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Abstract— Wearable sensors can be exploited for the indi-
rect estimation of physiological parameters, such as breathing
rate (BR). Indeed, BR is a significative quantity for both general
health status monitoring and diagnostic purposes; however,
standard methods for its assessment are often uncomfortable and
mainly used for punctual (or brief, anyway) measurements. This
article aims to perform an uncertainty analysis of BR indirect
estimation made starting from electrocardiographic signals gath-
ered through wearable sensors, namely, a cardiac belt (Zephyr
BioHarness 3.0) and a smartwatch (Samsung Galaxy Watch3).
Three different estimation methods were employed, considering
respiratory sinus arrhythmia (RSA), signal amplitude mod-
ulation (AM), and machine learning (ML)-based techniques.
Finally, the Monte Carlo simulation method was exploited for
the measurement uncertainty estimation, including both sensors
(hardware) and algorithms (software) contributions in the mea-
surement chain. The results show that both the considered sensors
are quite accurate (almost null bias) and precise (±[3, 5] bpm,
depending on the estimation method) in the estimation of BR with
the three different estimation algorithms. A slightly higher pre-
cision is obtained for the cardiac belt (a reduced 95% confidence
interval is reported, with a maximum reduction of 4 bpm depend-
ing on the estimation algorithm), whose results are also more
strongly correlated to the reference ones (Pearson’s correlation
coefficient ≥0.75 in all the three methods). The Monte Carlo sim-
ulation evidenced that the ML-based method is the most robust
with respect to the sensors’ uncertainty (with no differences in
the output uncertainty with respect to the sensors’ uncertainty
in input); moreover, the higher precision of the cardiac belt with
respect to the smartwatch was confirmed (−1 bpm in the output
uncertainty) if RSA- and AM-based methods are considered.

Index Terms— Accuracy, breathing rate (BR), indirect mea-
surement, machine learning (ML), measurement uncertainty,
Monte Carlo method, wearable sensors.

I. INTRODUCTION

WEARABLE sensors and devices are continuing to
propagate in many different application fields, being

them so versatile and able to provide multidomain physio-
logical data [1], [2]. Since they are equipped with proper
photoplethysmographic (PPG) sensors and electrodes for elec-
trocardiogram (ECG), they can record cardiovascular-related
signals and parameters, such as heart rate (HR) and its
variability (HRV) and blood oxygen saturation (SpO2), as well
as indirectly estimated quantities such as blood pressure (BP)
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and breathing rate (BR). This is due to the fact that cardio-
vascular and respiratory activities are interrelated and several
techniques have been developed in recent years to derive BR
from PPG or ECG signals. Indeed, BR is a pivotal parameter
to depict the health status of a subject [3], but the standard
tools for its assessment (both contact and contactless [4])
are quite impractical; hence, the continuous monitoring of
this parameter is not currently widespread. However, wearable
sensors can play a key role in this scenario since BR can be
derived from the recorded PPG or ECG signals, making 24-h
monitoring possible. The accuracy of the measurement should
be adequately taken into account and properly quantified; if the
result is reliable, the provided information can be exploited not
only for personal health tracking but also to support medical
decision-making processes in pathologies such as lung dis-
eases and cardiopulmonary arrest [5], but also disorders related
to lungs, heart, red blood cells, and vessels [6], [7]. In fact,
the analysis of the respiratory pattern is commonly examined
in this context [8] for the diagnosis of several different prob-
lems (e.g., anxiety, respiratory infections, thoracic/abdominal
tumors, labor pain, and driving safety [9], [10], [11], [12]).

Different algorithms for the BR indirect estimation can be
mentioned if ECG signals are considered as the starting point.
The same authors, starting from the algorithm developed by
Schäfer and Kratky [13], estimated BR both from PPG [14]
and from ECG [15] signals recorded through wearable devices
(Garmin Venu Sq and Samsung Galaxy Watch3, respectively)
in dedicated laboratory experiments. The pillar of this method
is the respiratory sinus arrhythmia (RSA): when a subject
inhales, the inter-beat interval (IBI or RR interval, i.e., the time
difference between two R peaks in the ECG trace) shortens,
whereas it widens during exhalation [16].

Also, the modulation of the ECG signal can be considered
for the estimation of BR. This is because respiration exerts a
significant influence on ECG signals, leading to various signal
characteristics, including baseline oscillation (BW), ampli-
tude modulation (AM), and frequency modulation (FM) [17].
In cases where only single-lead ECGs are available, ECG
wave AM can be used to derive a respiratory signal [18].
One recent approach, proposed by Babaeizadeh et al. [19],
focused on utilizing the modulating QRS morphology to
extract respiratory information. This method leveraged the
total peak-to-peak amplitude of the QRS complex to quantify
respiratory activity.

Different signal processing methods, such as fast Fourier
transform (FFT) and wavelet transform [17], [20], or methods
based on artificial intelligence (AI) can be employed for
the indirect estimation of BR starting from a plethora of
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physiological signals (e.g., ECG, PPG, ballistocardiogram,
seismocardiogram, oscillometric trace, and Korotkoff sound-
related signal [21], [22]). Indeed, AI algorithms are more
and more applied for different purposes and literature is
replete with examples of this type. Wang et al. [23] evi-
denced that deep learning methods usually outperform FFT
and wavelet-based processing approaches; exploiting a fiber-
optic-based sensor and deep learning models, they found
that 95.64% of BR values are within the 95% confidence
interval (reference instrument: ventilator). Roy et al. [24]
exploited a multilayer perceptron neural network to extract
BR from PPG signals, achieving a correlation of 90% and
a normalized root-mean-squared error (NMRSE) of approxi-
mately 0.2. Moreover, vision-based sensors can be exploited
to estimate BR; radar systems have been successfully used
(e.g., Zhai et al. [25] reported an accuracy of >93%), as well
as depth cameras [26] and visible and infrared sensors [27].
Cetinkaya et al. [28] investigated different algorithms to esti-
mate BR from ECG and PPG signals with the perspective
of improving early diagnosis in healthcare. They highlighted
the potential of machine learning (ML) algorithms, reporting
the best performance of random forest (RF) and k-nearest
neighbor (kNN) models.

Whatever the estimation algorithm is, the measurement
uncertainty should be thoroughly estimated to properly inter-
pret the results and evaluate their suitability for different
application fields, clearly requiring diverse levels of precision.

In this work, the authors consider three different methods
for the indirect estimation of BR from ECG signals gathered
through two wearable sensors.

1) RSA-based method.
2) AM-based method.
3) AI-based method.

In this way, this work can be considered as an extension of the
proceedings article presented at MeMeA 2023 conference [15].
Hence, the measurement uncertainty was estimated through
the Monte Carlo method, as recommended by the Guide to
the Expression of Uncertainty in Measurement (GUM) [29].
In this way, both the sensor uncertainty and the algorithm
uncertainty were included in the evaluation.

The main aim of this work is to compare the measurement
uncertainty in the indirect estimation of BR when different
wearable sensors and algorithms are employed.

The remainder of this article is organized as follows. The
materials and methods employed in the study are reported in
detail in Section II. Then, the results are outlined and discussed
in Section III. Finally, the authors draw their concluding
remarks in Section IV.

II. MATERIALS AND METHODS

In this section, the methods followed to conduct the study,
including both experimental campaign and data processing, are
reported.

A. Experimental Campaign

All the test sessions took place at Università Politecnica
delle Marche, Ancona, Italy. The study was declared com-
pliant with the university Research Integrity Code by the

Fig. 1. Experimental test setup.

Research Ethics Committee of the university. Moreover, the
experimental campaign was performed in accordance with
the WMA Declaration of Helsinki [30]. Healthy subjects were
recruited for participating in the study on a voluntary basis; the
test population consisted in a total of 30 healthy subjects (aged
22 ± 3 years, with a body mass index of 22.5 ± 2.3 kg/m2,
expressed as mean ± standard deviation). The study objec-
tives and modalities were explained in detail before the test
execution and the participants were made to sign an informed
consent module. Data management was performed according
to the General Data Protection Regulation (GDPR).

Two wearable sensors were employed for physiological
data acquisition: a chest strap (Zephyr BioHarness 3.0,
Zephyr Technology Corporation, Annapolis, MD, USA) and a
smartwatch (Samsung Galaxy Watch3, Samsung Electronics
Italia, Italy). The former has a measurement accuracy of
±1 and ±2 bpm for HR and BR, respectively [31], whereas
no information is available for the latter.

The acquisition procedure comprised a total of six trials
for each subject, one half at rest, while the other half after
physical activity (i.e., 2-min treadmill sessions at speeds of 3,
8, and 10 km/h, with 0% slope). The detailed protocol is
reported in [15] and the experimental test setup is illustrated
in Fig. 1. In this way, a total of 180 ECG trials were performed,
lasting 30 s each due to smartwatch constraints.

B. Methods to Indirectly Estimate BR

As the first step, the ECG signals recorded through the
employed wearable sensors were preprocessed (as reported in
detail in [15]) and the related tachograms were computed after
R-peak identification.

Three different methods were applied to indirectly estimate
the BR from ECG signals or corresponding tachograms as
follows.

1) A method based on the consideration of RSA phe-
nomenon, as described in [15]; in brief, the tachogram is
filtered in a low-frequency range (i.e., 0.1–0.5 Hz) and
both minima and maxima are identified. Hence, vertical
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differences between these two features are computed and
those related to breathing activity are selected according
to a determined threshold (i.e., third quartile of vertical
differences). In this way, BR can be estimated as the
inverse of the length of the obtained breathing cycles.

2) A method based on AM; starting from the work
by Kozia et al. [32], the authors calculated the peak-
to-baseline (PBA) amplitude for each QRS complex
(identified through Pan and Tompkins algorithm [33])
in the ECG signal (after an initial filtering in the
range 0.05–70 Hz). To increase the accuracy and min-
imize false positives from the R-peak detection, the
outliers were removed. PBA values were then oversam-
pled (sampling frequency: 8 Hz—a spline interpolation
method was employed) to obtain the ECG-derived respi-
ration (EDR) waveform. Hence, this signal was filtered,
focusing on frequency band characteristic of respiration
(0.15–0.4 Hz [34]), to extract the final respiratory signal.
Finally, the peaks related to the respiratory cycles were
identified and the BR was computed.

3) An ML-based method; starting from the article by
Stankoski et al. [35], signal portions of 20 s (with a
step of 1 s) were extracted from the ECG s; therefore,
the authors extracted eight features of interest from the
windowed ECG signal as follows.

a) RRwind: RR intervals in the selected time window.
b) Twind: Tachogram intervals.
c) PSDECG: ECG peak frequency from its power

spectral density (PSD).
d) PSDtacho: Respiratory signal peak frequency from

its PSD.
e) RRstd: Standard deviation of RR intervals.
f) HRmax: Maximum HR value.
g) HRmin: Minimum HR value.
h) RMSSD: Root mean square of successive differ-

ences between normal heartbeats.
i) pNN50: Percentage of consecutive RR intervals

differing more than 50 ms.
j) pNN20: Percentage of consecutive RR intervals

differing more than 20 ms.
The features vector was employed as input to train a

regression ML model, based on extreme gradient boosting
(XG-Boost) algorithm [36]. XG-Boost utilizes decision trees
as base models, which are used iteratively through boosting
to build a more robust model. Each tree is trained to correct
the errors of previous models by associating input data with its
leaves and providing a continuous score. This iterative process
implies that each new tree predicts the residuals or errors of
the previous models. The predictions from all the trees are
then combined to obtain the final prediction as output (i.e., the
estimated BR in this case). The model training was exe-
cuted using the Python programming language. The following
hyperparameters were set accordingly to [36]: XGBRegressor
with 1000 estimators, a maximum depth of 7, a learning rate
of 0.1, a subsample ratio of 0.7, and a column subsampling
ratio of 0.8.

As gold standard, the BR values were derived from
the breathing signal provided by the chest-worn sensor

(Zephyr BioHarness 3.0) and appropriately preprocessed
(see [15] for details) before identifying the peaks useful for
BR computation.

C. Estimation of the Measurement Uncertainty

The measurement uncertainty was evaluated through the
analysis of the measurement differences (i.e., residuals—
rounded to an integer) between test (i.e., BR derived from
wearable sensors measured ECG, through different estimation
methods–as described above) and reference (i.e., BR values
from respiratory signal) methods. Residual values exceeding
the 95% confidence interval were excluded as considered
outliers (being outside the agreement interval according to
the Bland–Altman analysis). To this aim, the mean BR value
obtained for each of the recorded 30-s signals was considered.
Then, the Monte Carlo method was exploited to express the
uncertainty according to the recommendations provided by
the Guide to the Expression of Uncertainty in Measurement
(GUM) [29]). As input uncertainty [i.e., u(x)], the following
values for the wearable sensors were set (considering both
available user manuals and literature guidelines).

1) Cardiac belt (Zephyr BioHarness 3.0): 0.017 s for RR
intervals (considering the uncertainty of 1 bpm reported
for HR in the user manual—considering RR as the
inverse of HR), and 5.0% of the maximum reading
for the ECG signal amplitude (the authors considered
the accuracy reported by the manufacturer, i.e., 10%,
as expanded uncertainty, with coverage factor k = 2).

2) Smartwatch (Samsung Galaxy Watch3—for which no
uncertainty values are provided by the manufacturer):
0.042 s for RR, which is an authors’ cautionary hypoth-
esis considering an expanded uncertainty of 5 bpm as
acceptable [37], and 12.5% of the maximum reading for
ECG signal amplitude (derived considering the propor-
tion between cardiac belt and smartwatch uncertainties
in terms of RR, i.e., 0.042/0.017 ≈ 2.5).

Both tachograms (i.e., RR intervals) and ECG signals were
perturbed, considering the input uncertainty values reported
above for RR intervals and signal amplitude, respectively.
The two uncertainties concern the RSA-based method and the
AM-based method for BR estimation. A Gaussian distribution
centered at 0 and characterized by a standard deviation equal
to u(xi ) was initially built randomly, with a length equal to the
total number of iterations. The ML-based method is affected
by both perturbations, including features from both tachogram
and ECG signal analysis.

The simulation was performed on all 180 trials, hence
including physiological variability as a (nonnegligible [38])
contributor to the measurement uncertainty. This was done
for both the employed wearable sensors (i.e., cardiac belt
and smartwatch, Section II-A) and for the three estimation
algorithms (Section II-B). The output uncertainty, u(y), was
evaluated in relation to the estimated BR value (bpm). The
number of iterations for each trial was equal to 104, for a
total of 1 800 000 iterations. Hence, a coverage interval of 95%
for uncertainty was provided through the iteration of the
simulation. Finally, the expanded uncertainty was computed
with a coverage factor k = 2.
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Fig. 2. Distribution of the measurement differences between the BR
estimated through (a) Zephyr BioHarness 3.0 ECG and (b) Samsung Galaxy
Watch3, and the reference values from the respiratory signal (Zephyr Bio-
Harness 3.0) (mean value: 0 bpm; standard deviation: 3 bpm—for both the
sensors)—ML-based method.

III. RESULTS AND DISCUSSION

The results related to the BR estimation with the different
methods (see Section II-B) and the uncertainty estimation
(see Section II-C) are reported in Sections III-A and III-B.

A. Indirect Estimation of BR With the Different Methods

The authors evaluated the performance of the three algo-
rithms by analyzing the measurement differences (i.e., resid-
uals) with respect to the reference BR (derived from the
respiration signal provided by the cardiac belt). An exam-
ple of the distribution of residuals is reported in Fig. 2
for BR estimated from (a) Zephyr BioHarness 3.0 and (b)
Samsung Galaxy Watch3 considering the ML-based method.
Both the distributions are Gaussian-like and centered at 0 bpm
(the value is rounded to unit), index of the accuracy of the
estimation; tails are slightly wider for the latter (as can be
observed in Fig. 3(a) and (b) for cardiac belt and smartwatch,
respectively). Indeed, chest-worn sensors are generally more
precise than wrist-worn ones due to positioning and working
principle, but both measurement accuracy and precision can
be assumed to be comparable (0 and ±3 bpm, respectively).
These values are acceptable for monitoring purposes, hence
confirming the potentialities of ML algorithms for physiolog-
ical monitoring systems.

The results from the different estimation methods are
reported in Tables I and II for Zephyr BioHarness 3.0 and
Samsung Galaxy Watch3, respectively (where σ indicates
the standard deviation and ρ indicates Pearson’s correlation
coefficient).

Fig. 3. Bland–Altman plot related to (a) Zephyr BioHarness 3.0 and
(b) Samsung Galaxy Watch3—(confidence interval at 95% of the level of
agreement: [−6, 6] bpm for both the sensors)—ML-based method.

TABLE I
ANALYSIS OF RESIDUALS IN THE INDIRECT BR ESTIMATION

(CARDIAC BELT, ZEPHYR BIOHARNESS 3.0)

TABLE II
ANALYSIS OF RESIDUALS IN THE INDIRECT BR ESTIMATION

(SMARTWATCH, SAMSUNG GALAXY WATCH3)

The method differing most between the two sensors is the
AM-based one; in fact, the precision is slightly worse for
the smartwatch (±5 versus ±4 bpm), even if a small bias
(i.e., −1 bpm) is obtained for the cardiac belt (while it is 0 bpm
for the smartwatch). Indeed, as mentioned above, cardiac belt
devices tend to be more precise than smartwatches and this
can be attributed to both positioning and intrinsic functioning
of the sensors.

Concerning the correlation between test and reference
BR values, the scatter plot is reported in Fig. 4(a) for
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Fig. 4. Correlation between the BR estimated through (a) Zephyr BioHarness
3.0 ECG and (b) Samsung Galaxy Watch3—ML-based method.

Zephyr BioHarness 3.0 and (b) Samsung Galaxy Watch3.
There is a linear correlation between the two; as can be
observed in Tables I and II, the linear correlation is strong
(≥0.75) and moderate (≥0.57) for the cardiac belt and
smartwatch, respectively. Indeed, considering the ML-based
estimation method, a strong correlation is obtained for both the
wearable sensors, highlighting the potentiality of ML, which
proves again to be able to provide results highly correlated
to the reference ones and outperforming both RSA- and
AM-based methods. This allows to establish linear relation-
ships with the expected values, and this can be useful for the
calibration of these indirect estimation methods.

Summarizing, it can be stated that the measurement accu-
racy of the proposed methods is very high (almost null mean
value of residuals is obtained for both the wearable sensors
with the three methods—the only exception is for the BR
estimated with the RSA-based method considering ECG data
from the cardiac belt, where the bias is equal to −1 bpm). The
distribution of residuals is more compact for the cardiac belt,
as evidenced by the narrower confidence intervals (as it can
be observed from the Bland–Altman plots), and this can be
attributed to the different sensing principle and measurement
framework.

B. Uncertainty Analysis

The results obtained through the Monte Carlo method are
reported in Table III for the considered wearable sensors.

The probability distributions for the three estimation meth-
ods are reported in Fig. 5 (RSA-based), Fig. 6 (AM-based),

TABLE III
RESULTS FROM THE MONTE CARLO SIMULATION

Fig. 5. Probability distributions of BR obtained through the ML-based
estimation algorithm for (a) Zephyr BioHarness 3.0 (u(y) = ±3 bpm) and
(b) Samsung Galaxy Watch3 (u(y) = ±4 bpm) −104 iterations for each
perturbed trial (180), for a total of 1 800 000 iterations (Monte Carlo
method)—RSA-based estimation algorithm.

and Fig. 7 (ML-based), considering both (a) cardiac belt
and (b) smartwatch. All the distributions are centered around 0,
meaning an almost null mean residual. However, the dis-
tributions related to RSA- and AM-based methods are
narrower than that associated with the ML-based method,
and this can be attributed to the probabilistic nature of the
ML algorithm.

The u(y) values related to the different cases are reported
both in Table III and in the figure captions, for ease of
readability. Considering the RSA-based estimation method, the
input uncertainty of 0.017 s for the cardiac belt reflects in an
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Fig. 6. Probability distributions of BR obtained through the ML-based
estimation algorithm for (a) Zephyr BioHarness 3.0 (u(y) = ±3 bpm) and
(b) Samsung Galaxy Watch3 (u(y) = ±5 bpm) −104 iterations for each
perturbed trial (180), for a total of 1 800 000 iterations (Monte Carlo
method)—AM-based estimation algorithm.

output uncertainty of ±3 bpm (expanded uncertainty, coverage
factor k = 2: ±6 bpm). On the other hand, the higher
RR-related uncertainty for the smartwatch (i.e., 0.042 s)
results in an output uncertainty of ±4 bpm (expanded
uncertainty: ±8 bpm). For the AM-based method, the input
uncertainty defined in percentage terms of the maximum
reading (i.e., 5.0% and 12.5% of the maximum reading for
Zephyr BioHarness 3.0 and Samsung Galaxy Watch3, respec-
tively) leads to an output uncertainty on the estimated BR
equal to ±3 and ±4 bpm for cardiac belt and smartwatch,
respectively. Concerning the ML-based method, an output
uncertainty of ±4 bpm is obtained for both the wearables.
This proves that the ML algorithm is robust toward input
uncertainty, and this can be advantageous to develop low-cost
systems for physiological monitoring exploiting ML tech-
niques. In fact, ML could compensate for the lower accuracy
of a low-cost sensor thanks to its robustness. However, when
considering the cardiac belt, the ML-based method has a
higher uncertainty (i.e., ±4 bpm) with respect to the others
(±3 bpm). This could be attributed to an intrinsic limitation
of the model, not being able to have an uncertainty lower
than ±4 bpm.

Hence, also from the Monte Carlo method, it is possible
to infer that ECG data from the cardiac belt lead to more
precise results in terms of estimated BR with respect to those
measured through the smartwatch; this is in line with the
results from previous studies of the same authors and also with
literature findings. Indeed, cardiac belts are based on chest

Fig. 7. Probability distributions of BR obtained through the ML-based
estimation algorithm for (a) Zephyr BioHarness 3.0 (u(y) = ±4 bpm) and
(b) Samsung Galaxy Watch3 (u(y) = ±4 bpm) −104 iterations for each
perturbed trial (180), for a total of 1 800 000 iterations (Monte Carlo
method)—ML-based estimation algorithm.

electrodes and are, hence, less prone to motion artifacts and
slight movements.

IV. CONCLUSION

The main aim of this work was to characterize from a
metrological point of view different estimation procedures
for BR, starting from ECG data collected through wearable
devices (i.e., Zephyr BioHarness 3.0 and Samsung Galaxy
Watch3). The distribution of measurement differences (residu-
als) with respect to the gold standard method was analyzed and
measurement uncertainty was analyzed. Moreover, the Monte
Carlo simulation method was exploited to express measure-
ment uncertainty as recommended by the GUM [29], running
sufficient iterations to obtain a 95% confidence interval on the
uncertainty estimation.

The results are given as follows.
1) Both the wearable sensors (i.e., Zephyr BioHarness

3.0 and Samsung Galaxy Watch3) provide BR estima-
tion with optimal accuracy (almost null bias), whatever
estimation algorithm is employed.

2) The cardiac belt is more precise than the smartwatch,
as expected. This is reflected in narrower 95% confi-
dence intervals.

3) The Monte Carlo simulation method confirmed the lower
uncertainty in the BR estimation for cardiac belt with
respect to the smartwatch.

4) The ML-based estimation method is more robust toward
the sensors’ input uncertainty.
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The proposed approach can be applied also to different
types of (wearable) sensors, providing insight on measure-
ment uncertainty of devices widely applied in different fields
(e.g., sport, rehabilitation, and medicine). It is worth underlin-
ing the importance of validation protocols and metrological
characterization of sensors, to allow the users to properly
interpret the results, also according to the specific target
applications and related requirements. Finally, the influence
of the involved processing techniques and exploited models
should always be considered to depict a wide picture of what
is happening along a measurement chain. It is worth noting
that this study involved a limited test population, quite homo-
geneous in terms of demographic characteristics. This was in
part mitigated by the employment of Monte Carlo simulation
method. However, to widen the physiological variability and
the considered BR range, in the future, it would be interesting
to expand the dataset involving heterogeneous age groups and
also other types of physical activities.
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