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Abstract— Speckle noise is the main cause of quality degrada-
tion of optical coherence tomography (OCT) images. However,
speckle noise reduction is challenging due to the complex cause
for statistical modeling and the requirement of a large amount of
annotated data for conventional supervised learning strategies.
In this article, a novel semi-supervised learning method is
proposed for speckle noise reduction in OCT images with limited
labeled data. Our method creates pseudo-labels for co-teaching
in the training process between a U-shaped convolutional neural
network and a U-shaped Transformer with a shifted window to
preserve both global information and local details. The proposed
scheme encourages the consistency between different streams
when the advantages of both are leveraged to compensate each
other for better convergence. It shows robustness on both normal
and pathological OCT images with different diseases and from
different devices. Our method exhibits advantages over several
other state-of-the-art methods of speckle noise reduction. To our
knowledge, this work is the first attempt to combine convolutional
networks and Transformers for semi-supervised speckle noise
reduction and achieves promising results on different datasets.

Index Terms— Convolutional neural network (CNN), optical
coherence tomography (OCT), semi-supervised learning, speckle
noise reduction, Transformer.

I. INTRODUCTION

PTICAL coherence tomography (OCT) has been widely

applied in ocular disease diagnosis for recent decades
due to its noninvasive and efficient character. OCT relies on
the coherence of optical waves backscattered spatially and
temporally from tissue [1], during which process, speckle
noise is generated as a main cause of OCT imaging quality
degradation. Statistical studies on speckle noise have shown

Manuscript received 21 November 2023; revised 6 February 2024;
accepted 15 February 2024. Date of publication 28 March 2024; date of
current version 5 April 2024. This work was supported in part by the
National Natural Science Foundation of China under Grant 82230033 and
Grant 82271133, in part by the Department of Science and Technology of
Guangdong Province under Grant 2021TX06Y 127 and Grant 2021TQ06Y 137,
in part by the Basic and Applied Basic Research Foundation of Guangdong
Province under Grant 2022A1515011486, in part by Guangzhou Science and
Technology Plan Project under Grant 202103010001, and in part by the
Fundamental Research Funds of the State Key Laboratory of Ophthalmology.
The Associate Editor coordinating the review process was Dr. Liuyang Zhang.
(Yupei Chen and Jiaxiong Li contributed equally to this work.) (Corresponding
authors: Jin Yuan; Peng Xiao.)

The authors are with the State Key Laboratory of Ophthalmology and
Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science,
Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060,
China (e-mail: yuanjicornea@ 126.com; xiaop29 @mail.sysu.edu.cn).

Digital Object Identifier 10.1109/TIM.2024.3381655

certain characteristics of speckle [2]. Speckle noise arises in all
coherent imaging systems due to the effect of environmental
conditions on the imaging sensor during imaging acquisi-
tion [9]. Speckle noise is common in medical images, such
as ultrasound images, OCT images, and synthetic aperture
radar (SAR) images. Speckle noise is generated in different
ways in different imaging systems. In an ultrasound imaging
system, speckle noise occurs when a sound wave beat inter-
feres with little particles or on a scale equivalent to sound
wavelength. As for radar images, it occurs due to random
variation in return signal [9]. In OCT images, speckle is
formed due to the mutual interference of coherent waves with
a random set of intensities or random phase shifts. According
to Klein et al. [10], there are two types of speckles: signal-
carrying speckles and signal-degrading speckles. For speckle
noise reduction, the signal-degrading speckle is removed and
the signal is kept ideally. Speckle noise reduces the contrast
of images and obstacles the observation of fine details in
images [11]. When OCT images are corrupted by speckle
noise, the image quality degrades, which makes it difficult
for feature extraction, recognition, analysis, and quantitative
measurement.

Nevertheless, it is difficult to study OCT speckle noise
from statistical models [3] since it does not strictly obey
any specific statistical distribution [4]. In practice, registration
and averaging multiple scans acquired in succession from the
same location is considered a standard way for speckle noise
reduction in OCT images [5]. Nevertheless, this method is
relatively time-consuming and impractical to operate in fast
3-D scanning due to the inability of patients to maintain
fixation during examinations and the limitation of imaging
speed [6], [7], [8]. In addition, the registration-averaging
process might remove subtle but significant details and bring
some motion artifacts [9]. Therefore, efficient methods for
speckle noise reduction in OCT images are urgently required.

Over the last few decades, lots of efforts have been put into
speckle noise reduction of OCT images. On the one hand,
hardware-based approaches can reduce the noise from the
scanner and detector to some extent, through the improvement
of the light source of OCT devices [10]. However, the noise
in the imaging system cannot be eliminated. On the other
hand, software-based approaches are still the mainstream for
speckle noise reduction in OCT images and can be roughly
divided into several categories, including filter-based, trans-
form domain-based, sparsity-based, and deep-learning-based
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methods [11]. With the rapid development and wide applica-
tion of deep learning in low-level vision tasks, more and more
deep neural network-based methods for OCT image denoising
have been proposed in recent years. Tajmirriahi et al. [12]
implemented a lightweight mimic convolutional autoencoder
for denoising OCT images with high computational efficiency.
Devalla et al. [13] utilized a supervised convolutional neural
network (CNN)-based U-shaped architecture with residual
blocks, dilated convolutions, and multiscale hierarchical fea-
ture extractions to denoise OCT images of the optic nerve
head. The results outperform the corresponding multiframe
B-scans with reduced scanning times and minimal patient
discomfort. However, these supervised learning-based methods
require a large amount of the so-called clean OCT images
which is unlikely to be fulfilled in practice.

To address these problems, in this article, we formulate a
novel CNN- and Transformer-based semi-supervised learning
for speckle noise reduction in OCT images. By introducing
the co-training between the CNN and Transformer, different
learning paradigms are implemented, and cross-pseudo-labels
are created. In this way, the proposed method combines the
advantages of convolutional learning and transformer learning
and achieves impressive noise suppression results with a
limited number of clean OCT images. The main assumption of
this research is that registration and averaging multiple scans
acquired in succession from the same location is considered
a standard approach to obtaining annotated images for the
training process. The novelty of our method lies in two
aspects. First, the method uses a limited amount of labeled data
during the training process which makes it more practical than
traditional supervised CNNs or transformers. As we all know,
the acquisition of labeled data is significant in the field of
denoising with deep learning. It is even trickier to obtain clean,
namely, noise-free or labeled, OCT images for speckle noise
reduction. Second, the proposed method co-trains the CNN
and Transformer with better convergence and more effective
results compared with training with the CNN or Transformers
solely. The main contributions of this article are as follows.

1) We present a novel semi-supervised learning scheme for
speckle noise reduction in OCT images by co-training
between the CNN and Transformer. To the best of our
knowledge, this is the first work for semi-supervised
co-training between the CNN and Transformer in a noise
reduction task, and it is demonstrated that the proposed
method outperforms many existing traditional methods
and many other semi-supervised methods on both public
benchmark and clinical dataset.

2) We formulate the simple but effective weighted joint loss
function composed of supervised loss and unsupervised
loss as the learning objective in the training process.
The bidirectional loss is not forced to be explicitly
consistent in the CNN stream and Transformer stream,
in which way the advantages of the CNN and Trans-
former are leveraged to compensate each other for better
convergence.

3) We validate the proposed method with objective metrics
and retinal layer segmentation performance. Extensive
experiments demonstrate the capability of generalization

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

of the proposed method on different datasets from differ-
ent devices and subjects with various pathologies. The
proposed method also achieves comparable results with
the supervised baseline.

II. RELATED WORKS
A. Traditional Statistical Speckle Noise Reduction Methods

As we mentioned in the previous section, traditional
software-based approaches are mainly statistical speckle noise
reduction methods and can be roughly divided into several
categories, including filter-based, transform domain-based,
sparsity-based, and deep-learning-based methods [11]. Filter-
based approaches utilize the statistical characteristics of
speckle noise and model the statistical noise locally or
globally such as alternating sequential filters [14]. Typically,
the nonlocal means (NLM) method [15] sets a search win-
dow and a similar window. By averaging the windows with
different weights, the noisy images are smoothed nonlo-
cally. Block matching and 3D filtering (BM3D) method [16]
extracts stacked 3-D similar patches from noisy images for
collaborative filtering. These filter-based approaches require
laborious efforts of parameter tuning during implementa-
tion for different noise levels [17]. Transform domain-based
approaches perform noisy image processing in the trans-
form domain [18], typically in frequency, wavelet [19], and
complex [20] domains. These methods obtain impressive
results on image denoising but bring unexpected artifacts
in the transform domain, which might spread to the entire
image. Sparsity-based methods reconstruct noise-free images
from sparse representation, such as dictionary learning. Mul-
tiscale sparsity-based tomographic denoising (MSBTD) [21]
and K singular value decomposition (K-SVD) [22] are two
typical sparsity-based methods. K-SVD is an iterative method
that alternates between sparse coding of the examples based on
the current dictionary and a process of updating the dictionary.
The convergence is accelerated through the update of the
dictionary columns and the sparse representations [23]. These
methods are confronted with different problems, such as low
efficiency, blurred edges, and oversmoothing, which may result
in losing some clinically significant details [11].

B. Semi-Supervised Speckle Noise Reduction in OCT Images

Traditional supervised learning methods require a large
amount of annotated data with high quality, which is unlikely
to be fulfilled in medical image analysis. This dilemma makes
more and more studies focus on semi-supervised methods for
OCT image analysis, such as retinal disease classification [24],
retinal layer and lesion segmentation [25], [26], medical image
registration [27], and so on. Semi-supervised learning is a
learning paradigm with regard to the study of how computers
and natural systems learn in the presence of both labeled and
unlabeled data [28]. In the past few years, many strategies
have been proposed for semi-supervised learning, such as
pseudo-labeling [29], deep co-training [30], deep adversarial
learning [31], mean teacher [32], confidence learning [33],
contrastive learning [34], and so on. These methods perform
training on CNN-based models with limited labeled data.
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For OCT image noise reduction, it is even trickier to obtain
clean, namely, noise-free or labeled, OCT images for speckle
noise reduction. Therefore, more and more studies focus on
methods with limited or even without clean data. An edge-
sensitive capsule condition generative adversarial network
(GAN) with a small number of parameters was introduced for
semi-supervised speckle noise reduction in retinal OCT images
by [35] in 2021. It obtains the noise reduction mechanism
of the system by learning the common information from
paired noisy holographic reconstructed images. The results
outperform several traditional smoothing algorithms and are
comparable with supervised learning methods. Yin et al. [36]
proposed a UNet-based method for speckle noise reduction
in coherent imaging without clean images. Guo et al. [37]
employed an unsupervised method using nonlocal GAN,
which achieved promising results in both quantitative and
qualitative aspects. The application of GAN makes it possible
to generate noise-free images through unpaired data. However,
these methods have some drawbacks due to the application
of GAN. On the one hand, the generator is very sensitive
to different input noisy images, which may bring artifacts
to degrade the image quality. On the other hand, CycleGAN
still requires a large amount of unpaired noisy and noise-free
data for the generator and discriminator to learn the detailed
features. Different from previous work, in this article, we are
investigating a CNN and Transformer based semi-supervised
learning for speckle noise reduction in OCT images.

C. CNN and Transformer

In the past few decades, convolution has been applied as
the main component of deep neural networks for years. CNNs
are biologically inspired trainable architectures composed of
multiple stages [38]. Each stage is composed of a filter bank
layer, a nonlinearity layer, and a feature pooling layer. With
multistage architecture, CNNs can learn multilevel hierarchies
of features. The capacity is controlled by varying the depth
and breadth with strong assumptions about the stationarity of
statistics and the locality of pixel dependencies of images [39].
Nevertheless, CNNs do not encode the position and orientation
of objects and are incapable of being spatially invariant to the
input data [40].

Recently, a Transformer was formulated to take the place
of the dominant convolutional architecture in deep neural
networks. Transformer is a self-attention-based architecture
with high computational efficiency and scalability [41]. Vision
Transformer (ViT) attains competitive performance at a large
scale in vision tasks [42]. Despite the success in ViT at
a large scale, the CNN still outperforms Transformer with
similar-sized counterparts when trained on a small amount of
data [43]. To employ the benefits of both the CNN and Trans-
former, convolutional ViT is proposed. The scheme intends to
introduce the advantages of the CNN: local receptive fields,
shared weights, and spatial subsampling while keeping the
merits of the Transformer: dynamic attention, global context
fusion, and better generalization.

D. UNet and Swin-Uformer

Among the various CNN architectures, UNet [44] is one
of the most commonly adopted in medical image processing,
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especially in segmentation tasks. Medical images contain both
regular patterns from human organs and subtle but significant
details. UNet obtains multiscale contextual features with hier-
archical feature maps and uses skip concatenation between
encoders and decoders to enhance the preservation of subtle
details.

Due to the excellent performance of UNet and its variant
modifications, U-shaped architecture has been extensively uti-
lized with Transformers for medical image segmentation in the
past several years [45]. In addition, a Transformer with shifted
window representation, namely, Swin Transformer [46], was
brought up with higher efficiency and flexibility to multiscale
models using limited self-attention computation to nonover-
lapping local windows. Accordingly, the Swin Transformer
is capable of efficiently solving pixel-wise vision tasks with
content-based interactions between image content and atten-
tion weights and long-range dependency modeling [47].

III. METHOD
A. Overview

The main workflow of the proposed method is depicted in
Fig. 1. First, the paired images and unpaired noisy images
are split into training batches with a certain ratio for each
batch. The training batches are input to train the two streams
parallelly, thus pseudo-labeled images are obtained. Then,
for paired data, the learning objective is calculated between
the pseudo-clean images and the labeled clean images; for
unpaired data, the learning objective is calculated between
the two streams. Through the design of objective function
in parallel training, the scheme intends to introduce the
advantages of the CNN: local receptive fields, shared weights,
and spatial subsampling while keeping the merits of the
Transformer: dynamic attention, global context fusion, and
better generalization. The total learning objective is the sum
of paired and unpaired loss with the consistency weight. The
proposed loss encourages the framework to focus both on
local receptive fields and global context fusion. Next, the two
streams are built with a UNet and U-shaped Transformer with
shifted window, namely, Swin-Uformer, separately. Finally, the
framework is evaluated on both public benchmark and clinical
dataset. The detailed methods are elaborated below.

B. Semi-Supervised Learning With Cross-Pseudo-Label

The proposed semi-supervised learning method is inspired
by several existing works: cross-pseudo-supervision [48],
co-teaching [49], and convolutional ViT [43]. Co-teaching
teaches two deep neural networks to learn from each
other with extremely noisy labels through parallel train-
ing in mini-batches for noise-robust results. Cross-pseudo-
supervision is a semi-supervised learning method that trains
two networks with the same architecture and different weight
initialization. The core of these two methods is that they both
try to bring disturbance and train the networks for consistency
despite the disturbance. Co-teaching introduces noisy labels
during supervision and cross-pseudo-supervision introduces
different initializations during the training process. However,
these strategies are usually applied in binary segmentation
tasks but are not suitable for low-level vision tasks. With high
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Fig. 1. Algorithmic flowchart of the proposed method.

requirements of different scaling detailed feature extraction,
denoising tasks with a limited amount of labeled data face the
problem of overfitting and inconsistency of the two streams
of learning paradigms. To solve these issues, we introduce a
co-training strategy with convolutional and transformer mod-
ules. The disturbance is introduced with different network
architectures and different learning objectives. Set x; as the
ith input noisy image and y; as the corresponding labeled
clean image. We attain the pseudo-clean images by

fconv(xi); = flrans(xi) (l)

where p{°®™ and p/™ denote the prediction of CNN f;ony and
Transformer fi.ns Streams, respectively.

trans

D

conv

pi =

C. Learning Objectives

The overall learning objective is composed of supervision
loss Lp and pseudo-loss Lpseudo, as indicated in the following
equation:

2

where A represents the tradeoff weight of consistency loss
subject to sigmoid ramp-ups following the formula A = 1 +
Aoe 319" where A¢ is a ramp-up ratio and x denotes the
ratio between the current epoch number during the training
phase and ramp-up length, which is set to be the whole
epochs [50]. To guarantee the contribution of the consistency
loss at the beginning of the training process, one is added
to the formula. The hyperparameter Ao is set to be le™>

Liotal = Esup + )\-Lpseudo

Modified Transformer Block

Modified MLP

in our experimental results, which is determined empirically
during the parameter fine-tuning phase. The loss function is
formulated using the Charbonnier penalty function £, [51]
on the labeled and pseudo-labeled data over the parallel CNN
and Transformer streams. Charbonnier penalty function is a
differentiable variant of £; norm and it is demonstrated that
the robust Charbonnier loss function better handles outliers.
It was introduced in [52] for training neural networks as
Lep(x) = (x> 4+ €?)!/2 and € is empirically set to le™>. The
supervision loss £, is calculated with the noisy input and the
labeled clean image, as in the following equation:

Esup = Ecb(xhyi)- (3)

The pseudo-loss Lpseudo is the combination of the CNN and
Transformer. For each stream, the pseudo-loss is bidirectional,
which means that one is from the CNN to the Transformer,
and the other is from the Transformer to CNN, as indicated
in the following equations:

peeudo = Leb (%, P}"™") S
Cpsendo = Lep (X1, P7™). (5)

The configuration of bidirectional loss is the core part
of the two-stream learning objective. We expect the two
different learning paradigms to learn from each other and reach
consistency without the enforcement of explicit constraints.

D. Technical Details

1) Network Architecture: The whole framework is based
on the U-shaped CNN and U-shaped Transformer backbone,
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namely, UNet and Swin-Uformer, respectively. Among the
various neural network architectures, UNet is one of the most
commonly adopted in medical image processing. Medical
images contain both regular patterns from human organs and
subtle but significant details. UNet obtains multiscale con-
textual features with hierarchical feature maps and uses skip
concatenation between encoders and decoders to enhance the
preservation of subtle details. Due to the excellent performance
of UNet and its variant modifications, U-shaped architecture
is extensively utilized with the Transformer for medical image
processing. The architectural intricacies are depicted below.

a) CNN stream: The CNN stream is composed of con-
volutional blocks with U-shaped concatenation and pooling
layers. The network structure is formulated following the
architecture settings in [40]. The convolutional block is com-
prised of a convolutional layer, batch normalization layer,
and activation layer. LeakyReLU [53] is utilized in place of
rectified linear unit (ReLU) for activation in convolutional
blocks to avoid vanishing gradients during the training phase.

b) Transformer stream: We configure the Swin-Uformer
similarly to UNet except the convolutional layers are dispensed
with attention mechanisms to draw global dependencies
between input and output [37]. The standard ViT contains
multihead self-attention (MSA), multilayer perceptron (MLP),
and positional encoding. Inspired by [54], we add a depth-wise
convolutional block to the MLP to improve the capability
of leveraging neighboring pixels, which is significant for
image denoising [55]. Gaussian error linear unit (GELU) [56]
is used as the activation function to avoid the problem of
vanishing gradients after each convolution layer. In addition,
the standard MSA module is replaced with shifted window
partitioning in successive blocks, while other layers remain the
same. The shifted window size is set to 8 in our experiments
according to [42]. The core part of the Swin-Uformer module
is illustrated in Fig. 1.

2) Implementation Details: In our experiments, the Adam
weight decay (AdamW) [57] optimizer is adopted with an
initial learning rate of le-4 and is dropped by a factor of
0.9 every 10 epochs. The batch size was set as 8, in which 2 of
them are labeled data. The experiments are trained for 10000
iterations, equally 150 epochs. The whole scheme was coded
in Python based on PyTorch and trained using the NVIDIA
Titan Xp GPU with 12G memory.

3) Evaluation Protocol: The method is verified by several
objective metrics and retinal layer segmentation performance.
To test the robustness of our method, the evaluation is imple-
mented on two datasets—a public benchmark and a clinical
dataset collected ourselves with various diseases.

IV. EXPERIMENTS
A. Dataset

Two datasets are employed to evaluate the proposed method
in our experiments. One is a public benchmark with some
paired data and some unpaired noisy data [5]. The other is
a clinical dataset acquired by our team from patients with
various diseases.

1) Public Dataset: The public dataset was first introduced
in [5]. In our experiment, 24 spectral domain optical coher-
ence tomography (SDOCT) image pairs from 24 subjects
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were included. The so-called “noise-free” labeled data was
obtained through registration and averaging of repeated B-
Scans. In addition, 44 noisy OCT images, including 39 from
humans and five from mice, were employed.

2) Clinical Dataset: The second dataset includes
313 1024 x 1536 image pairs extracted from 26 volume
scans from 15 subjects, utilizing a commercial ZEISS
PlexElite 9000 swept-source OCT angiography (Carl Zeiss
Meditec, Inc, Dublin, CA, USA) which is equipped with
200 kHz of scan speed, 1.95 um of digital axial resolution,
6 mm of A-scan depth, and 1040-1070 nm of optical
source center wavelength. For each subject, we scanned a
square (~6x 6 mm) volume centered at the retinal fovea
with 1536 A-scans per B-scan and 1024 B-scans per volume.
Among the subjects, there are five eyes from three subjects
with aged macular disease (AMD), six eyes from three
subjects with central serous chorioretinopathy (CSC), four
eyes from three subjects with diabetic retinopathy (DR),
five eyes from three subjects with macular edema, and six
eyes from three subjects with normal eyes. The study was
approved by the Institutional Review Board of Sun Yat-sen
University, and informed consent was obtained from all
subjects involved (No. 2020KYPJ154).

3) Data Preprocessing: To improve the performance of the
proposed method and avoid overfitting, data augmentation is
implemented during the training process for both streams.
In our experiment, augmentation is conducted through random
brightness and contrast distortion, random rotation, and flip-
ping, to simulate the practical situations in clinics. Each image
is normalized before augmentation. After augmentation, each
image is randomly cropped into eight patches with the size
of 256 x 256 as training input. The training, validation, and
testing set consisted of 256, 27, and 30 images, respectively,
which were manually selected from the clinical dataset. Each
dataset consists of images from different subjects with differ-
ent diseases and is distributed roughly even. The public dataset
is only used in the testing phase to validate the robustness of
the proposed method.

B. Evaluation Metrics

To evaluate the performance of the proposed method for
speckle noise reduction in OCT images, several objective indi-
cators were calculated for quantitative evaluation in the testing
phase according to [23] and [58]. Some of these indicators
were measured over the entire image and some were measured
over the manually selected region of interest (ROIs), including
one background ROI and three signal ROIs. Fig. 2 shows some
example results with normal and different pathological OCT
images from the clinical dataset. The background ROIs are
marked with green rectangles and the signal ROIs are marked
with blue rectangles. The objective indicators are calculated
as below.

The signal-to-noise ratio (SNR) is a widely used global
performance measure, which is defined as

max(])2
SNR = 10logo\ —5—
o]

b

(6)

where [ is the input image and o} is the standard deviation
of noise in the background region.
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Fig. 2.

Examples of denoising results from the test dataset with the proposed method. From left to right in each instance: Original noisy image, denoised

image with the proposed method. The green rectangle is selected as the background region and blue rectangles represent the signal ROIs for the calculation

of SNR, CNR, EPI, and ENL.

The contrast-to-noise ratio (CNR) is a typical local indica-
tor for image quality measurement. It measures the contrast
between the ROI and background noise, the CNR is calculated
as
Mm — Kb

[ ~2 2
O + %

where i, and o> denote the mean and variance of the mth
RO, respectively. u, and o denote the mean and variance of
the background region, respectively.

The edge preservation index (EPI) is defined as

1 & 2 m
den
P=—> " | 8
Mm:l U,i,z Min ®

where o, is the standard deviation of the mth ROI in the
unprocessed input image. ftgen and pi, is the mean of the
denoised image and noisy image, respectively. Ideally, ptgen
and u;, are supposed to be equal. The TP measure is averaged
over M ROIs. For better texture preservation, TP is bigger.

An equivalent number of looks (ENL) measures the smooth-
ness in the homogenous region. In our experiment, ENL is
calculated in the background region which is supposed to be
homogenous. ENL is calculated as

CNR = 101og, 7

ENL = — C))
where u, and sz denote the mean and variance of the
background region, respectively. The homogenous region of
the image is smoother when the ENL is larger.

Moreover, to compare the denoised image with the averaged
image after registration, the peak signal-to-noise ratio (PSNR)
and structure-similarity-index-measure (SSIM) [59] are calcu-
lated for evaluation as below

MAX?
s 2lE = Il
Quipz +¢1) (204 + c2)
(W24 i+ e) (o2 o7 +e)

PSNR = 101og,, (10)

SSIM =

(1)

The objective indicators are calculated for the test set as
shown in Tables I and II. It shows that the proposed method
provides promising results for speckle noise reduction in OCT
images. From a subjective perspective, it is observed that
the test images are smoothed with enhanced contrast and the
detailed retinal structures are well preserved. Moreover, the
proposed architecture works for both lesioned and nonlesioned
B-scans as shown in Fig. 2.

C. Comparison With Other Methods

To validate the proposed method, several typical tradi-
tional denoising methods and some state-of-the-art supervised
and semi-supervised denoising methods were implemented
for comparison, as is mentioned in Sections I and II,
including NLM, wavelet filtering, nonlinear complex dif-
fusion filtering (NCDF) [20], BM3D, K-SVD, supervised
UNet [40] and Uformer [41], and another semi-supervised
method cGAN [35]. For quantitative evaluation, the objective
indicators were calculated and the experimental results are
presented in Tables I and II. As shown in Table I, the ENL in
NLM is rather low but the CNR is rather high, which might be
correlated with background noise. Wavelet had the lowest TP
which is likely caused by blurred edges. NCDF has the highest
TP and the lowest SNR and CNR, which may be caused
by the artifacts near the edge. KSVD provides high ENL
and CNR, which may be caused by oversmoothing. BM3D
presents fair performance but is far behind the supervised
learning methods. With the assistance of unlabeled data, the
proposed method outperforms the supervised methods with a
limited amount of labeled data. It presents the highest SNR and
TP compared with other methods, indicating better smoothing
and detail preservation performance. Moreover, the proposed
method presents a rather high ENL which shows the ability for
background smoothing. Nevertheless, the low CNR indicator
implies the inadequacy of contrast preservation. Table II
presents higher PSNR and SSIM given the so-called noise-free
image acquired from the method described in [60], resembling
the ground truth. Furthermore, the proposed method shows
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TABLE 1
QUANTITATIVE EXPERIMENTAL RESULTS OF DIFFERENT METHODS
Category Method SNR CNR TP ENL
Noisy 29.52+1.96 3.92+0.75 1.17+0.12 32.18+10.40
Clean 45.68+4.71 8.53+1.09 1.00+0.00 80.27+16.32
NLM 45.15+2.16 8.18+0.96 0.82+0.10 51.47+24.89
Wavelet 46.92+3.27 8.08+£0.99 0.17+0.03 64.25+34.74
Statistical methods NCDF 39.72+1.96 7.46+0.86 1.06+0.10 53.98+31.23
BM3D 45.22+3.32 7.52+0.85 0.66+0.09 76.59+43.85
K-SVD 42.71+1.97 8.91+1.11 0.60+0.07 91.12+30.72
Supervised learnin UNet 47.74+3.03 8.00+0.85 1.13+0.11 80.72+40.27
P g Uformer 46.25+3.93 7.34+1.06 1.0520.11 86.3249.16
Semi-supervised learning Proposed 53.57+£2.25 7.89+0.78 0.97+0.10 84.49+50.23
TABLE 11
QUANTITATIVE EXPERIMENTAL RESULTS OF DIFFERENT METHODS
Category Method PSNR SSIM NRMSE
Noisy 19.24+0.60 0.46+0.03 0.38+0.02
NLM 25.18£1.49 0.79+0.04 0.19+0.03
Wavelet 23.18£3.16 0.80+0.04 0.25+0.10
Statistical methods NCDF 23.94+1.44 0.76+0.03 0.22+0.04
BM3D 23.66+2.60 0.80+0.04 0.24+0.09
K-SVD 25.77+£1.19 0.81+0.05 0.18+0.02
Supervised learning UNet 24.92+1.31 0.84+0.04 0.20+0.03
Uformer 23.39+0.96 0.7940.06 0.2340.02
UNet-UNet 22.27+4.02 0.77£0.38 0.334+0.09
Uformer-Uformer 22.38+3.11 0.7940.40 0.26+0.07
Semi-supervised ]eaming cGAN 24.08+1.21 0.88+0.02 0.22+0.03
Proposed 24.34+1.15 0.81+0.07 0.2140.03
TABLE IIT
QUANTITATIVE RESULTS OF DIFFERENT NETWORK STRUCTURES
Methods SNR CNR TP ENL
UNet-UNet 46.52+3.18 7.1340.93 0.89+0.17 74.29+23.58
Uformer-Uformer 48.68+4.91 7.64+0.82 0.77+0.09 85.72+48.05
Proposed without MTB 48.39+3.44 7.42+0.85 0.90+0.13 78.53+39.90
Proposed without modified MLP 51.36+2.93 7.16+1.03 0.93+0.08 83.65+32.74
Proposed 53.5742.25 7.89+0.78 0.97+0.10 84.49+50.23

competitive performance compared with cGAN in our test
dataset. However, cGAN requires a large amount of unlabeled
training data and creates artifacts in the testing phase of the
public dataset.

For qualitative evaluation, Fig. 3 presents the denoising
results over a randomly selected OCT B-scan using different
denoising approaches. The results show that the proposed
method eliminates the speckle noise while preserving the
detailed retinal structures well. It is observed that the pro-
posed method shows promising performance in OCT image
denoising and outperforms the traditional methods and shows
comparable results as the supervised methods.

D. Extended Experiments

To further explore the sophisticated architecture of the pro-
posed method, more experiments were conducted to explore
the detailed design of the network structure with quantitative
evaluations, as shown in Table III. First, we evaluated the
general design of the co-training strategy and compared the
proposed method with UNet only and with Uformer only.

The results indicate that parallel training with two different
streams outperforms training with streams of the same net-
work structure. Moreover, the effectiveness of the proposed
network is further verified with experiments with and without
modified transformer block or MLP. It is obvious that the
modified transformer block and MLP benefit the network
and advance the performance of the proposed method. These
results demonstrated the rationality and effectiveness of the
proposed network structure.

Furthermore, the public dataset introduced in [5] is used to
further explore the robustness of the proposed method. Fig. 4
shows some examples of denoising results from the public
benchmark, including subjects from both humans and mice,
indicating that the proposed method is capable of handling
images from different OCT devices and different subjects.
We speculate that the proposed method is also applicable in
other image modalities to eliminate speckle noise, such as CT
or ultrasound images. Future work may involve the possibility
of exploring the application in other image modalities if data
is available.
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Fig. 3.
(h) Uformer. (i) Proposed. (j) Ground truth.

Example of denoising results of different methods. (a) Original noisy image. (b) NLM. (c) Wavelet. (d) BM3D. (e) NCDF. (f) K-SVD. (g) UNet.

Fig. 4.
the denoised image is on the right side.

Fig. 5. Retinal segmentation results comparison. From left to right: noisy
image, denoised image with the proposed method, ground-truth image.

TABLE IV
QUANTITATIVE RESULTS OF RETINAL LAYER THICKNESS

Method Noisy Denoised Ground Truth

ILM - NFLGCL 26.74+18.81 27.82+18.91 26.48+18.63
NFLGCL — IPLINL 29.3346.95 28.62+7.71 28.9445.65
IPLINL - INLOPL 12.78+4.13 12.2143.74 12.92+2.77
INLOPL - OPLONL 16.0245.21 16.31+4.23 16.3243.96
OPLONL - ISOS 34.394+4.83 34.024+4.17 33.7943.91
ISOS - RPE 37.1243.21 37.18+1.73 34.97+1.66

E. Application in Retinal Layer Segmentation

To demonstrate how the proposed method facilitates image
analysis, more experiments were conducted for retinal OCT
image segmentation. Retinal layer segmentation is an impor-
tant task in OCT image analysis to assist clinical diagnosis.
Clinicians can assess retinal diseases quantitatively through
retinal layer thickness. We employ the segmentation method
in [61] to segment retinal layers after speckle noise reduction
with the proposed method in OCT images, to verify how

Examples of denoising results with the proposed method on the public benchmark. In each panel, the original noisy image is on the left side and

the proposed method promotes OCT image analysis. The
corresponding visual results are presented in Fig. 5. The
objective indicators were also calculated as shown in Table IV.
The results indicate the superior performance after denoising
with the proposed method in the application of the retinal
layer, showing the potential application in OCT image analysis
enhancement.

V. CONCLUSION

In this article, a novel semi-supervised method for speckle
noise reduction in OCT images was formulated based on the
CNN and Transformer. With the co-training strategy between
two streams, different learning paradigms are implemented,
and cross-pseudo-labels are created. In this way, the proposed
method achieves impressive speckle noise suppression results
with a limited number of clean OCT images. The experi-
mental results demonstrated the effectiveness and robustness
of the proposed method in OCT image denoising. Overall,
it is capable of improving contrast and smoothness, while
preserving the detailed retinal features. With comparison, the
proposed method outperforms the conventional methods and
displays competitive performance as supervised methods. The
generality of the proposed method is validated with both
normal and pathological data from different OCT devices
with different scales and resolutions. Furthermore, it illustrates
how it facilitates OCT image analysis with an example of
application in retinal layer segmentation.

Besides the promising performance we obtained so far in
OCT image denoising, there are a few limitations of our
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study. First, the computational complexity is rather high during  [7]
the training stage due to the parallel training design of the
proposed method. Although the proposed method was trained

with a limited amount of data, the dataset was selected
manually according to different diseases and subjects and  [8]
processed with augmentation. The data processing methods

are quite common in this field [12], [62], [63]. Therefore, the  [9]
images are representative and the variety of the dataset was
increased. It shows robustness in both normal and pathological
data from different OCT devices using both clinical and public
datasets. Nevertheless, we believe that the performance could
be further improved with more training data available and
other supervised learning methods could be further attempted
with more data. To address these problems, future work
involves further exploration with more various datasets and [12]
more application scenarios, including data from different OCT
devices and other medical image modalities such as computed
tomography, ultrasound images, and full-field OCT. Moreover, [13]
since the proposed method shows the capability of processing
multiscale OCT images, future work might involve resolution [14]
enhancement with modifications of the proposed method to
obtain images of high resolutions with fast scanning. Besides
the application with retinal layer segmentation presented in
the article, we will also further explore the contribution of
the proposed method to other specific applications, such as
manual diagnosis of certain ophthalmic pathologies, automatic
segmentation of retinal lesions, and so on.

In conclusion, a novel semi-supervised speckle noise reduc- [17]
tion method for OCT images was proposed to solve the
dilemma of lacking clean OCT images. With co-training (18]
between the CNN and Transformer, the proposed scheme
encourages consistency between different streams when the
advantages of both are leveraged to compensate each other [19]
for better convergence. The bidirectional loss is formulated to
effectively weigh the supervised and unsupervised loss. The
two different learning paradigms learn from each other and
reach consistency without the enforcement of explicit con-
straints. Through thorough experiments and comparisons, it is  [21]
verified that the proposed method outperforms conventional
speckle noise reduction methods and shows competitive results

(10]

[11]

[15]

[16]

[20]

[22]
with supervised strategies. In the future, we will extensively
explore the generality of different datasets and the possibility
of resolution enhancement for OCT images. [23]
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