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Abstract— In this article, a novel and innovative approach
to characterize THz Bragg fibers using a horn-type adapter is
presented, enabling a two-tier calibration method for a direct,
efficient, and reliable way to measure THz Bragg fibers, including
return loss (RL) and insertion loss (IL). The proposed approach is
robust, accurate, and repeatable, making it suitable for designing
and optimizing THz Bragg fibers and systems and enabling
continued research and development. This study employs a
calibration approach, utilizing short-short-load-thru (SSLT) and
thru-reflect-line (TRL) calibrations. The horn-type adapter con-
nects a standard WR-3.4 rectangular waveguide and a THz Bragg
fiber, allowing the mode conversion from the TE10 mode in the
rectangular waveguide to the HE11 mode in the Bragg fiber, with
a middle stage of the TE11 mode in the tapered horn region.
Additionally, the highly accurate measurement quality presented
advantages compared to the existing THz measurement setups,
for example, setup complexity, coupling efficiency, impedance
adjustability, and less sensitivity to measurement environments,
etc. The present approach shows advantages in experimental
setup complexity, coupling efficiency, impedance adjustability,
measurement repeatability, operator experience required, and
setup tool cost compared to other existing THz measurement
techniques.
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I. INTRODUCTION

RECENTLY the most widely accepted definition of the
THz band is that it extends from approximately 10 THz

to 100 GHz (0.03–3.00 mm in wavelength) and is located
between the microwave and infrared (IR) frequency bands [1],
[2], [3]. Terahertz technology advancements and growing inter-
est in applications have increased the demand for developing
new sources [4], [5], [6], [7], [8], detectors, waveguides, and
other components for efficient terahertz wave control [9].
However, high frequency, especially in the terahertz band,
suffers from high metal ohmic loss and dielectric material
absorption [10], which means that the traditional waveguides
and fibers are not appropriate for low-loss long-distance
waveguiding of the THz wave. Therefore, new concepts
have to be developed for low-loss THz waveguides and
fibers [11], [12], [13].

THz microstructured fibers [14], [15], i.e., the waveguides
with artificially designed sub-wavelength microstructured
transverse cross sections, have attracted the interest of
researchers due to their exceptional optical properties, which
provide a versatile platform for tailoring the effective mode
area and dispersion characteristics to suit various linear and
nonlinear applications over wide bandwidths. An efficient
coupling structure supporting quasi-single-mode propagation
is needed, as unwanted multimode interference causes higher
insertion loss (IL) and measurement complications. Single-
mode operation is also crucial for many applications [16],
and the design of a Bragg fiber that can provide low-loss,
medium-range, and flexible solutions for interconnecting dif-
ferent functional components in THz communication, imaging,
and sensing systems while also allowing for robust and repeat-
able characterization, is necessary. The development of THz
measurement and characterization techniques require measure-
ment accuracy, cost-effectiveness, and ease of setup. These
properties are frequently influenced by the physical interaction
between the device-under-test (DUT) and THz probes, and the
design and optimization of such interactions are critical for
achieving accurate and consistent measurements.

Contactless or free-space measurements [17], [18] are com-
monly used to characterize THz components and employ a
variety of antennas, such as horn antennas [19], [20], [21],
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parabolic reflectors, and planar antennas, to transmit and guide
THz test signals onto the input terminal of DUT and receive
THz responses from its output. Furthermore, the free-space
measurement technique overcomes many limitations of contact
probe measurements, such as limited probe lifetime, mechan-
ical, and electrical degradation of the contact surface due
to contact force, and fragility issues. On the other hand,
contactless measurements are also sensitive to environmental
conditions and alignment issues. Besides, contactless mea-
surement setups require costly components such as parabolic
mirrors, reflectors, and alignment units. THz microstructured
fibers can also be an essential structure for designing func-
tional devices, such as THz Bragg fiber filtering antennas, THz
gas/liquid sensors [22], and THz endoscopy front-ends.

One method for THz-frequency measurements is
waveguide-to-planar-probe measurements, which utilize rect-
angular waveguide flanges. These measurements can be
performed using commercially available THz measurement
extenders connected to a network analyzer, with options for
different waveguide frequency bands up to 1.5 THz [23].
However, waveguide-to-planar-probe measurements, especia-
lly in THz bands, present contact resistance and other
parasitic effects at the physical interface locations between
the measurement probes and the DUT, substantially affecting
the measurement integrity, accuracy, and reproducibility.
Moreover, the operational life cycle of probes is also
limited due to equipment durability. Apart from that, contact
measurements are commonly used because of uncomplicated
installations, better in repeatability and inexpensive compared
to contactless measurements, which require some costly com-
ponents and experienced technicians to construct and set up.

This article proposes a robust, accurate, and repeatable
characterization method of low-loss THz Bragg fibers [24]
using a horn-type interface to connect to a standard rectangular
waveguide and using a two-tier calibration technique [25]. The
measurement setup is compact and straightforward, as it uses a
horn-type adapter that directly interfaces with the THz Bragg
fiber, eliminating the need for additional optical components
and intricate alignment procedures. Furthermore, the two-tier
calibration technique simplifies the calibration process and
reduces the number of required calibration standards, making
the setup less complex and more user-friendly than other
THz measurement techniques. Compared to conventional THz
measurement setups, the measurement system presented in
this study allows for cost-effective and efficient customization
to meet the measurement requirements. The setup can be
easily customed to the needs of users, and the low-cost nature
of the design makes it an attractive alternative to existing
measurement techniques.

II. DESIGN OF THE HORN-TYPE ADAPTER

A horn-type adapter is a type of microwave connector with
a flared shape, like a horn, which helps to reduce signal loss
and improve the coupling efficiency between two interfaces.
Fig. 1(a) illustrates the device under test, which is a hollow
Bragg fiber prototype using Accura ClearVue obtained from
3-D Systems©. Fig. 1(b) illustrates the proposed horn-type
adapter fabricated by CNC milling.

Fig. 1. Design and fabrication of a Bragg fiber and a horn-type adapter used
in this article including the schematic of the measurement setup. (a) Fab-
ricated the designed Bragg fiber prototype using the Accura ClearVue used
as DUT. (b) Horn-type adapter fabricated by CNC milling. (c) Illustration of
electronic-based THz measurement setup using the HMRW-connector-Bragg
fiber integrated system: the dimension of WR-3.4 is 0.864 × 0.432 mm and
the parameters of the Bragg fiber and the horn-type adapter are described
in Table I. (d) Schematic of the horn-type adapter including the dimension
parameters. (e) Cross-sectional view of the horn-type adapter with the dimen-
sion parameters.

TABLE I
DESIGNED GEOMETRIC AND OPTICAL PARAMETERS

OF HORN-TYPE ADAPTER AND BRAGG FIBER

The electronic-based THz measurement setup consists of
the integration of a hollow metallic rectangular waveguide
(HMRW)-horn-type adapter-Bragg fiber system, as depicted
in Fig. 1(c). Two high-frequency extenders with an operating
band from 220 to 325 GHz are connected to a network ana-
lyzer to produce and analyze the THz test signal (Tx and Rx).
The THz beam emitted from the horn antenna at the transmit-
ting extender is fed into the input port of the DUT. It converts
the dominant TE11 mode in the connector into the quasi
HE11 mode in the Bragg fiber with low return loss (RL).
Fig. 1(d) and (e) show the schematic and cross-sectional view
of the copper horn-type adapter used in this measurement, and
the designed geometric and optical parameters of the horn-type
adapter are listed in Table I.



VIRATIKUL et al.: 220–325-GHz HORN-TYPE ADAPTER 8001910

Fig. 2. Asymptotically single-mode hollow THz Bragg fiber used as DUT
in this work, the relationship of impedance matching condition between
the horn-type adapter and the Bragg fiber, and dielectric property of THz
Bragg fiber using Accura ClearVue between 0.2 and 1 THz. (a) Geometrical
structure and the cross-sectional view of THz hollow Bragg fiber, including its
parameters. (b) Comparison of the dispersion curves of the effective refractive
index profile of the HE11 mode of the Bragg fiber and the TE11 mode of the
HMCW with the different ratios of ρ using CST simulation. (c) Refractive
index of Accura ClearVue. (d) Absorption coefficient of Accura ClearVue.

Fig. 2(a) illustrates the cross-sectional view of THz hollow
Bragg fiber and its geometrical parameters. The Bragg fiber
consists of an air core with the refractive index (nc = 1)
surrounded by periodic concentric dielectric layers alternating
between high (na) and low (nb) refractive index materials with
thicknesses of 0.64 and 3.88 mm, respectively.

The outermost layer has mechanical stability and resistance
to environmental factors with a thickness of 4.6 and a width
of support bridge of 0.65 mm, which are thick protective
polymer layers and provide mechanical stability and resistance
to environmental factors that absorb residual electromagnetic
waves and isolate the fiber from outside interference. Fig. 2(b)
compares the dispersion curves of the HE11 mode of the
Bragg fiber and the TE11 mode of the hollow metallic circular
waveguide (HMCW) using the CST Simulation. The output
face of a horn-type adapter can be characterized by its waist
radius, which is the distance from the center of the face to
the point where the Gaussian beam has its minimum radius.
Fig 2(c) and (d) show our measurement using terahertz time-
domain spectroscopy, the refractive index, and absorption
coefficient of the Accura ClearVue between 0.2 and 1 THz
can be fit using n = −0.0123 f 2

− 0.0335 f + 1.6262, and
a(cm−1t) = 6.4667 f 2

+ 17.5066 f − 2.0294, respectively.
Here, f is the frequency in THz unit.

This waist radius can be related to the core radius of a Bragg
fiber through a parameter denoted as ρ. Different ratios of
ρ can be used to optimize the coupling efficiency between the
horn-type adapter and the Bragg fiber. Here, ρ = r0/rc, where
r0 is the core radius of the horn-type adapter at the output face,
and rc is the core radius of the Bragg fiber. According to the
momentum conservation principle, the phase velocity of the

Fig. 3. CST simulation of the horn-type adapter using a back-to-back full
simulation to compare the S11 and S21 with different taper lengths L and ρ.
(a) S21 by adjusting the taper length (L) between 25 and 65 mm and
ρ = 0.77. (b) S11 by adjusting the L between 25 and 65 mm and ρ =

0.77. (c) S21 by adjusting the ρ between 0.6 and 1 and L = 45 mm. (d) S11
by adjusting the ρ between 0.6 and 1 and L = 45 mm.

mode in the connector should be well matched to the phase
velocity of the mode in the Bragg fiber to obtain the greatest
transition between the horn-type adapter and the Bragg fiber.

As can be seen from Fig. 2(b), the dispersion curve of the
HE11 mode of the Bragg fiber overlaps with that of the TE11
mode of HMCW at around 0.27 THz when ρ is 0.77, which
means their phase velocities are well matched, and hence
offers the highest coupling efficiency. The input mode in [26]
is a free-space Gaussian beam, while in this article is a circular
waveguide mode at the output aperture of the horn-type
adapter. This mode is hybrid, with several competing modes
present [27], but the main mode is the fundamental mode of
HMCW, namely the TE11 mode. The goal of phase matching
is to minimize signal loss and reflection, ensuring that the
maximum amount of electromagnetic energy is transferred
from one waveguide to the other.

By achieving optimal phase matching, the electromagnetic
energy can propagate efficiently from the horn-type adapter to
the THz Bragg fiber, leading to more accurate and reliable
measurements. The impedance values are measured exper-
imentally using the vector network analyzer (VNA). The
horn-type adapter is connected to a standard WR-3.4 waveg-
uide and a Bragg fiber with an input aperture, which transfers
the operating TE10 mode from the rectangular waveguide into
the fundamental HE11 mode in the Bragg fiber, occurring as
a linear polarization mode.

Fig. 3 shows the CST simulation results of a parametric
study for the design of a horn-type adapter. Two design
parameters which are the taper length L and the ratio ρ of the
core radius of the horn-type adapter at the output face to the
core radius of the Bragg fiber were investigated. The scattering
parameters, S11 and S21, were computed and compared for
different values of L and ρ by varying one parameter at a
time. Fig. 3(a) and (b) show |S21| and |S11|, respectively, for
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Fig. 4. Simulation and analysis of TE10 to TE11 mode conversion in
WR-3.4 rectangular waveguide using horn-type adapter: S-parameters and
reciprocity analysis. (a) Vertical polarization of TE10 mode at port 1 in
the WR-3.4 rectangular waveguide. (b) Schematic of a horn-type adapter to
convert TE10 mode from a WR-3.4 rectangular waveguide to TE11 mode in a
horn-type adapter. (c) Vertical polarization of TE11 mode at port 2 from the
horn-type adapter. (d) CST simulation result of S-parameters at port 1 and
port 2. (e) CST simulation result of reciprocity of RL between port 1 and
port 2.

different values of L between 25 and 65 mm, and ρ is 0.77.
The results show that the optimal value of L is 45 mm. On the
other hand, Fig. 3(c) and (d) show |S21| and |S11|, respectively,
for different values of ρ between 0.6 and 1.0, and L is 45 mm.
The results reveal that the optimal value of ρ is 0.77.

In the case of a horn-type adapter, accurate measurement
or simulation of the S-parameters is essential for achieving
optimal impedance matching between the connectors and the
waveguides. Impedance matching is critical for minimizing
signal loss and reflection and ensuring the maximum transfer
of electromagnetic energy between the two components [28].

In a WR-3.4 rectangular waveguide shown in Fig. 4(a), the
TE10 mode has the electric field polarized vertically. When
this mode is delivered to a horn-type adapter, as shown in
Fig. 4(b), it is converted to the TE11 mode of the HMCW,
which also has a vertical polarization, as shown in Fig. 4(c).
The simulation results of the S-parameters of the connector
are shown in Fig. 4(d). It can be seen from the results that
the RLs at both ports, i.e., |S11| and |S22|, are lower than
25 dB over the whole frequency range of 220–325 GHz,
which indicates that the horn-type adapter provides a good
impedance matching between the waveguide and the Bragg
fiber. In addition, the ILs in the two directions, i.e., |S21|

and |S12|, are lower than 1 dB, as clearly seen in Fig. 4(e),
which exhibits an efficient coupling provided by the horn-
type adapter. Fig. 4(e) also shows that |S21| and |S12| are
identical, which demonstrates that the horn-type adapter has
a reciprocal property. These characteristics of the horn-type
adapter are achieved by properly designing the horn to have a
specific geometry that provides a uniform field amplitude over
the aperture, as well as the appropriate phase relationship of

Fig. 5. Fabricated horn-type adapter and different lengths of the Bragg fibers
for the second-tier TRL calibration technique and fully assembled the Bragg
fiber with the horn-type adapter used in this article.

the field in the waveguide and the field at the output of the
horn.

III. MEASUREMENT RESULTS AND DISCUSSIONS

The multiple reflections of modes at different interfaces
can lead to interferences and distortions of the signal. In the
proposed measurement setup using a horn-type adapter, inter-
ferences and distortions happen at the interfaces among the
HMCW, connector, and Bragg fiber, which require proper
calibration to de-embed the DUT. To address these issues,
a two-tier calibration [25] technique using short-short-load-
thru (SSLT) [29] and thru-reflect-line (TRL) [30] methods
is employed to improve the accuracy of the S-parameter
measurements. It should be noted that the L in SSLT and
TRL represent different standards. In SSLT, L means Load,
whereas in TRL, L means Line. The first-tier full two-port
SSLT calibration, which is also called offset short calibration,
uses a commercial Ceyear©AV20302 mechanical calibration
kit. Here, the SSLT calibration kits contain the following
standards.

1) Short (S): A fixed flush short kit with a smooth metal
reflection plane is used to terminate the Bragg fiber by
reflecting the signal and hence defines the reference plane.

2) Offset-short (S): The offset-short is made up of a quarter-
wavelength straight section (shim) and an above-mentioned
fixed flush short.

3) Load (L): A matched load kit with WR-3.4 rectangular
waveguide aperture is used, and its RL is greater than 25 dB.

4) Thru (T): No additional kit is required for Thru mea-
surement, which is performed by directly connecting the
two WR-3.4 rectangular waveguides of the two frequency
extenders.

Following the standard calibration procedures and applying
the built-in SSLT calibration algorithm in the VNA, the
reference plane is moved to the end of the WR-3.4 rectangular
waveguide thereafter.

Fig. 5 shows the fabricated horn-type adapters and the
Bragg fibers with different lengths used in the measurement
system. The second-tier TRL calibration, which includes
in situ Thru connection (T), reflection standard (R), and line
standard (L), characterizes the performance of the component
in a systematic and repeatable manner by moving the reference



VIRATIKUL et al.: 220–325-GHz HORN-TYPE ADAPTER 8001910

Fig. 6. Proposed measurement setup. The two horn-type adapters were
attached to both open-ended sides of the WR-3.4 HMRW, and the Bragg
fiber was fixed stability on the sample holders.

plane away from the joint interfaces and to a place in the
Bragg fiber, to eliminate the effect of test fixtures. Here,
the custom-designed TRL calibration kits used to calibrate the
Bragg fiber contain the following standards.

1) Thru (T): A 100 mm length Bragg fiber is provided for
thru measurement, as the reference plane is again moved to
50 mm in the Bragg fiber, away from the interface between
the horn-type adaptor and the Bragg fiber.

2) Reflect (R): The reflect standard is made up of a 50 mm
Bragg fiber and a smooth metal mirror. They are tightly fixed
and attached to the horn-type adaptor. The place of the metal
mirror determines the reference plane.

3) Line (L): The line standard is similar to the Thru stan-
dard, but with an additional quarter-wavelength section in the
middle. The additional quarter-wavelength section, located in
the middle of the line standard, is 3-D printed and seamlessly
integrated with the other sections (two 50 mm sections at the
feed-in and feed-out ports). After measuring all the second-tier
calibration standards and the DUT using the VNA based on the
mounting configuration shown in Fig. 6, we post-processed the
acquired data with MATLAB based on [30], thereby obtaining
all the S-parameters of the DUT.

By combining these methods, the two-tier calibration
technique can improve the accuracy and repeatability of
measurements for Bragg fiber measurement by eliminating
the effect of the horn-type connector and other text fixtures,
but it requires careful execution and appropriate calibration
standards to minimize environmental effects.

The IL is the ratio between the incident power to the
transmitted power, expressed in dB, which is given by

IL(dB) = −20log|S21| (1)

where |S21| represents the magnitude of the transmission
coefficient [31].

The RL is the ratio of the incident power to the reflected
power, expressed in dB, which is given by

RL(dB) = −20log|S11| (2)

where |S11| represents the magnitude of the reflection coeffi-
cient [31].

To fabricate the Bragg fiber, the design was first created
using CST simulation software. The design is then loaded
into the 3-D Systems PolyJet 7000 HD 3-D printer, and the
printer is set up to print using the stereolithography technique.
The next step is to fabricate the horn-type adapter using CNC
milling. The connector is made of metal and is flared to
match the diameter of Bragg fiber. The CNC milling machine
precisely shapes and sizes the connector according to the
design specifications to allow for assembly with the Bragg
fiber. Finally, the performance of the THz Bragg fiber is tested
using the proposed VNA-based integrated measurement setup
to measure its transmission and reflection characteristics. The
data obtained are compared with the simulation results to
verify the performance of the Bragg fiber.

Fig. 6 shows the measurement setup used in the study, with
two horn-type adapters attached to both open-ended sides of
the WR-3.4 HMRW and the Bragg fiber fixed securely on
the sample holders. By using the above-mentioned two-tier
calibration technique described, the Bragg fiber can be easily
investigated in terms of its uncomplicated setup and repeata-
bility. Fig. 7 shows the simulated electric field propagation
at 265 GHz in a back-to-back setup between the horn-type
adapters and the Bragg fiber. The simulation exhibits the TE10
mode, which is the fundamental mode of propagation in a
WR-3.4 rectangular waveguide. However, this mode cannot
efficiently couple to the Bragg fiber due to its confined electric
and magnetic fields, which have a zero value at the waveguide
walls. To overcome this limitation, a horn-type adapter was
utilized to transform the TE10 mode into the dominant TE11
mode, which has a good beneficial field distribution for
coupling. The shape of the horn gradually expands from the
rectangular waveguide to a circular cross section, allowing the
wave to spread and match the impedance of the subsequent
Bragg fiber.

With similar mode profiles and phase velocity, the dominant
TE11 mode in the horn-type adapter can evolve into the
quasi-single-HE11 mode in the Bragg fiber. The Bragg fiber
acts as a distributed reflector, causing multiple reflections
of the electromagnetic wave, leading to the formation of a
standing wave pattern. The proposed measurement setup is a
VNA-based integrated setup. The key parameters of equipment
used for experiments are listed in Table II. A Ceyear© VNA
is used in this work, and the operating frequency range is
extended to the range of 220–325 GHz using two frequency
extenders, which are also from the Ceyear©. Standard WR-3.4
HMRWs are used in frequency extenders. The SSLT calibra-
tion technique was used to move the reference plane to the
end of the WR-3.4 HMRW. The SSLT calibration method
was utilized to ensure precise measurements of THz signals
traveling through the waveguide.

The S-parameters S11 and S21 of the Thru configuration
were measured and corrected using the SSLT, as shown in
Fig. 8. The S11 and S21 were found to have good performance,
with S11 less than −40 dB and S21 approximately 0 dB
across the frequency range of 220–325 GHz, demonstrating
the first-tier calibration is valid. Additionally, the measured
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Fig. 7. Simulated electric field propagation at 265 GHz between the horn-type adapters and the Bragg fiber using a back-to-back setup.

TABLE II
KEY PARAMETERS OF THE EQUIPMENT USED FOR EXPERIMENTS

Thru spectra exhibited S-parameter reciprocity [32], indicating
that the calibration accurately characterized the behavior of the
waveguide and removed any potential errors that could affect
the measurement results.

To mitigate the effects of multiple reflections, it is important
to carefully design the measurement setup and use appropriate
calibration techniques. This includes the use of specialized
calibration standards or techniques to account for the effects
of reflections and other sources of measurement error. It is
also important to carefully analyze the measurement data and
perform appropriate data processing and filtering to remove
any unwanted effects of multiple reflections and other sources
of error. Therefore, in this study, the second-tier TRL calibra-
tion was performed to enhance the accuracy and reliability of
the measurements. Fig. 9 shows the measured and simulated
S-parameters and propagation loss of the Bragg fiber with a
length of 124 mm. In Fig. 9(a) and (b), the de-embedded
measured IL and propagation loss are less than 1.5 dB

Fig. 8. Measured thru spectra with the WR-3.4 rectangular waveguides of
the frequency extenders directly connected after applying the first-tier SSLT
calibration.

Fig. 9. Measured and simulated S-parameters and propagation loss of
the Bragg fiber. (a) Measured S-parameters of the DUT. (b) Measured
propagation loss of the DUT after applying the two-tier calibration technique.
(c) Simulated S-parameters of the DUT. (d) Simulated propagation loss of the
DUT de-embedded using the TRL calibration.

and 12 dB/m from 220 to 305 GHz. Fig. 9(c) illustrates
the de-embedded simulation results of the DUT using the
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TABLE III
COMPARISONS OF KEY PROPERTIES BETWEEN DIFFERENT THZ MEASUREMENT SETUPS

proposed setup to estimate the S-parameters and propagation
loss of the Bragg fiber. The RL is less than 15 dB, and the
IL is less than 1.5 dB from 220 to 305 GHz. The RLs of
both the measured and simulated results are relatively low,
indicating that most power has been coupled into the Bragg
fiber. Fig. 9(d) shows the simulated propagation loss of the
THz Bragg fiber, which is well consistent with the measured

results shown in Fig. 9(b). There are several factors that can
cause measurement results to differ slightly from simulation
results. Some of the most important factors are the nonuniform
dimensions of the Bragg fiber, surface roughness, and material
impurities that may contribute to higher propagation losses.

Table III shows the comparisons of key properties of
the proposed VNA-based integrated setup using the two-tier
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calibration techniques with other existing techniques for the
characterization of different types of waveguides in the THz
frequency band. The table summarizes the type of waveguide,
operating band, type of measurement setup, calibration tech-
nique, the complexity of setup, coupling efficiency, impedance
adjustability, measurement repeatability, operator experience
requirement, and cost of setup tools [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47].
Three types of measurement setups are classified based on
their characteristics as follows.

1) The VNA-based quasi-optical setup is very complex and
requires expensive setup tools. It offers high measurement
repeatability but moderate coupling efficiency and impedance
matching capability. It also requires a high level of operator
experience.

2) The THz-TDS-based optical setup is very complex and
requires high-cost setup tools. It provides high measure-
ment repeatability but intermediate coupling efficiency and
impedance matching capability. It also requires very experi-
enced operators.

3) The VNA-based integrated setup is less complex and
requires low-cost setup tools. It offers high measurement
repeatability, coupling efficiency, and impedance-matching
capability. In addition, it requires only a small amount of
operator experience. From this comparison, the proposed
VNA-based integrated setup using a horn-type adapter has
more overall advantages compared to other existing measure-
ment methods.

IV. CONCLUSION

In this article, a novel VNA-based measurement approach
for the characterization of Bragg fibers in the THz frequency
range is presented. It offers high repeatability, coupling effi-
ciency, and impedance matching capability while requiring
simple setup, little operator experience, and inexpensive setup
tools. The proposed method uses a horn-type adapter to
efficiently couple electromagnetic waves between the test
instrument and the Bragg fibers for accurate characterization.
The connector was designed for the operating frequency
range of 220–325 GHz and fabricated by CNC milling
technology. The suitable taper profile of the horn structure
provides smooth guidance of electromagnetic waves, resulting
in minimal signal loss and improved transmission efficiency.
Mode matching from TE11 in a horn-type adapter to HE11
in a THz Bragg fiber is achieved by selecting a proper
aperture size for the horn. The S-parameters were evaluated
using the two-tier calibrations, SSLT and TRL, to eliminate
sources of error and ensure reliable, consistent, and robust
measurements. The performance of the horn-type-connector
shows that the RL is less than 25 dB, and the IL is nearly
zero, indicating good signal transmission efficiency and min-
imal signal loss and reflection. Moreover, the de-embedded
simulation and measurement results of the DUT using the
proposed setup also show the accuracy of the S-parameters
and propagation loss of the Bragg fiber. The measured RL
of the DUT is about 15 dB, and the propagation loss
is about 12 dB/m, which agrees well with the simulated
results.
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