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Compensation of Thermal Effects on Tiltmeter
Measurements With Moving Least Squares
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Abstract— This article describes a method for compensating
thermal effects on tiltmeter (TM) readings using operating
temperature measurements. This practice is necessary when the
contribution of thermal effects is comparable with the measurand
inclination, which is typical of monitoring applications. In such
contexts, several temperature-related phenomena take place con-
currently and a customized compensation model is necessary.
A tailored moving least square (MLS) approach is presented. This
formulation is able to separate the contribution of the unknown
measurand signal from the contribution of influence quantities,
considered as exogenous inputs. Moreover, this method returns
the model coefficients over time. However, the uncertainty in the
temperature measurements, used as regressors, may induce bias
in coefficient estimates. Therefore, a strategy for a posteriori
evaluation and correction of the coefficients is proposed and
validated with the Monte Carlo method (MCM). The effectiveness
of this method is illustrated on a real case, consisting of the
inclination monitoring of a wind-turbine tower.

Index Terms— Measurement error models, Monte Carlo
method (MCM), moving least squares (MLSs), structural health
monitoring (SHM), thermal effects compensation, tiltmeter (TM).

I. INTRODUCTION

THE structural health monitoring (SHM) is a branch of
diagnostics that aims at long-term monitoring of the

health status of structures [1], [2]. This is achieved by measur-
ing physical quantities, related both to the structure and to the
environment, that may prefigure a damage or reveal anomalies
in operating conditions. Each SHM application requires a spe-
cific measurement system design and data analysis approach.
In fact, how to convert data into information on the health of
the structure is still an open question to be addressed by the
research community [3], [4]. Another crucial aspect concerns
the identification of the environmental physical quantities that
influence the measurements of the structural parameters of
interest [5]. Due to nonnegligible variations in environmental
conditions, it is often necessary to “normalize” the struc-
tural response and compensate for interfering inputs. This
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enables comparison of monitored parameters between different
conditions.

Inclination sensors are widely adopted in the field of SHM,
using various technologies and configurations, such as wireless
MEMS tilt sensors [6], [7] or wired fiber optic inclinome-
ters [8]. O'Leary and Harker [9] developed a framework to
measure the deflection of arbitrary structures, using the data
from an array of tiltmeters (TMs) and an approach based
on regularized least squares (LSs). They aim to retrieve the
deflection curves from their local derivatives measured by the
sensors. Additionally, the same authors addressed the issue
of uncertainty on boundary conditions as well [10]. In many
monitoring applications, the meaningful part of the inclination
signal may be comparable or even smaller than the other inter-
fering contributions. When this happens, a compensation is
mandatory to reveal the information being sought and reach an
adequate measurement accuracy. For example, Yang et al. [11]
developed an approach to compensate the effects of vibrations
in a drilling process on inclination measurements near the
bit. The main interest of this work concerns the effects of
the thermal effects on inclination sensor, as it is one of
the influence quantities with the greatest impact on inclina-
tion measurements. Despite temperature-insensitive tilt sensors
exist [12], [13], it is common to deal with sensors having a
zero drift proportional to its operating temperature. In such
a case, it is necessary to correct the angle measurement a
posteriori. A possible approach is to develop a temperature
compensation model in the TM calibration phase [14], using,
for instance, a dedicated test rig [15] and a temperature
reference. Although this option leads to great accuracy, it is
not always feasible due to its greater complexity and cost.
An example of this approach, adopted for SHM, is provided
in [16]. A first stage of sensors characterization is performed in
laboratory with a climatic chamber, and then, the temperature
compensation is applied for on-site measurements on a real
structure [17]. Nevertheless, in many monitoring applications,
several temperature-related phenomena can take place con-
currently. Some of these may depend on the experimental
measurement context, rather than the sensor, and alter the mea-
surand itself. Therefore, a laboratory characterization phase
of these systematic effects is not always possible, meaning
that the exact magnitude is unknown a priori. Consequently,
to obtain a meaningful measure of inclination, these effects
must also be compensated for. Despite its relevance, this
topic is not addressed in the literature, at the best of authors’
knowledge.
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This article presents a framework to compensate for sys-
tematic effects on inclination measurement, with particular
focus on thermal effects. The proposed approach is compatible
with typical SHM applications. The major contributions of this
article are as follows.

1) The proposed technique performs a compensation using
a measurement model customized to the specific appli-
cation. It can be applied directly using the operational
signals from the TM, together with the signals repre-
senting the phenomena to be compensated. The latter
are considered the inputs to the measurement model.

2) A tailored version of moving LSs (MLSs) [18], [19] is
formulated in order to estimate the unknown model coef-
ficients over time. This method uses local regressions to
split the contribution of influencing input quantities from
the measurand signal.

3) A strategy for assessing and correcting the bias on
the model coefficients caused by the uncertainty of the
input quantities. The bias correction requires a realistic
estimate of the uncertainty, in addition to the operational
input signals. Its validity is demonstrated by means of
the Monte Carlo method (MCM).

The theoretical basis of the technique is illustrated, and the
effectiveness of the proposed approach is evidenced by its
application to a real case, which consists of monitoring the
inclination of a wind-turbine tower.

This article is structured as follows. Section II provides an
overview of the monitoring test case, the measurement setup,
and the measurement model. Section III illustrates the tailored
MLS formulation for estimation of coefficients and reconstruc-
tion of inclination signal. In Section IV, compensation for
thermal effects is applied to the experimental data. Two models
are compared, highlighting how a proper compensation model
is crucial. Section V describes the strategy for bias evaluation
and correction. In Section VI, the MCM is exploited to charac-
terize the effectiveness of bias correction and to propagate the
instrumental uncertainty through the measurement algorithm.
Section VII shows the comparison between the results with
and without the bias correction. Finally, Section VIII draws the
main conclusions about the approach proposed in this article.

II. INCLINATION MONITORING OF WIND-TURBINE
TOWER: PROBLEM DEFINITION AND

MEASUREMENT SETUP

The case study presented in this article concerns the incli-
nation monitoring of an onshore wind-turbine tower. The
monitoring became necessary due to ground movements below
the tower foundations, which induce a progressive inclination
of the structure. The turbine is stopped for safety reasons and
does not produce power during the whole monitoring period.
The period under analysis is from February 2022 to April
2023. The objective is to monitor the subsidence state over
time to identify dangerous trends. Therefore, the measurand is
the change in the inclination of the tower along the direction
of subsidence with respect to the initial state. The target
accuracy is 0.01◦ to match the order of magnitude of expected
variations. The most relevant interfering inputs identified are

Fig. 1. Scheme of the sensors installed inside the wind-turbine tower: the
TM, the thermocouple to measure the sensor operating temperature (TC0),
and two thermocouples to measure the surface temperature on opposite sides
of the tower in the subsidence direction (TC1 and TC2).

Fig. 2. Pictures of the location and installation of the sensors inside
the wind-turbine tower. TM installed on the inner wall of the tower (left).
Measurement locations of TC0 and TC2 thermocouples with respect to the TM
(no picture available with the three sensors installed) (top right). Installation
of thermocouple TC1. The same installation method is used for TC0 and TC2
(bottom right).

two thermal effects: the typical thermal zero drift of the sensor
and the thermal bending of the tower due to temperature
gradients in the structure. In fact, the incoming solar radiation
on the cylindrical structure causes a temperature gradient
which consequently induces a nonuniform thermal expansion
of different sides of the tower. This causes a thermal bending,
which depends on amount and direction of solar radiation.
Both effects must be compensated, since they are the prevalent
contributions on the sensor readings.

A. Measurement Setup

The tower has been instrumented with a TM on its inner
surface, at a height of 6 m from the basement, together with
three temperature sensors. The scheme of the measurement
setup is depicted in Fig. 1. Some pictures of the measurement
setup inside the tower are provided in Fig. 2. The inclination
sensor is the Sisgeo 0S542MA1002 bi-axial TM, and one
of the two sensing axes is aligned with the direction of
subsidence, which is the only one considered in this work.
The sensor has a measuring range of ±10◦ and a resolution
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Fig. 3. Monitoring inclination signal from February 2022 to April 2023.
The focus on a portion of the signal highlights the daily patterns induced by
thermal effects on inclination measurements.

of 0.01%FS (0.001◦). The mechanical bandwidth is 18 Hz,
which is more than adequate for quasi-static measurements
required in this work. The technical specifications also report
an accuracy of 0.020◦, expressed as maximum permitted error
(MPE), and an offset temperature dependence of ±0.003◦/◦C.
This causes the zero temperature drift, but neither the sign
nor the exact value of the “temperature coefficient” is known
a priori for each sensor. The analog signal from the TM is
a 4–20 mA current loop signal and is acquired by means
of a National Instruments module NI 9203. The operating
temperature of the TM is measured by a thermocouple (TC0).
Two further thermocouples (TC1 and TC2) are installed to
measure the temperature of the inner surface of the tower.
The probes are positioned on opposite sides of the tower in
the direction of subsidence. All thermocouples are type K and
Class 1. According to the standard [20] IEC 60584-1:2013,
the tolerance for them is ±1.5 ◦C, considering their operating
range temperature (approximately from −10 ◦C to +50 ◦C).
Thermocouple signals are directly acquired by National Instru-
ments module NI 9211. No additional hardware is required for
signal conditioning, since this module is designed specifically
for thermocouples.

B. Experimental Data

The raw signal from each sensor is sampled at a frequency
of 40 Hz. Then, the mean values over 10 min are computed
and stored, so that 144 samples per day are available for
each signal. This reduces the standard deviation given by
the random components by a factor of 1/(10 · 60 · 40)1/2

≈

6.5 · 10−3. The time series so obtained are considered as the
output of the sensors and are used for all analyses conducted
in this work. In the following, the generic i th sampling time
on the discrete time axis is denoted by ti . The absolute angle
measured by the TM is determined by the sensor fastening
and its bias, in addition to the tower inclination. Since the
interest is on the variation of inclination, the initial offset is
subtracted from the entire TM signal. The offset is computed
as the mean value of inclination in the first day of monitoring.
The resulting signal for the monitoring task, indicated by
am(ti ), is depicted in Fig. 3. The accuracy of these values
can be considered higher than the TM specifications. The TM

Fig. 4. Monitoring temperature signals, from February 2022 to April 2023,
representing the thermal effects to be compensated.

measurements depend on a combination of systematic and
random effects. The random component is reduced by the
averaging process described above. The systematic component
that is dependent on the input angle (e.g., nonlinearity) can
be considered nearly constant during the entire monitoring
period. This is because the maximum change of inclination
is in the order of 0.1◦, corresponding to 1%FS. Since am(ti )
is the variation with respect to the initial value, the residual
bias is considered negligible with respect to the target accuracy
of this monitoring. For these reasons, in this application, the
main contribution to the measurement accuracy is given by the
systematic effects caused by thermal phenomena. By observ-
ing am(ti ), an oscillatory pattern on daily basis is evident.
This does not represent the actual movements of the tower,
but it is the result of thermal effects that requires a proper
compensation. The temperature signals used for this purpose
are depicted in Fig. 4. The operating temperature of the TM
T (ti ) is measured by the thermocouple TC0. The temperature
difference 1T (ti ) = T1(ti ) − T2(ti ) represents the thermal
gradient between opposite sides of the structure, along the
subsidence direction. These are measured by TC1 and TC2,
indicated, respectively, as T1(t) and T2(t).

C. Measurement Models

The actual tower inclination signal as(t), i.e., the measur-
and, can be retrieved from measured signal am(ti ) using a
measurement model. A typical model for TM measurement to
compensate the temperature drift is

am(t) = as(t) + T (t)aT (1)

where aT represents the “temperature coefficient” of the
sensor thermal drift. As mentioned earlier, the value of aT

is unknown and different from sensor to sensor. The mea-
surement model (1) needs be customized to account for the
thermal bending of the tower as well. The assumption is that
this contribution on the inclinometer signal is proportional to
1T . Consequently, the model becomes

am(t) = as(t) + T (t)aT + 1T (t)a1T (2)

where a1T is the “thermal bending coefficient” pertaining
to this particular installation. This model parameter is also
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unknown and must be gathered from operational data. In both
models, dynamic effects and lagged signals are intentionally
neglected. The model (2) is adequate for monitoring purposes,
since the main phenomena are included. The adequacy of the
measurement model is assessed according to the guidelines
provided by the GUM [21]. Ahead in this article, a detailed
description is given of the measurement algorithm. The aim
is to extract the inclination signal as(ti ) and the model
coefficients from the TM readings am(ti ) and temperature
measurements T (ti ) and 1T (ti ).

III. MLS APPROACH FOR EXOGENOUS
INPUTS COMPENSATION

The typical MLS approach [18], [19] is often used for
curve and surface fitting and relies on the concept of
“local regression” [22]. The same approach is also widely
adopted for smoothing data as in Savitzky–Golay filter [23]
or locally weighted scatterplot smoothing (LOWESS) [24],
where data is locally fit with a set of polynomial func-
tions. The MLS formulation proposed here relies on the
same basis, but it is tailored to decompose the regressand
signal y(t), i.e., the explained variable, in two main con-
tributions: the underlying signal ys(t) and the exogenous
inputs yex(t)

y(t) = ys(t) + yex(t) . (3)

The term “exogenous” indicates that the value of a variable
is determined outside the model and is imposed on it. This
is what happens for influence quantities on TM readings.
In this formulation, time t is considered as the independent
variable to scroll the regression window of MLS, analogously
to the moving average. By means of local regressions, the
two macrocontributions can be estimated, thus recovering an
approximation of the underlying signal and compensating for
the exogenous inputs. The local regressions are performed
with the weighted LSs (WLSs), which is an extension of the
common OLS [25].

A. WLS Regression

A brief summary of WLS regression and its properties is
reported here. Consider a linear model in the following form:

y = Xβββ + εεε. (4)

The column vector y contains n observations of the variable
to explain, X is an n × m matrix of regressors (named
also explanatory variables), and βββ is the vector of m model
parameters. The vector εεε contains the random error terms
of each observation that are independent and identically dis-
tributed with zero mean and variance σ 2

ε . A diagonal n × n
weighting matrix W, having nonnegative entries on the main
diagonal, is defined to assign different weights to each obser-
vation. The WLS estimate b of the unknown parameters βββ

is

b =
(
X⊤WX

)−1X⊤Wy . (5)

The WLS regression problem can always be rewritten as an
analogous OLS problem. For this reason, in this article, they

are considered analogous when their general properties are
discussed. When the conditions of the Gauss–Markov theorem
are fulfilled, the OLS estimates of regression coefficients are
unbiased and have the minimum variance, among all the
unbiased linear estimators [26]. For this reason, it is often
referred to as the “best linear unbiased estimator” (BLUE).

B. Tailored Formulation of MLSs

Let y(ti ) be the observed time series of the regressand signal
and S = {ti } be the set of the whole time domain for which the
data are available. The subsets of local data Sk are determined
by choosing a time window of length L and a set of generic
time instants tk as window centers. The subscript k denotes the
index of each regression window, for a total of K windows.
The subsets Sk are defined as

Sk = {ti : |ti − tk | ≤ L/2} . (6)

The choice of the window centers is to some degree arbitrary.
Clearly, the combination of L and the set of tk must be such
that the union of all Sk covers the entire time domain S.
Therefore, the spacing between consecutive window centers
must not exceed the window length L . The samples of y(ti ),
corresponding to the sampling instants included in Sk , are
briefly denoted by yik and arranged in a column vector
indicated with yk .

In each window, regressand yk is fit with two different
sets of regressors. The approximation of the underlying signal
is assigned to a local polynomial of degree p. This choice
makes it possible to approximate ys(t) and its derivatives
within the regression window [27]. Instead, the contribution
of all influencing input quantities yex(t) is fit by a set of
exogenous explanatory variables q1(t), . . . , qe(t), where e is
the number of inputs considered. These signals are required to
compensate for all influencing undesired effects acting on the
observed signal y(t). The set of polynomial basis functions
is conveniently formulated on a normalized local abscissa
defined as

xk(t) = (t − tk)/L . (7)

Therefore, it follows that |xk(t)| ≤ 1/2 within the window.
The polynomial regression matrix Xp,k of degree p for the
kth regression window can be written as

Xp,k =


...

... . . .
...

1 x1
ik . . . x p

ik
...

... . . .
...

 (8)

where xik briefly denotes the local abscissa defined in (7)
calculated for each time ti in the subset Sk . The other set
of regressors consists of the observed signals of exogenous
explanatory variables q1(ti ), . . . , qe(ti ). These fill the columns
of the matrix Qk defined for the kth regression window

Qk =


...

... . . .
...

q1,ik q2,ik . . . qe,ik
...

... . . .
...

 (9)
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where the subscript ik denotes the signal sample at the time
ti in the subset Sk . Combining the two sets of regressors, the
full matrix for each time window becomes

Xk =
[
Xp,k Qk

]
. (10)

Consequently, the WLS estimate of local regression coeffi-
cients bk is

bk =
(
X⊤

k WkXk
)−1X⊤

k Wkyk . (11)

The diagonal entries of the weighting matrix Wk are computed
according to an arbitrary weighting function w(x) ≥ 0 eval-
uated on the local abscissa; hence, diag(Wk) = w(xik). This
aspect is discussed in detail ahead in this article. The local
approximation of the signal within the regression window is

ŷk = Xkbk (12)

which is the representation of yk in terms of all the cho-
sen explanatory variables included in Xk . However, the
m × 1 vector bk can be divided into two subvectors.

1) bp,k contains p + 1 coefficients of local polynomial
approximation of the underlying signal.

2) bex,k contains e coefficients accounting for the effect of
the exogenous inputs considered in the model.

It holds that m = e + p + 1. This is a key feature of the
MLS approach proposed in this article. Under the hypothesis
that ys(t) can be approximated by a local polynomial, the
contribution of exogenous inputs can be separated from the
underlying signal. The two parts can be calculated using
the following expressions:

ŷs,k = Xp,kbp,k (13a)

ŷex,k = Qkbex,k . (13b)

Once the local regressions are available, they need to be
merged on the entire time domain S. In such way, the MLS
global approximations of the observed signal ŷ(ti ) and of
its macrocomponents ŷs(ti ) and ŷex(ti ) are obtained. To get
the global approximation of the underlying signal ŷs(ti ) is
the main objective of this article. At this stage, the shape
of the weighting function w(x) plays a crucial role. On the
one hand, it has the usual role that weights play in WLS
regressions through the matrix Wk in (11). On the other
hand, it determines how local approximations are merged with
adjacent ones. Consequently, its impact is twofold because it
controls the MLS results both locally and globally. As usual
in MLS approaches, the weights are symmetric with respect to
the window center tk and are a nonincreasing function of the
distance from it. The global MLS reconstruction of a signal
is obtained as weighted average of all the overlapping local
WLS approximations that are available for the i th sample.
From (12), the global MLS approximation of y(ti ) is computed
as

ŷ(ti ) =

∑K
k=1 ŷik wik∑K

k=1 wik
(14)

where wik means w(xik). The same can be done for
ys(ti ) and yex(ti ) using, respectively, (13a) and (13b). This

Fig. 5. Cosine tapered window function adopted as weighting for MLS
fitting. The flatness ratio h controls the extent of the flat part versus extent of
the cosine part.

method of merging local data is analogous to the Shepard’s
interpolation [28]

A signal fit using this approach is continuous and dif-
ferentiable only if the window function w(x) has these
properties [19]. An example is the “tricube” function proposed
in [29]. For this application, the authors use the cosine tapered
window function [30], also known as “Tukey window,” that
can be written as

w(x) =


1, if |x | <

h
2

1
2

(
1 + cos

(
π

2|x | − h
1 − h

))
, if

h
2

≤ |x | ≤
1
2

0, if |x | >
1
2

(15)

where h is the fraction of the window length L to be flat and
hence is referred to as “flatness ratio”. The function, depicted
in Fig. 5, holds all the desired properties. An advantage is
that the parameter h allows to easily control the shape of
the function, giving more or less relevance to data close to
the window edge. Moreover, the function thus defined has an
identically null value outside the regression window.

In summary, this MLS formulation allows to estimate the
underlying signal ŷs(ti ), compensating the exogenous inputs
considered in the model. As a further product, it also returns
the coefficients bex,k representing the relationship between the
exogenous inputs q1(ti ), . . . , qe(ti ) and the actual observed
signal y(ti ).

IV. APPLICATION OF MLS TO EXPERIMENTAL DATA

The MLS for exogenous input compensation is suitable for
estimating all unknowns in the models (1) and (2). The signal
am(ti ) measured by the TM is the observed variable to be
explained, while the inclination signal of the tower as(ti ) is
the underlying signal to be retrieved with the MLS approach.
The temperature T (ti ) and the temperature difference 1T (ti )
are the exogenous inputs to the model. It is important to note
that it is not necessary to know the absolute value of the
influence quantities, but it is important to know the “shape” of
these signals, hence the variations with respect to an arbitrary
offset. Here, the offset is 0 ◦C for both temperature signals.
Each night/day thermal cycle is considered an “atom” for the
following analyses; therefore, the sequence of window centers
tk is composed of time instants spaced one day apart that starts
at 12:00 of the first day of monitoring. The window length is
chosen to be L = 15 days, while the flatness ratio is h = 1/L .
This means that each local regression is focused on the middle
day of the window. The number of observations for the WLS
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estimates is n = 2160, apart for the regression windows at
the edges of the time domain. In such worst cases, the actual
window length is at minimum L/2. The signal as(ti ) is locally
fit with a fourth-degree polynomial (p = 4). A general aspect
must be pointed out regarding the choice of p. If the MLS
polynomial approximation is adequate to fit the signal as(t) in
a given regression window, then the coefficients pertaining to
exogenous inputs are not affected. Where the local polynomial
regression is poor, it causes a bias on the other coefficients
within the regression window.

In the following, the compensation of thermal effects is per-
formed with both measurement model described in Section II.
The aim is to highlight the impact of an incomplete compen-
sation, with respect to a model customized to the application.
The model (1) considers the TM operating temperature T (ti )
as the only exogenous variable (e = 1). An estimate of
the temperature coefficient aT is returned for each regression
window. Hence, the total number of parameters to be estimated
for each local regression is m = 6. The model (2) is adopted
to account for the thermal bending as well. Therefore, the
temperature difference 1T (ti ) between the opposite side of
the tower in subsidence direction is included in the exogenous
inputs considered (e = 2). The total number of parameters to
be estimated for each local regression becomes m = 7. This
customized model returns also an estimate for the thermal
bending coefficient a1T . Both models assume aT and a1T

to be constant within the regression window. Fig. 6 shows
the results obtained from MLS fitting for both models. The
results are compared in terms of the tower inclination signal
âs(ti ), obtained from (13a) and (14), and the model coefficients
âT (tk) and â1T (tk) estimated for each regression window. The
difference between the inclination signal âs(ti ) and the TM
readings am(ti ) is evident. This justifies the need to operate
the compensation of thermal effects. Signals from both models
have a similar trend and are close to each other for the most
part of the monitoring period. However, model (1) provides
significantly lower estimates for some periods with respect
to model (2). Regarding the other model parameters, it is
plausible to suppose the coefficient aT constant over time,
since it is a characteristic inherent to the sensor, while no
assumptions can be made about a1T , since the daily solar
radiation on structure changes with the seasons (intensity,
direction, and so on). The estimates of âT from model (1)
appear to be inconsistent with the realistic hypothesis of
a constant value over time. Conversely, model (2) returns
more consistent estimates of the temperature coefficient of
the sensor. Despite some fluctuations are still present, their
magnitude is reduced. The estimates of the thermal bending
coefficient â1T , only available from model (2), suggest a
seasonal trend, with the highest value in summer and the
lowest in winter.

A. Analysis of Residuals

The analysis of residuals makes it possible to assess the
adequacy of the models [26]. The residuals rm(ti ) are defined
as

rm(ti ) = am(ti ) − âm(ti ) . (16)

Fig. 6. Inclination signal âs(ti ) and model coefficients âT and â1T estimated
with MLS adopting models (1) and (2).

Fig. 7. Residuals rm(ti ) between measured signal am(ti ) and predicted signal
âm(ti ) for model (1) on top and of model (2) on the bottom.

Gross information can be found out from verifications
of their basic properties and some diagnostic plots. In this
case, the residuals concern the global approximation with
MLS.

Since the experimental data are in the form of time series,
the residuals are first plotted versus time, together with their
histograms, in Fig. 7. The reconstruction of measured signal
with model (1) results heavily incomplete; in fact, the residuals
have predominant oscillatory pattern versus time, as antici-
pated in Section II. In contrast, the residuals of model (2) no
longer show such a clear pattern, although some small struc-
tured oscillations are still visible. The histograms of residuals
supply information about the distribution of the observed error.
For model (1), it is evident a serious departure from a Gaussian
probability density function (pdf). Moreover, skewed residual
distribution often suggests an incomplete modeling. Instead,
the histogram of residuals for the model (2) is symmetrical
and much closer to a Gaussian pdf.

A basic property of the residuals from LS regressions is that
they must have a zero mean by definition. For both models,
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Fig. 8. On the left, the RMSE for model (1) and model (2) for each regression
window. On the right, the histogram of RMSE for both models.

Fig. 9. Residuals rm(ti ) versus temperature difference 1T (ti ) for model (1)
on the left and of model (2) on the right.

this property is satisfied even after the operation of merging
together the local WLS regression.

Another basic aspect to be evaluated is whether the error
standard deviation σε is constant across all observations. This
can be estimated by the root-mean-square error (RMSE) of
the residuals. Fig. 8 shows that the RMSE calculated for each
regression window changes over time for both models. This is
somehow expected, since the environmental conditions of the
wind turbine can change considerably over time. Moreover,
sporadic phenomena, not considered in the model, may occur.

The plot of residuals rm(ti ) versus 1T (ti ) is depicted
in Fig. 9, which indicates the clear presence of a relevant
omitted variable in model (1). Conversely, the residuals of
model (2) are independent of 1T (ti ). This is also the cause
of the difference in âs(ti ) and âT estimates between the
two models. In Fig. 10, the sample autocorrelation function
(ACF) is depicted to check the residuals correlation over
time. The model (1) produces residuals with strong periodic
correlation. The period is of one day. The residuals from
model (2) do not show this behavior, having much weaker
ACF, especially for lags greater than three days. Anyway,
a relevant serial correlation occurs for lags of less than one
day. This is somehow to be expected, since the data used
for MLS fitting come from time series; thus, it is likely that
the errors neighbored in time are similar. The analysis of
residuals shows substantial differences in the results obtained
with the two models. In particular, this analysis underlines the
negative impact of a relevant omitted variable in the model (1).
Therefore, it emphasizes the need of an adequate compensation
of concurrent thermal effects on TM readings and the choice
of a custom model as (2) is mandatory in such context.
For these reasons, the following analyses are focused on
model (2).

B. Potential Departure From LS Assumptions

When an adequate model of the measurand is adopted, the
MLS fitting with exogenous inputs demonstrated to provide

Fig. 10. Sample ACF of residuals rm(ti ) for model (1) and model (2).

plausible result. However, the trustworthiness of this result
needs to be further investigated to identify possible flaws in
the coefficient estimates. In fact, the “structure” of the data is
determined by the operating conditions, so it may depart from
the assumptions made in WLS regression. A detailed discus-
sion about the problems occurring when certain assumptions
are violated is available in [31]. Both OLS and WLS regres-
sions produce unbiased coefficient estimates with minimum
variance only if the hypotheses of Gauss–Markov theorem are
met, thus holding the BLUE status. The undesirable effects of
these violations can be divided into two categories: those that
cause a bias in the estimate and those that alter the variance
of the estimate.

The following violations of assumptions have an impact on
the variance of local coefficient estimates. The RMSE depicted
in Fig. 8 is heterogeneous over time. The minimum variance
property of OLS/WLS derives directly from the homogeneity
of the error variances, so heterogeneous variances degrade this
property. A similar effect is produced by correlated errors.
In this application, the usage of data in form of time series
leads to serially correlated errors (Fig. 10). In such cases,
the regression coefficients remain unbiased but the estimator
may become inefficient. The collinearity between regressors
may be an issue especially for the exogenous inputs. Since
the operating conditions determine the temperature signals,
different degrees of correlation occur during the monitor-
ing. The Pearson correlation coefficient ρ(T, 1T ) for each
regression window is shown in Fig. 11. In fact, this ranges
from zero to about 0.5, thus meaning that there is no risk
of collinearity, but only of partial correlation. The collinearity
problem appears when the correlation between two exogenous
inputs approaches the unity. Therefore, this is an aspect to
be monitored to check the reliability of the compensation
performed with MLS. The approximation of the dependent
variable is not seriously affected by the use of correlated
regressors. However, the greatest impact is on the coefficient
estimates as it makes the LS solution unstable. A straight-
forward approach to handle this issue is to obtain additional
data, in order to reduce the risk of singularity. In fact, this
aspect is one of the main driver for the choice of the window
length L .

The following violations of assumptions may lead to biased
coefficient estimates. A possible cause is the presence of a
relevant omitted variable, as demonstrated in the previous
sections. The model (2) is considered adequate for the moni-
toring, since it a good compromise between its completeness
and its complexity. Therefore, the effect of potential omitted
variables is considered negligible. Some outliers may occur
due to sporadic phenomena during the operating conditions,
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Fig. 11. Pearson correlation coefficient between exogenous regressors T and
1T for each regression window.

especially in long-term monitoring. These could cause bias,
but the nature of MLS approach restricts their effect to the
regression window where they occurs. The last aspect regards
the errors in the explanatory variables. Indeed, one of the
fundamental assumptions of OLS/WLS is that the explanatory
variables are exactly known, while all the errors are on
the explained variable. When this hypothesis is violated, the
coefficient estimates are biased. In these cases, it is necessary
to approach the field of so-called errors in variable models
or measurement error models [32]. In the context of this
monitoring, the exogenous input data come from experimental
measurements and are thereby subject to measurement uncer-
tainty. For this reason, the risk of biased coefficient estimate
exists, and it is important to assess its impact on the final result.
The next section is dedicated to a detailed discussion about this
aspect.

V. ACCOUNTING FOR UNCERTAINTY IN EXOGENOUS
EXPLANATORY VARIABLES

The consequences of measurement errors in the explanatory
variables on the regression outcomes depend on the error
structure. The latter are comprehensively dealt with in [33],
together with a detailed review of the analysis strategies to
apply in such contexts. Despite an extensive literature on the
subject, in [34], the authors remark the fact that regression
techniques tailored to errors in variables cases are often
neglected due to their increased complexity compared to OLS.
For this reason, they analyze the consequences of applying
OLS with errors in the independent variables, making assump-
tions and approximations that make the calculations tractable.
This simple approach is used in this work to correct WLS
estimates a posteriori and to assess the effect of measurement
errors. This is achieved by introducing in the computation a
plausible value of error variances on exogenous inputs, i.e.,
the measurement uncertainty.

In the following, typical additive error model is considered,
i.e., the observed value of independent variables is considered
as the sum of two contributions: the unobservable “exact”
value and the measurement error. Therefore, the observed
matrix of regressors is Z, which is related to the exact matrix
of regressors X as

Z = X + U (17)

where U is the n × m matrix of measurement errors for each
observation of each regressor. The bias in the OLS estimate
of coefficients occurs when Z is used in (4) instead of X. The
extent and the direction of the bias depend on several factors,
such as the relative error magnitude versus the variance of data,

the degree of correlation between the explanatory variables,
and the structure of the error U.

Suppose that all measurement errors in U have zero mean
and constant variance for each regressor and are independent
of each other and of the exact values (i.e., the covariance
is null for each pair of entries). Under these hypotheses, the
covariance matrix of the errors U has the following diagonal
form:

1
n

E
[
U⊤U

]
= SU =

u2
1 . . . 0

. . .

0 . . . u2
m

 (18)

where u2 denote the measurement error variances for each
regressor. The approximate formula for the expected value of
biased coefficients provided in [34] derives from the assump-
tion of this error structure and “small” error magnitudes

E[b(U, εεε)] =
(
I − ν S−1

X SU

)
βββ (19)

where ν = (n − m − 1) and X⊤X is expressed as SX for a
more concise notation. Under the hypotheses just mentioned,
the coefficients are always biased toward zero as the measure-
ment errors increase. This phenomenon is often referred to
as “regression dilution”. Manipulating (19) and omitting the
expectation operator, a convenient form of the same expression
is obtained

βββ =
(
SX − νSU

)−1SXb . (20)

This expression means that, by introducing knowledge of the
variances of the measurement error, it is possible to correct
the biased OLS estimates of b and recover the unbiased
values of the regression coefficients of βββ, under the specified
hypotheses. Since in practice, X is not available, Z can be used
to get an estimate of unbiased regression coefficients as

β̂ββ =
(
SZ − νSU

)−1SZb (21)

where SZ denotes the matrix Z⊤Z. The expression (21) can be
used to make an a posteriori correction of biased estimates of
the coefficients derived from OLS or WLS, when the knowl-
edge of the error variances on each regressor is introduced.
This correction method is an original formulation presented in
this article. However, it is derived after different assumptions
and approximations, so it is important to characterize its
behavior and trace the perimeter of its applicability.

VI. UNCERTAINTY ANALYSIS OF THE MEASUREMENT
PROCESS WITH MCM

In this section, the MCM [35] is used to conduct two differ-
ent analyses to assess the severity of bias on coefficients, when
the measurement errors are neglected. The aim is to identify
the working range for the bias compensation formula (21).
In the second analysis, the whole measurement process is
simulated using experimental temperature signals and a test
inclination signal. The objective of this experiment is to prop-
agate the instrumental uncertainties through the measurement
algorithm, i.e., MLS with model (2). On the one hand, it is
possible to evaluate the uncertainty of the measurands (as ,
aT , and a1T ) over time. On the other hand, it is possible
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to identify the occurrence of some critical periods where the
compensation of thermal effects is inaccurate.

Before carrying out these analyses, it is necessary to assign
a pdf to each input variable. The instrumental uncertainty for
each sensor utilized is evaluated with a type B approach [36].
The accuracy of the measured signal am is discussed in
Section II-B. Despite this, the upper limit corresponding to the
MPE of the analog TM is used as instrumental uncertainty for
the following analyses. In this case, where only the bounds
of maximum errors are provided, the suggestion in clause
F.2.4.2 of the GUM [36] is pursued. A rectangular pdf with
zero mean and the bounds equal to ±0.020◦ is assumed, thus
leading to u(am) = 0.020/(3)1/2 ◦ as standard uncertainty for
sensor readings. All the three type K Class 1 thermocouples
have the same uncertainty. Also in this case, a rectangular
pdf with bounds ±1.5 ◦C is assigned. It follows that the
standard uncertainty for temperature measurements with TC0
is u(T ) = (3)1/2/2◦C. The measurement of 1T is obtained as
difference between temperatures measured by TC1 and TC2.
Hence, the resulting pdf is triangular, having bounds equal
to ±3.0 ◦C. The combined standard uncertainty is u(1T ) =

(6)1/2/2 ◦C. Since each sample of the signals is the result of
ten minutes averaging, it has been checked that the uncertainty
of the mean obtained from repeated measurements (type A) is
negligible with respect to instrumental uncertainties. In fact,
this contribution to the total uncertainties is at least two orders
of magnitude lower than the instrumental ones.

A. Validation of Bias Correction Method

The presence of measurement errors in the regressors is sim-
ulated assuming the standard uncertainties u(T ) and u(1T )

and the pdfs assigned in the previous section. The parameters
that are varied in this analysis regard only statistics of exoge-
nous inputs T and 1T . These are the mean values, indicated as
µ(T ) and µ(1T ), the standard deviations, indicated as σ(T )

and σ(1T ), and their Pearson correlation coefficient, indicated
as ρ(T, 1T ).

Two different subsets of signals for T (ti ) and 1T (ti ) are
pulled out from experimental data for which the Pearson
correlation coefficients are, respectively, the minimum and
the maximum recorded in the whole monitoring period, i.e.,
ρ(T, 1T ) ≈ 0 and ρ(T, 1T ) ≈ 0.5 (Fig. 11). Both subsets
are limited to a length of three days (n = 432). This allows
to reduce the computational burden but, at the same time,
to perform an informative and meaningful analysis. These
subsets are used to build the matrix of error-free regressors X
and to simulate an ideal measured signal y for each case. The
vector of exact regression coefficients is βββ =

[
a0 aT a1T

]⊤.
The nominal values are taken as the average of the MLS
coefficients in Fig. 6, thus having aT = −1.8 · 10−3 ◦/◦C and
a1T = 1.4 · 10−3 ◦/◦C. The simulated inclination is constant
and null for all the samples (a0 = 0), so that it can be
exactly reconstructed with a constant term, i.e., a polynomial
of degree p = 0. In this way, there is no risk of incomplete
reconstruction of the simulated inclination signal, and the
analysis can be focused only on the effects of measurement
errors of exogenous inputs. Moreover, any particular weighting

TABLE I
SUMMARY OF PARAMETERS FOR MCM TO VALIDATE

THE BIAS CORRECTION STRATEGY

is assigned to each observation in this analysis (W = I).
For each combination of parameters, the procedure is the
following.

1) Scale and offset T and 1T to have the prescribed µ(·)

and σ(·) and build the exact regressors matrix X.
2) Compute the exact observed signal as Xβββ = y.
3) Generate the measurement errors matrix U according

to the assigned uncertainties and pdfs and compute the
regressor matrix Z with measurement errors.

4) Regress y over Z with OLS to obtain the biased coeffi-
cient estimate b.

5) Apply (21) to obtain the unbiased coefficient
estimate β̂ββ.

These steps are repeated over 104 trials to identify under which
conditions the average estimate of b and β̂ββ differ from βββ.
Higher number of trials do not provide any further information
about the trend of estimated coefficients. For this analysis, it is
convenient to reason in terms of the ratio between the standard
deviation σ(·) of a regressor and its standard uncertainty u(·),
named here as “signal-to-noise ratio” (SNR). This quantity is
expressed as σ/u(·) and controls the ability of the OLS to
retrieve unbiased coefficients.

A summary of the values for the parameters tested with
MCM is reported in Table I. A fine grid of values is tested for
σ/u(T ) and σ/u(1T ), which consists of 40 equally spaced
values on a logarithmic scale covering the range specified in
the table. A total of 1600 combinations are tested. These are
repeated for each of the following combinations of the other
parameters.

1) Case 1: Minimum µ(·) and minimum ρ(·).
2) Case 2: Minimum µ(·) and maximum ρ(·).
3) Case 3: Maximum µ(·) and minimum ρ(·).
4) Case 4: Maximum µ(·) and maximum ρ(·).
The first aspect to analyze is the amount of bias in the

coefficients b returned by the OLS. The results state that
both the “slope” coefficients aT and a1T are biased toward
zero, thus confirming the occurrence of regression dilution.
It is useful to focus the analysis on the relative error magni-
tude, which is mainly the function of σ/u(T ) and σ/u(1T ).
Although to a lesser extent, the estimation of coefficients
is also influenced by ρ(T, 1T ). In fact, for uncorrelated
regressors, the bias only depends on the SNR of corresponding
regressor. Conversely, for partially correlated regressors, the
estimation of one coefficient is sensitive to a poor estimation
of the other. Generally, it results in a higher bias at the same
SNR. In particular, the worst case occurs when for the other
regressor holds σ/u(·) ≈ 1. Table II summarize the relative
bias errors on slope coefficients and provides their order of
magnitude in the worst cases. Instead, the mean values µ(T )

and µ(1T ) do not affect the bias of aT and a1T . Also for the
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TABLE II
WORST CASE OF RELATIVE BIAS ERRORS (%) ON SLOPE COEFFICIENTS

FROM OLS WITH MEASUREMENT ERRORS. THE WORST CASE COR-
RESPONDS TO σ/u(·) ≈ 1 FOR THE OTHER REGRESSOR

Fig. 12. Parametric analysis with MCM: absolute value of relative bias error
on aT after correction. Case 3 on the left and case 4 on the right.

constant term a0, the SNR controls the bias. As the SNR of
one regressor decreases, the severity of bias increases. Instead,
the sign of bias on the constant term a0 is not predefined; it
can be either positive or negative. Indeed, magnitude and sign
of the error depend on the combination of slope coefficients
and regressor mean values. When the slope coefficients are
poorly estimated, the bias error increases as the mean of the
regressors increases. The bias error on a0 is zero when µ(T )

and µ(1T ) are zero (cases 1 and 2). For cases 3 and 4,
the maximum absolute error is about 0.06◦, occurring when
σ/u(T ) is low. In these cases, the temperature T has the
major effect due to greater value of the product µ(T )aT

with respect to µ(1T )a1T . The bias on a0 tends to zero
when the SNRs increase, regardless of the mean value of the
regressors.

The second aspect to analyze is the effectiveness of bias
correction strategy (21). This analysis assumes that the cor-
rection is performed with the exact value of error variances
for each regressor; therefore, it is the ideal condition. For
comprehensive visualization of the behavior of correction
strategy, bias error maps are presented. All the color scales
in the following maps are logarithmic, in order to enhance
the order of magnitude of the values depicted. The maps in
Figs. 12 and 13 pertain to the cases 3 and 4, but they are
qualitatively similar to those of cases 1 and 2. Therefore,
the latter are not explicitly shown here. This implies that the
mean values of regressors have no relevant effect even on bias
correction of the slope coefficients. The top-right quadrants of
the error maps, i.e., where both the SNRs are greater than 1,
demonstrate the effectiveness of bias reduction. In fact, in that
area, the relative bias error is limited to 10−2, i.e., to 1%
of the coefficients. Similar behavior is noticeable in the error
map of a0 for cases 3 and 4 as depicted in Fig. 14. Here, the
bias is reduced below 0.001◦ for the top-right quadrants. Even
here, for cases 1 and 2, the expected bias is null when µ(T )

and µ(1T ) are zero. The correlation between the regressors
slightly affects the perimeter of applicability.

Fig. 13. Parametric analysis with MCM: absolute value of relative bias error
on a1T after correction. Case 3 on the left and case 4 on the right.

Fig. 14. Parametric analysis with MCM: absolute bias error on a0 (◦) after
correction. Case 3 on the left and case 4 on the right.

In the light of the results of this analysis, it is important
to assess whether the available operational data for T and
1T may lead to significant biases. To do this, realistic
measurement uncertainties of the exogenous inputs need to
be evaluated. Thereafter, it is possible to understand if the
biases are relevant and if they can be mitigated with (21).
This parametric analysis has been conducted by using the SNR
σ/u(·) of each regressor as the measure of “quality” for the
OLS estimates. A useful parameter, frequently used in this
context, is the “reliability ratio” [32], which is defined as

λ(·) =
σ 2(·)

σ 2(·) + u2(·)
=

σ 2

u2 (·)

1 +
σ 2

u2 (·)
(22)

where the relationship with the SNR σ/u(·) is explicitly
indicated. In other words, the reliability ratio is defined as
the variance of the error-free variable over the total variance.
Depending on the context, it may be convenient to reason
in terms of λ(·) or σ/u(·), even if they provide the same
information. From the parametric analysis, it emerged that for
each regressor, the SNR must be greater than 10 to avoid
significant bias. This means that λ(·) must be close to 1;
otherwise, the correction is needed. Recalling Figs. 12–14, for
an effective correction, it is sufficient that SNR is greater than
1. This condition corresponds to λ(·) > 0.5.

In practice, the sample variance s2(·), which is computed
for each regression window, is an approximation of the total
variance, i.e., s2

≈ σ 2
+ u2. It follows that a consistent

estimator of the reliability ratio is [33]

λ̂(·) =
s2(·) − u2(·)

s2(·)
(23)

where the numerator is bounded to zero if s2 < u2. The
estimated reliability ratios λ̂ are depicted in Fig. 15 for both
regressors and confirm that the bias of OLS coefficients cannot
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Fig. 15. Estimated reliability ratio λ̂(·) for exogenous regressors T and 1T
for each regression window.

be neglected; anyway, the bias correction can be successfully
applied. This parameter has been the main driver in the choice
of the window length L . In fact, this parameter was set
by looking for the minimum window width leading to an
acceptable SNR for the entire monitoring period. In fact,
for a short time window, there is an high risk of having
some regression window that do not fulfill the condition
of λ̂ > 0.5.

B. Simulation of Measurement Process for Instrumental
Uncertainty Propagation

The model adopted here to simulate a measured signal is (2).
The operational signals T (ti ) and 1T (ti ) are used as the
ground truth to generate a simulated measured signal am(ti ).
The coefficients aT and a1T are the same of the previous
parametric analysis. The test inclination signal is generated as
it follows:

as(ti ) = 0.1 sin
(

2π

30
(ti − t1)

)
. (24)

The amplitude of the simulated oscillation is chosen to be
of the same order of magnitude as the signal derived from
the experimental data (Fig. 6). The period of the oscillation
is one month. Preliminary tests, not reported here, indicate
that the test inclination signal can be reconstructed correctly
with the MLS polynomial approximation, applying the same
parameters used for the experimental data (p = 4, L = 15,
and h = 1/L). Therefore, its approximation does not affect
the other coefficients. The parametric analysis described in
the previous section suggests a useful expedient: the bias
of the constant term is lower when the mean value of the
regressors is nearly zero. For this reason, the mean value over
the whole monitoring period is subtracted from each regressor.
This limits from the root the maximum bias, independent of
the application of bias correction. This practice is feasible
in this application, since the interest is on the change of
inclination rather than the absolute value. The mean values
are µ(T ) = 16.80 ◦C and µ(1T ) = 1.91 ◦C.

At this point, the MCM is applied to propagate the instru-
mental uncertainties and to characterize the outputs of the
measurement algorithm over the monitoring period, account-
ing for the trend of exogenous input signals. Using this
analysis, it is possible to identify the periods most prone to
bias, since the exact values for as(ti ), aT , and a1T are known
and assess how uncertainty varies over time. The input quanti-
ties subject to uncertainty are am(ti ), T (ti ), and 1T (ti ), whose
standard uncertainties and pdf have been already assigned at
the beginning of Section VI. For each MCM trial, the signals

Fig. 16. Error on as from the analysis of the measurement process with
MCM. The biased estimates from MLS on top. The estimates corrected for
the measurement errors on bottom.

are generated by adding random errors to the ground truth
signals. The random errors are drawn from the prescribed
pdfs for each sample. Finally, the compensation with MLS is
computed. The results presented hereafter are obtained from
103 trials with the same MLS parameters used on experimental
data in Section IV. Both biased estimates from MLS and bias
corrected with (21) are computed. Even in this analysis, the
correction is made for the ideal condition of perfect knowledge
of the measurement error variances on the exogenous inputs.
To summarize the outcomes of the MCM, typical statistics
are computed on the errors, i.e., mean, standard deviation,
and bounds for covering 95% of the errors (2.5% and 97.5%
percentiles).

The results are depicted in Fig. 16 for âs(ti ), while in
Figs. 17 and 18 for âT (tk) and â1T (tk). The standard devi-
ations over time depend on combinations of the degree of
correlation between the exogenous inputs and their reliability
ratios (Figs. 11 and 15). All the resulting distributions are
almost symmetric and Gaussian (not reported in this article).
Furthermore, the coverage factor results to be close to 1.96 for
both inclination and coefficients over the monitoring period.
The mean errors on biased estimates of âs(ti ) are positive
or negative depending on the period. This is the effect of
subtracting the global mean values from exogenous regressors.
Without this practice, the error would have been greater and
always with the same sign. Fig. 16 shows a maximum error of
±0.006◦, considering a coverage of 95%. By applying the bias
correction, the maximum bias can be reduced to levels com-
parable with the TM resolution. The maximum error, with the
level of confidence of 95%, decreases to ±0.003◦. The edge
of the monitoring period is excluded from the error evaluation,
since only full size regression windows are considered. The
slope coefficient aT has different levels of bias in different
periods with a trend that seems to match the correlation
between the exogenous inputs (Fig. 11). In fact, the minimum
bias occurs in the summer months, where the correlation is
lower. Conversely, the bias on a1T is mostly constant over
the period, apart for some isolated peaks. Despite the bias is
nonnegligible, it can be successfully corrected with (21), for
almost the entire monitoring period. However, some values of
a1T still remain partially biased in the periods corresponding
to low reliability ratios (Fig. 15). This is confirmed also by
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Fig. 17. Error on aT from the analysis of the measurement process with
MCM. The biased estimates from MLS on top. The estimates corrected for
the measurement errors on bottom.

Fig. 18. Error on a1T from the analysis of the measurement process with
MCM. The biased estimates from MLS on top. The estimates corrected for
the measurement errors on bottom.

Fig. 4, showing some days with very small variations of 1T
at end of March 2022.

VII. FINAL RESULTS AND DISCUSSION

In this section, the thermal compensation of TM readings
is carried out again from the experimental study case, in the
light of what has been discussed so far in this article. As first
point, the signals of exogenous inputs are offset to globally
have zero mean in the monitoring period, differently from
Section IV. This is done to limit the maximum bias on the
constant term in the reconstruction of as , even if this introduce
a global offset on the inclination value. Anyway, it is irrelevant
since the focus is on variation of inclination. The second
point is the need of a realistic evaluation of the measurement
uncertainty for the exogenous inputs. It is complicated to get
an accurate estimate of the “true” error variances present in
the operational data. Therefore, the uncertainties of T and 1T ,
discussed in Section VI, have been used for the correction of
the MLS coefficients. This makes it possible to understand
what impact the assumed level of uncertainty would have on
the coefficients.

Wrapping all these considerations, the final results are
computed and depicted in Fig. 19. The inclination signal âs(ti )
is reconstructed by means of MLS, with and without bias
correction. Their maximum absolute difference is 0.004◦. This

Fig. 19. Inclination signal âs(ti ) and model coefficients âT and â1T
estimated with MLS adopting model (2) with and without measurement error
compensation.

value can be linearly combined with the maximum expanded
uncertainty from the MCM results depicted in Fig. 16 for
the unbiased case (±0.003◦). Therefore, the total error after
compensation of thermal effects and bias correction is lower
than 0.01◦. This means that the target on maximum error for
this application is achieved. The values of âT seem to converge
to a constant value after the correction. This is in line with
the hypothesis of constant value for temperature coefficient of
the TM. Instead, the bias correction on the thermal bending
coefficient estimates â1T enhances the seasonality of this
coefficient. However, as emerged from the analysis with the
MCM, the correction of this coefficient results more critical
in some periods. This is due to insufficient variance of the
operational data in those periods. A last consideration can be
done about this aspect. Fig. 19 shows some values of â1T

between March and May 2022 that appear “overcorrected”,
with respect to the neighborhood values, in correspondence of
drops of the reliability ratio in Fig 15. This may suggest that
the actual uncertainty in 1T could be slightly lower than the
assumed one.

VIII. CONCLUSION

In this article, a typical SHM problem is addressed, where
compensation of thermal effects on TM readings is required.
A compensation method based on operational data and MLS
is presented. A typical monitoring case is shown, in which
the thermal effects on the sensor and on the measurand are
predominant over the measurand variations themselves. In fact,
the temperature drift of the sensor and the thermal bending
of the tower overlook variations in the inclination of the
wind-turbine tower. The approach proposed in this article
enables the users to successfully adopt a compensation model
that accounts for more concurrent influence quantities on the
measurement. The MLS approach has been tailored to the
measurement compensation task. The proposed MLS formu-
lation accounts for exogenous inputs on the measurement,
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i.e., the influence quantities to compensate. The outcomes
of this method are a local polynomial approximation of the
underlying inclination signal and the estimates of the model
parameters from operational data. Thereafter, the effect of
measurement uncertainty on the LS coefficients has been
studied in detail, since it may bias their estimates. With this
purpose, a bias correction strategy is derived from other liter-
ature results. This method can be used to evaluate the severity
of the bias that arises from the combination of operational data
and measurement uncertainty of the exogenous inputs.

Two different analyses, conducted using the MCM, pro-
vide some important results about the proposed method and
its application on the real monitoring case. The parametric
analysis provides an overview of the conditions that make
the bias on the model coefficients nonnegligible. Then, the
analysis indicates the conditions under which the bias com-
pensation strategy can be successfully applied. The evaluation
of the quality of measurement compensation boils down to the
monitoring of the reliability ratios. These can be estimated
from the operational signals of exogenous inputs and from
their uncertainties. The second analysis with MCM is the
simulation of the measurement process to propagate the input
uncertainties. The results indicate the different uncertainties
over time, depending on the reliability ratios of the exogenous
inputs and their correlation. Finally, the bias correction is
applied to the MLS results from the experimental data. The
difference between biased estimates and the unbiased ones
can be considered an additional source of uncertainty the
measurand. Therefore, considering the maximum bias from
experimental data and the maximum error obtained from the
MCM analysis, the target accuracy on the tower inclination
(0.01◦) is achieved.

In conclusion, the methodology proposed in this work is
able to compensate for thermal effects on TM readings. More-
over, it provides a strategy to evaluate the quality of the com-
pensation and the uncertainty during different monitoring peri-
ods. Furthermore, the MLS formulation and the bias compen-
sation strategy are not limited to applications involving incli-
nation measurements and thermal effects. In fact, the methods
proposed in this article are general enough to perform the com-
pensation of known systematic effects of influence quantities
in several contexts. This is possible whenever the measurement
model fulfills the hypotheses at the basis of the method.
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