degree of trust that the filter places
in the measurement signal from both sensors.

Fig. 7. ARW coefficient online estimation results with frequency variation
curve.

Fig. 8. 0.5 Hz signal fusion results.

Fig. 9. 4 Hz signal fusion results.

To verify the effectiveness of the algorithm, we use the
SHAKF algorithm to compare the fusion results. First, when
measuring a 0.5 Hz signal, we optimize the SHAKF to an
accurate state of fusion result by modifying the measurement
noise variances of both sensors. Then we observe variations
in fusion results as the signal frequency increases.

Based on the results presented in Fig. 11, when the sig-
nal frequency increases to 4 Hz, the SHAKF fusion result
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Fig. 10. 10 Hz signal fusion results.

Fig. 11. Comparison of the 4 Hz signal fusion results. (a) Comparison of
fusion results. (b) Comparison of errors.

experiences a significant error, while the proposed algorithm
demonstrates convergence around 0◦/s.

Fig. 12(a) shows the process of updating the measurement
noise variances of both sensors. R1,1 and R2,2 are the diagonal
elements of the measurement noise covariance matrix for
the MEMS gyroscope and MHD ARS, respectively. Based
on the two ARW coefficient variations illustrated in Fig. 12(b),
the R1,1 is modified at 0.065 s, and the R2,2 is modified at
1 ms. As depicted in Fig. 12(a), the SHAKF algorithm trusts
the measurement signal of the MHD ARS measurement signal
close to the proposed algorithm. However, it still relies on the
MEMS gyroscope measurement signal, resulting in phase and
amplitude errors in the fused signal.

Relative to the SHAKF, the proposed algorithm has a
higher convergence result for R1,1 and a smaller convergence
result for R2,2. This indicates that the proposed algorithm
adaptively modifies the measurement noise covariance based
on the signal frequency, consequently adjusting the Kalman
gain. The proposed algorithm relies more on the MHD ARS
measurement signal and reduces the utilization of the MEMS
gyroscope attenuation measurement signal. The fusion result
for the 4 Hz signal is more accurate than the 0.5 Hz signal due
to the smaller measurement noise of the MHD ARS. Similarly,

Fig. 12. Update of the main diagonal elements of the measurement noise
covariance for the 4 Hz signal. (a) Measurement noise variance update curves.
(b) ARW coefficient update curves.

the fusion result for a 10 Hz signal is more accurate due to
such a setup of the proposed algorithm.

Table II demonstrates the fusion effects of the two algo-
rithms when the signal frequency varies. When the filter
converges, the results of the root mean square error (RMSE)
of the proposed algorithm are significantly smaller than those
of the SHAKF. The accuracy of the SHAKF algorithm is sig-
nificantly reduced by signal variation. The proposed algorithm
modifies the measurement noise covariance matrix based on
the ARW coefficients, which results in more adaptivity in
handling the frequency variations of the measured signals.

E. Mixed-Frequency Signal Experiment

We further validate the effectiveness of the proposed
algorithm using a mixed-frequency vibration signal. In the test,
the mixed vibration signal consists of 0.5 and 10 Hz signals.
These two frequencies cover the bands where the amplitude
response of the two sensors is normal and attenuated, respec-
tively, and give a good indication of how the algorithm works
in the face of attenuation of the response of the components of
the mixed signal. The angular amplitude of the 0.5 Hz signal
is 5.555 mrad, and that of the 10 Hz signal is 50 µrad. The
mixed signals resemble the narrow-band harmonic vibration
characteristics of satellite platforms.

The results depicted in Fig. 13 demonstrate a notable
attenuation of the response of the MHD ARS for the 0.5 Hz
signal, as well as a significant attenuation of the response of
the MEMS gyroscope for the 10 Hz signal accompanied by
significant noise. The black frame in Fig. 13 illustrates the
deviation of the fusion result (red line) from the turntable
motion (black line) in some areas. This is because, although
the MEMS gyroscope has a low-pass filter, it cannot eliminate
low-frequency noise, which leads to a noisy measurement
signal and impairs the accuracy of the fusion result.

In Fig. 14(b), the error of the proposed algorithm converges
at 0◦/s. According to the error curve of the SHAKF algorithm,
the primary errors are present in the amplitude and phase esti-
mation of the 0.5 Hz signal, which contributes to a significant
error. The error curve of the proposed algorithm illustrates
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TABLE II
RMSE (◦ /S) OF FUSION RESULTS

Fig. 13. Mixed-frequency signal fusion results.

Fig. 14. Comparison of mixed-frequency signal fusion results.
(a) Comparison of fusion results. (b) Comparison of errors.

that the trust of the filter in the two measurement signals is
successfully adjusted, and the fusion result reflects the real
motion of the turntable.

The process of updating the measurement noise variances
in the proposed algorithm based on the variations of the
two ARW coefficients is illustrated in Fig. 15. Compared to
the SHAKF algorithm, the proposed algorithm has a smaller
convergence result for R1,1 and a larger convergence result
of R2,2. The adjustment improves the trust of the filter in
the MEMS gyroscope measurement signal. As in the case
of single-frequency signals, the proposed algorithm adaptively
modifies the measurement noise covariance matrix based on

Fig. 15. Update of the main diagonal elements of the measurement noise
covariance matrix for the mixed-frequency vibration signal. (a) Measurement
noise variance update curves. (b) ARW coefficient update curves.

the ARW coefficients versus the signal frequency, which
allows the algorithm to make better use of the 0.5 Hz signals
from the MEMS gyroscope and obtains a more accurate
angular rate estimation. In the test, when the filters converge,
the RMSE of the SHAKF is 0.1482◦/s and the RMSE of the
proposed algorithm is 0.0143◦/s.

V. CONCLUSION

Aiming at the problem of harmonic vibration measurement
in laser beam stabilization control of free-space optical sys-
tems, this article proposes an adaptive Kalman filter based on
online ARW estimation. The filter utilizes the measurement
signals from the sensors to estimate the ARW coefficients
online and adjusts the measurement noise covariance accord-
ing to the relationship between the signal frequency and
the ARW coefficients. Therefore, the method solves the
problem of sensor amplitude response variation with fre-
quency in data fusion. In the experiment, we tested three
single-frequency vibration signals and a mixed-frequency
vibration signal, respectively. The proposed algorithm can
adaptively modify the measurement noise covariance matrix
according to the frequency variation, thus adjusting the
Kalman gain for the purpose of adjusting the utilization of
the two sensor signals. Its RMSE is significantly smaller
than that of the SHAKF algorithm. The fusion results of
the proposed algorithm can reflect the real motion of the
turntable.

The experimental results show that the proposed algorithm
has a promising application in satellite platform vibration
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measurement. In the future, we will use the MEMS gyroscope
with higher precision to obtain more accurate fusion results.
Meanwhile, we will replace the turntable to establish the
relationship between signal frequency and ARW coefficients
under a wide bandwidth, and explore the fusion of vibration
signals at higher frequencies.
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