
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024 1001911

Symmetric-Reciprocal-Match Method for Vector
Network Analyzer Calibration

Ziad Hatab , Student Member, IEEE, Michael Ernst Gadringer , Senior Member, IEEE,
and Wolfgang Bösch , Fellow, IEEE

Abstract— This article proposes a new approach, the
symmetric-reciprocal-match (SRM) method, for calibrating vec-
tor network analyzers (VNAs). The method involves using
multiple symmetric one-port loads, a two-port reciprocal device,
and a matched load. The load standards consist of two-port
symmetric one-port devices, and at least three unique loads
are used. However, the specific impedances of the loads are
not specified. The reciprocal device can be any transmissive
device, although a nonreciprocal device can also be used if
only the one-port error boxes are of interest. The matched load
is fully defined and can be asymmetric. We demonstrated the
accuracy of the proposed method with measurements of coaxial
standards using a commercial METAS traceable short-open-load-
reciprocal (SOLR) calibration kit with verification standards.
In addition, we presented a numerical Monte Carlo (MC) analysis
considering various uncertainty factors. An advantage of the
proposed method is that only the match standard is defined,
whereas the remaining standards are partially defined, either
through symmetry or reciprocity.

Index Terms— Calibration, microwave measurement, vector
network analyzer (VNA).

I. INTRODUCTION

THE most commonly used method for calibrating vector
network analyzers (VNAs) is the short-open-load-thru

(SOLT) method [1], which requires that all four standards to be
fully characterized or modeled. In the past, many VNAs used a
three-sampler architecture with three receivers. To account for
the nondriving port’s termination mismatches (switch terms),
the VNA is modeled with the well-known 12-term model [2].
This model forms the foundation of the SOLT calibration.

Nowadays, modern VNAs use a full-reflectometry archi-
tecture that allows for sampling all waves, thus directly
measuring the switch terms of a VNA by simply connecting
a transmissive device between the ports [3]. This upgraded
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architecture enabled the use of the simplified error box model
of VNAs [4], which has led to many new advanced calibration
methods that surpass the accuracy of SOLT [2]. Furthermore,
even with the three-sampler VNA architecture, it is possible
to indirectly measure the switch terms of the VNA using
a set of reciprocal devices, which enable the application of
the error box model [5]. A well-known family of calibration
methods based on the error box model is the self-calibration
methods [2], which do not require full characterization of
some of the standards. One of the most used self-calibration
methods nowadays is the short-open-load-reciprocal (SOLR)
method [6], which is the same as SOLT, but with any trans-
missive reciprocal device instead of the thru standard. SOLR
has proven useful in scenarios where a direct connection is
unavailable. However, the drawback of the SOLR method is
the requirement of the full definition of the short-open-load
(SOL) standards, which bounds the accuracy of SOLR to the
SOL standards.

Other self-calibration methods include thru-reflect-line
(TRL) and multiline TRL [7], [8], [9], [10], which use line
standards of different lengths, thru connection, and symmetric
unknown reflect standard. The thru standard in TRL is fully
defined. However, there is an implementation that eliminates
the requirement of the thru standard for any transmissive
device with an additional reflect standard [11]. While multiline
TRL is a very accurate calibration method, especially at
millimeter-wave frequencies, it cannot be applied at lower
frequencies, as it results in using an extremely long line stan-
dard. A common replacement for the multiline TRL method
for on-wafer application is the line-reflect-match (LRM), thru-
match-reflect-reflect (TMRR), and line-reflect-reflect-match
(LRRM) methods [12], [13], [14], [15]. These methods use
unknown symmetric reflect standards and one known match
standard. However, these methods suffer from some imprac-
ticality, especially in defining the line standard and shifting
the reference plane, as opposed to the TRL method. These
methods can also be extended to account for crosstalk [16],
[17], [18]. Additionally, due to the requirement of defining
the thru/line standard, such methods can be challenging to
use in on-wafer measurement scenarios where the probes are
orthogonal or at an angle [19].

In this article, we propose a new approach to self-calibration
of VNAs using multiple symmetric one-port loads, a two-port
reciprocal device, and a matched load. The multi-load one-
port standards are two-port symmetric loads, and at least three
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unique loads must be used. The values of the loads themselves
are not specified. For example, a short, an open, and any finite
impedance load would be suitable. The reciprocal device can
be any transmissive device. In fact, if we only care about the
one-port error boxes of the VNA, then the two-port device can
be any transmissive device, even if it is nonreciprocal. Lastly,
the matched load is fully defined but can be asymmetric. The
match standard can be implemented as part of the symmetric
one-port loads to reduce the number of standards. We refer
to this calibration method as the symmetric-reciprocal-match
(SRM) method. All standards are generally partially defined,
except for the match standard. We demonstrate the method
using synthetic data of coplanar waveguide (CPW) structures,
as well as measurements with commercial SOLR coaxial
standards.

A significant benefit of the proposed approach is that all the
standards are partially defined, except for the match standard.
This is in contrast to LRRM/LRM/TMRR approaches, which
necessitate fully defined thru/line standards. As a result, such
techniques can be challenging in the case of on-wafer setups
where the probes are positioned at an orthogonal angle.
Equivalently, the SOLR calibration addresses the problem of
the thru/line connection using any two-port reciprocal device
instead, but necessitates the specification of the remaining
standards. In brief, our SRM technique combines the bene-
fits of LRRM/LRM/TMRR techniques in utilizing undefined
symmetric standards, as well as the SOLR technique in
utilizing a two-port reciprocal device. This revised definition
of the standards enables accurate calibration by limiting the
definition to solely the match standard.

The remainder of this article is structured as follows.
In Section II, we discuss our SRM method when using a
thru standard instead of any reciprocal device, highlighting the
method’s fundamentals. Afterward, in Section III, we extend
the mathematics of the calibration to consider any trans-
missive reciprocal device. Section IV introduces a special
case of the SRM method when considering a fixed distance
between measuring ports, which is often the case in on-wafer
applications. Lastly, in Section V, we provide experimental
measurements using commercial METAS traceable coaxial
2.92 mm calibration and verification standards, as well as
numerical Monte Carlo (MC) analysis using synthetic data.
Finally, we conclude in Section VI.

II. SIMPLE CASE USING A THRU STANDARD

In the general case of SRM calibration, no thru standard
is required. Any transmissive reciprocal device would suffice.
If only the one-port error boxes are desired, any transmissive
device would be acceptable. However, the derivation of the
generalized SRM calibration is based on creating an artificial
thru standard via mathematical reformulation and additional
one-port measurements. The handling of the artificial thru
standard is explained in more detail in Section III. In this
section, we assume a fully defined thru standard to derive
the calibration workflow and extend it to the general case in
Section III.

To start the derivation, we use the error box model of a two-
port VNA, as illustrated in Fig. 1. This model is expressed in

Fig. 1. Two-port VNA error box model. Matrices are given as T -parameters.

Fig. 2. Two-port VNA error box model that illustrates the measurement of
one-port standards. All matrices are provided as T -parameters. The index i
indicates the measured standard, where i = 1, 2, . . . , M , with M ≥ 3.

T -parameters as follows:

Mstand = kakb︸︷︷︸
k

[
a11 a12

a21 1

]
︸ ︷︷ ︸

A

T stand

[
b11 b12

b21 1

]
︸ ︷︷ ︸

B

(1)

where Mstand and T stand represent the measured and actual
T -parameters of the standard, respectively. The matrices A
and B are the one-port error boxes containing the first six
error terms, and k is the seventh error term that describes the
transmission error between the ports.

For a thru standard, the measured T -parameters are provided
as follows:

M thru = k AB. (2)

In the next step, we will focus on measuring one-port
standards. For the SRM method, we require at least three
symmetric two-port standards made from one-port devices,
and at least three of them should exhibit unique electrical
responses. Examples of such standards include short, open,
and impedance. It is not necessary to know the exact response
of the standards themselves. Fig. 2 provides an illustration of
the error box for one-port measurements.

The measured input reflection coefficient seen from each
port is given as follows:

0(i)
a =

a11ρ
(i)
+ a12

a21ρ(i) + 1
; 0

(i)
b =

b11ρ
(i)
− b21

1− b12ρ(i)
(3)

where 0(i)
a and 0

(i)
b are the i th measured reflection coefficients

from the left and right ports, respectively. The actual response
of the standard, which is assumed to be unknown, is denoted
by ρ(i).

The expression for the input reflection coefficient, as given
in (3), is in the form of a Möbius transformation (also known
as a bilinear transformation) [20]. One important property of
the Möbius transformation is that it can be described by an
equivalent 2 × 2 matrix notation. For instance, (4) provides a
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general Möbius transformation with coefficients a, b, c, d ∈ C,
along with its corresponding 2 × 2 matrix representation

f (z) =
az + b
cz + d

←→ [ f ] =
[

a b
c d

]
. (4)

In (4), we use brackets [·] to describe matrices associated
with a Möbius transformation. The transformation coefficients
are only unique up to a complex scalar multiple. This property
of the Möbius transform can be easily shown by multiplying
the numerator and denominator with a nonzero complex scalar.
In terms of matrix notation, scaling the matrix with a com-
plex scalar still represents the same Möbius transformation.
Therefore,

[ f ] ≡ κ[ f ], κ ̸= 0. (5)

The matrix representation of the Möbius transformation pos-
sesses an elegant property in its ability to describe composite
Möbius transformations. In essence, when we compose one
Möbius transformation with another, we obtain a new Möbius
transformation with updated coefficients. This property can be
expressed in matrix notation by computing the matrix product
of the individual Möbius transformations. To illustrate this
concept, we provide an example of the composition of two
Möbius transformations f1(z) and f2(z), which are defined as
follows:

f1(z) =
a1z + b1

c1z + d1
←→ [ f1] =

[
a1 b1
c1 d1

]
(6a)

f2(z) =
a2z + b2

c2z + d2
←→ [ f2] =

[
a2 b2
c2 d2

]
. (6b)

The composite transformation is given as follows:

g(z) = ( f1 ◦ f2)(z) =
a1 f2(z)+ b1

c1 f2(z)+ d1

=
(a1a2 + b1c2)z + a1b2 + b1d2

(a2c1 + c2d1)z + b2c1 + d1d2
. (7)

Therefore, the corresponding matrix equivalent of the com-
posite Möbius transformation g(z) is given as follows:

[g] =

[
a1a2 + b1c2 a1b2 + b1d2

a2c1 + c2d1 b2c1 + d1d2

]
= [ f1][ f2] (8)

which is the same as multiplying the matrices [ f1] and [ f2].
Using matrix notation for the Möbius transformation,

we can describe the input reflection coefficient measured from
the left port as follows:

0(i)
a =

a11ρ
(i)
+ a12

a21ρ(i) + 1
←→ [0(i)

a ] =

[
a11 a12

a21 1

]
︸ ︷︷ ︸

A

. (9)

To address the error box on the right side, we perform a
similar process as before, but instead of using the measured
reflection coefficient, we reformulate in terms of the reflec-
tion coefficient ρ(i) as a function of the measured reflection
coefficient 0

(i)
b , which is given as follows:

ρ(i)
=

0
(i)
b + b21

b120
(i)
b + b11

←→ [ρ(i)
] =

[
1 b21

b12 b11

]
︸ ︷︷ ︸

P B P

(10)

where P is a 2 × 2 permutation matrix defined as

P = PT
= P−1

=

[
0 1
1 0

]
. (11)

By composing (10) with (9), we obtain a new Möbius
transformation that describes the input reflection coefficient
from the left port using measurements of the right port. This
relationship can be written as follows:

0(i)
a =

h110
(i)
b + h12

h210
(i)
b + h22

←→ [0(i)
a ] = H =

[
h11 h12
h21 h22

]
. (12)

Here, we use the variable H to describe the Möbius
transformation in (12) and differentiate it from the Möbius
transformation in (9) to avoid confusion. It is important to note
that both transformations are different, as they have distinct
input parameters.

Due to the composite property of Möbius transformations,
the coefficients of the transformation can be expressed as
follows:

H = ν AP B P ∀ ν ̸= 0. (13)

It is important to note that the constant ν is included because
the coefficients of a Möbius transformation can only be defined
up to a nonzero complex-valued scalar constant.

By solving for the coefficients hi j , we can determine (13).
This equation is later used for establishing the calibration
procedure by combining it with the thru standard. Since the
coefficients hi j are defined by the Möbius transformation
in (12), which is based on the measurements of the symmetric
one-port standards, we can rewrite the Möbius transformation
as a linear system of equations in terms of its coefficients.
Assuming that M ≥ 3 one-port standards were measured, the
coefficients hi j can be described as follows:

−0
(1)
b −1 0

(1)
b 0(1)

a 0(1)
a

−0
(2)
b −1 0

(2)
b 0(2)

a 0(2)
a

...
...

...
...

−0
(M)
b −1 0

(M)
b 0(M)

a 0(M)
a


︸ ︷︷ ︸

G


h11
h12
h21
h22


︸ ︷︷ ︸

h

= 0. (14)

The solution for the vector h is found in the nullspace of
G, as the system matrix G contains at least one nullspace due
to the equality to zero in (14). We may have more than one
nullspace, but only if rank(G) < 3, which can only happen if
we do not use at least three unique one-port standards.

While the nullspace G satisfies the solution of (14), we can
optimally estimate the nullspace of G in the presence of
disturbance by computing its singular value decomposition
(SVD) and using the right singular vector that corresponds to
the smallest singular value [21]. As G is of dimension 4 (i.e.,
number of columns), it has four singular values and vectors.
We decompose the matrix G using SVD as follows:

G =
4∑

i=1

si uiv
H
i (15)

where si is the i th singular value, while ui and vi are the i th
left and right singular vectors, respectively. The conventional
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ordering of the singular values is in decreasing order. There-
fore, the smallest singular value is s4. Hence, the solution for
h is given by the fourth right singular vector as follows:

h = v4. (16)

Now that we have solved for h, and hence H in (13),
we can combine the measurements of the thru standards with
the results of H to form an eigenvalue problem regarding the
error box coefficients. The combined result for the left error
box is defined as follows:

M thru P H−1
=

k
ν

AP A−1. (17)

Although (17) is not strictly in the canonical form for
an eigenvalue decomposition, as the middle matrix is not
diagonal, it can still be decomposed because the middle matrix
is a constant permutation matrix. If we apply the eigendecom-
position to (17), we obtain the following decomposition:

M thru P H−1
=

k
ν

AP A−1
= Wa3W−1

a (18)

where the matrix Wa corresponds to the eigenvectors, and the
matrix 3 corresponds to the eigenvalues. Both are calculated
as follows:

Wa =

[
w

(a)
11 w

(a)
12

w
(a)
21 w

(a)
22

]
=

a11 + a12

a21 + 1
−a11 + a12

−a21 + 1
1 1

 (19a)

3 =

[
λ1 0

0 λ2

]
=

 k
ν

0

0 −
k
ν

. (19b)

Generally, the order of the eigenvectors and eigenvalues is
not unique. To ensure the correct order, we need to know the
value of k/ν. However, this term is still unknown at this stage.
After solving for the error terms using both possible solutions,
the sorting is done through trial and error. For instance, once
the error terms have been solved, we could use one of the
one-port standards as a metric to determine the correct order.

We can solve the eigenvalue problem for matrix B by
reversing the multiplication order of the matrices in (17). This
gives us the following equation:(

P H−1 M thru
)T
=

k
ν

BT P B−T
= W b3W−1

b . (20)

Using the transpose operation is optional, but it allows us
to derive the eigenvectors in a similar order as with the left
error box. As a result, the eigenvectors and eigenvalues are
given as follows:

W b =

[
w

(b)
11 w

(b)
12

w
(b)
21 w

(b)
22

]
=

b11 + b21

b12 + 1
−b11 + b21

−b12 + 1
1 1

 (21a)

3 =

[
λ1 0

0 λ2

]
=

 k
ν

0

0 −
k
ν

. (21b)

Finally, we need an additional equation for each port to
calculate the error terms from each error box. This equation

comes from the match standard, which defines the reference
impedance of the calibration. In general, the match standard
does not have to be the same at each port. However, since we
are most likely to use an impedance standard as part of the
symmetric one-port devices, it makes sense to reuse the match
standards. For each port, the reflection coefficient of a match
standard is given as follows:

ρ(m)
a =

Z (m)
a − Z (ref)

a

Z (m)
a + Z (ref)

a
; ρ

(m)
b =

Z (m)
b − Z (ref)

b

Z (m)
b + Z (ref)

b

(22)

where Z (m)
a and Z (m)

b represent the complex impedance defi-
nition of the match standard from each port. The user sets the
values of Z (ref)

a and Z (ref)
b to specify the reference impedance,

for example, 50 �.
By utilizing knowledge of the match standard and the

equation that describes the input reflection coefficient, as given
in (3), we can combine this result with the eigenvectors to form
a linear system of equations for each port. The following is
for the left port: −1 −1 w

(a)
11 w

(a)
11

1 −1 −w
(a)
12 w

(a)
12

−ρ(m)
a −1 0(m)

a ρ(m)
a 0(m)

a




a11
a12
a21
1

 = 0. (23)

The system of equations for the right port can be obtained in
a similar way, resulting in the following system of equations: −1 −1 w

(b)
11 w

(b)
11

1 −1 −w
(b)
12 w

(b)
12

−ρ
(m)
b 1 −0

(m)
b ρ

(m)
b 0

(m)
b




b11
b21
b12
1

 = 0. (24)

The error terms are solved by finding the nullspace of the
system matrix. However, since the nullspace is only unique
up to a scalar factor, we normalize it by the last element to
make it equal to 1. The system matrix can be extended by an
arbitrary number of defined impedance standards to improve
the solution. It is important to note that we obtain two systems
of equations for each port since the order of the eigenvectors
is unknown. As a result, we solve for both possible orderings
and choose the answer that results in a calibrated measurement
closest to a known estimate, like the usage of a reflect standard.

An interesting observation to note is the structure of
(23) and (24), where the first two rows in the system matrix
obtained from the eigenvectors resemble measurements of
ideal short and open standards. In general, the expression
of (23) and (24) are identical to that of a one-port SOL cali-
bration when assuming ideal short and open standards. Thus,
we were able to replicate measurements of ideal open and
short standards using symmetric undefined one-port devices
and a thru standard.

The final error term that needs to be solved is the transmis-
sion error term k. Since we are working with a thru standard,
we can directly extract k by multiplying the inverse of the
one-port error boxes by the measurements of the thru standard.
In Section III, we introduce a different approach for computing
k using any transmissive reciprocal standard, as done in SOLR
calibration [6].
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III. GENERALIZATION WITHOUT A THRU STANDARD

In Section II, we explained how to calculate the error
terms using at least three symmetric one-port standards, a thru
standard, and a match standard. The thru standard can cause
difficulties, as it is not always possible to physically achieve
such a standard.

The equations derived in Section II can be used without
changes if we obtain an equation similar to that of a thru
standard, as given in (2). Therefore, this section aims to derive
what we will refer to as a virtual thru standard using additional
one-port standards.

The necessary standards, excluding the match standard, for
the generalized SRM calibration are shown in Fig. 3. The
network standard is an unknown transmissive two-port stan-
dard. This standard does not need to be reciprocal for deriving
only one-port error terms. The additional network-load stan-
dard uses the same two-port network standard and the same
one-port symmetric standards. As mentioned in Section II,
we require at least M ≥ 3 one-port symmetric standards.
Hence, we also need a corresponding network-load stan-
dard for every symmetric one-port load standard. Generally,
we only need the network-load standard from one port, which
could be from either ports.

Based on the network standard, the following measurement
is available:

Mnet = k A


− det(S)

S21

S11

S21
−S22

S21

1
S21


︸ ︷︷ ︸

N

B (25)

where det(S) = S11S22 − S12S21.
A similar expression to the matrix H in (13) can be

obtained using the network-load standard from the left port
and the load standards from the right ports. This results in an
expression similar to (13), but with A replaced by AN and
with an adjustment to the scaling factor. The scaling factor
is unknown and does not need to be equal to the constant
in (13). We can also achieve the same result by considering
the network-load standards from the right port and symmetric
load standards from the left port. As a result, combining the
network-load standards with the symmetric load standards,
we obtain the following result for each port depending on
where the network-load standard was implemented:

Fa = ηAN P B P ∀ η ̸= 0 (26a)
Fb = ζ AP N B P ∀ ζ ̸= 0. (26b)

Using the results of Mnet, H , and F from (25), (13),
and (26), respectively, we can create a virtual thru standard
by combining them in the following manner:

M thru = H F−1
a Mnet =

ν

η
k AB (27a)

M thru = Mnet P F−1
b H P =

ν

ζ
k AB. (27b)

Therefore, we can obtain a thru measurement without mea-
suring a thru standard using the results of (27). We simply
use the results from Section II and substitute (27) in place

Fig. 3. Two-port VNA error box model illustrating the standards used to
create a virtual thru standard. All matrices are provided as T -parameters. The
index i indicates the measured standard, where i = 1, 2, . . . , M , with M ≥ 3.

of the thru measurements. The only difference we obtain are
the eigenvalues, which result in ±k/η or ±k/ζ . However, this
change does not affect anything, as ν, η, and ζ are the result
of the normalization choice of the Möbius transformation and
are assumed regardless unknown.

To complete the two-port calibration, we must solve for
the transmission error term k. We can use the same method
as in SOLR calibration [6] by calculating k through the
determinate of the one-port corrected measurement of the
network standard, given that it is reciprocal (i.e., S21 = S12).
Assuming the network standard is indeed reciprocal, we can
solve for k by first applying the one-port error boxes to the
measurement of the network standard as follows:

A−1 Mnet B−1
= k N. (28)

Afterward, by taking the determinant from both sides,
we obtain the following:

det
(

A−1 Mnet B−1)
= k2 det(N)︸ ︷︷ ︸

=1

. (29)

Hence, k is solved as follows:

k = ±
√

det
(

A−1 M recip B−1) (30)

where the selection of the appropriate sign is determined by
comparing it to a known estimate of the network.

IV. SPECIAL LAYOUT FOR ON-WAFER APPLICATION

The presented SRM calibration method applies to any
measurement setup where the standards can be implemented.
However, a particular case for on-wafer calibration arises when
considering that the distance between the probes must remain
constant. Semi-automatic probe station users often request this
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requirement, where only the chuck platform is motorized. For
these measurement setups, the standards must be implemented
with a constant distance between the probes to perform the
calibration automatically.

Considering the standards depicted in Fig. 3, we can see that
the right probe would need to be moved to the right to measure
the network-load standard. The network standard already dic-
tates the distance between the probes, and cascading another
standard would naturally increase the spacing, requiring probe
movement.

In planar circuit calibration, as in on-wafer measurement
setups, we can advantageously apply the property of the
network standard to represent any symmetric transmissive
network. Hence, we can split the network into two cascaded
flipped asymmetric networks. With this notation, we can use
half of the network to define the network-load standard.
An illustration of CPW standards is depicted in Fig. 4.

For any symmetric network (i.e., Si j = S j i ), we can divide
its T -parameters into two cascaded networks that are identical
and flipped [22]. This network can be expressed as follows:

N = R︸︷︷︸
left half

P R−1 P︸ ︷︷ ︸
right half

(31)

where P represents the permutation matrix, as defined in (11),
and R is the half-asymmetric part of the network standard.

By substituting (31) into (25), and the right and left half-
networks into (26a) and (26b), respectively, we obtain the
following expressions:

Mnet = k AR P R−1 P B (32a)
Fa = ηAR P B P ∀ η ̸= 0 (32b)

Fb = ζ AR−1 P B P ∀ ζ ̸= 0. (32c)

Therefore, by combining the results of the above expres-
sions with H from (13), we create a virtual thru standard as
follows:

M thru = H F−1
a Mnet P H−1 Fa P = k AB (33a)

M thru = Fb H−1 Mnet P F−1
b H P = k AB. (33b)

With the virtual thru standard being established, the remain-
ing calibration process follows the same procedure discussed
in Section III.

One elegant application using half-network standards is the
use of angled calibration. This method involves positioning the
probes at an angle rather than facing each other. Traditional
calibration methods such as TRL, LRM, and LRRM do
not allow this type of calibration, whereas SOLR is often
used for such scenarios [19]. Fig. 5 illustrates a potential
implementation of the network and half-network standards at
a 90◦ angle.

V. EXPERIMENTS

Two experiments are described in this section. In the first
experiment, measurements were performed using METAS
traceable coaxial standards and the SRM method was
compared with SOLR calibration. The second experiment
demonstrates the application of the SRM method for on-
wafer calibration. Since the SRM method presented here is

Fig. 4. Illustration of CPW structures implementing the proposed
half-network approach of SRM calibration. The match standard is optional
if the symmetric impedance standard is reused as the match standard.

Fig. 5. Illustration of CPW structures implementing the half-network-load
standards in an orthogonal orientation. The symmetric one-port standards
are not shown, as they do not pose any mechanical challenge in orthogonal
orientation.

new, there are no commercially available impedance substrate
standard (ISS) kits that contain all the necessary standards,
especially the network-load standards. Therefore, we decided
to perform a MC analysis using synthetic CPW data based on
an actual on-wafer setup. The SRM standards were generated
using a validated CPW model to analyze the impact of various
uncertainties on the SRM calibration.

A. Coaxial Measurements

The measurement involves the comparison of the proposed
SRM method with a SOLR calibration using a commercial
METAS traceable calibration kit with a 2.92 mm interface. The
calibration results are compared using verification standards
with defined uncertainty bounds that is also traceable to
METAS. The VNA used for the measurement is the ZVA
from Rohde & Schwarz (R&S), and the calibration kit used
is the ZN-Z229 2.92 mm kit from R&S. The standards used
from the kit include short, open, and match standards with
female interfaces, as well as two adapters with female–female
and female–male interfaces of equal length. An SOLR cali-
bration was conducted using the short, open, match standards,
and female–female adapter, while assuming that the adapter
standard is unknown during the SOLR calibration process.

For the implementation of SRM standards, the symmetri-
cal standards are directly measured by connecting the three
one-port devices at both ports. The female–female adapter is
used to represent the reciprocal network. For the network-
load standard, the symmetrical one-port devices are connected
to the female–male adapter and measured at the left port.
In all steps, the standards are assumed unknown, except for
the match standard, which is only defined in the final step
of the calibration via (23) and (24). An example that illustrates
the measurement of the standards is shown in Fig. 6.

The verification kit utilized for the comparison is the
ZV-Z429 2.92 mm kit from R&S. The kit contains a mis-
match standard and an offset short standard with female
interfaces. These verification standards have been previously
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Fig. 6. Example photographs of measured coaxial standards. (a) Load
standard. (b) Adapter (network). (c) Load connected with an adapter (net-
work-load).

Fig. 7. Comparison of calibrated mismatch and offset short verification kits
using SOLR and SRM methods. The uncertainty bounds are of the reference
measurement and reported as 95% Gaussian distribution coverage.

characterized by the manufacturer with traceability to METAS,
and their S-parameters are provided with uncertainty bounds.
To verify the accuracy of the calibration, we define an error
metric as the magnitude of the error vector of the calibrated
response to the reference response given by

Errori j (dB) = 20 log10

∣∣Scal
i j − Sref

i j

∣∣ (34)

where Scal
i j and Sref

i j represent the calibrated and reference
values, respectively.

The results from calibrating the mismatch and offset short
verification kit using both SOLR and SRM calibration methods
are depicted in Fig. 7. The plots reveal that both calibration
methods produced similar outcomes, with errors relative to
the reference data of the verification kit remaining below
−30 dB. To facilitate visual comparison, we opted to plot
the group delay instead of the phase. In both, the SOLR and
SRM calibration, the group delay overlaps with the reference
data for both mismatch and offset short. However, we observe
a small discrepancy in the magnitude response of the offset
short standard after 15 GHz, where ripples can be observed.
Nevertheless, this falls within the uncertainty bounds of the
magnitude response of the offset short.

It is difficult to determine the exact cause for the ripple
in the calibrated magnitude response of the offset short. This
ripple is small and falls within the uncertainty bounds defined
by METAS. One possible explanation for this variation could
be the difference between the female–female and female–male

Fig. 8. X-ray inspection of the female–female and female–male adapters.

TABLE I
PIN GAP OF PAIRED CONNECTORS. VALUES ARE REPORTED IN µm.

THE PIN DEPTH GAUGE HAS A RESOLUTION OF 2.54 µm
(0.0001 in). THE LETTER “F” STANDS FOR FEMALE

(JACK) AND “M” FOR MALE (PLUG)

adapters. The adapters have the same length and cross section,
as shown in the X-ray image in Fig. 8. In theory, they should
have the same response after pairing, as they result in a
smooth continuation of the 2.92 mm interface [23]. However,
the female interface has a slotted design, which makes this
continuation not entirely smooth. Additionally, the presence of
pin gaps affects different calibrations in different ways [24],
[25], [26], [27]. The pin gaps after pairing for the measured
standards are summarized in Table I.

Table I indicates that all one-port standards have the same
pin gap at both ports, while the female–female adapter deviates
slightly. Furthermore, the table reveals that the adapter stan-
dard used to create the network-load standard (female–male)
has the largest pin gap at the port interface (i.e., 54.61 µm).
This discrepancy is also apparent in the X-ray images in Fig. 9.

The ripple observed in the magnitude response of the offset
short standard is also noticeable when analyzing the error
between the extracted error terms of the SOLR and SRM
calibrations, as shown in Fig. 10. It is clear that both ports
have ripple in the source match term. The source match term
describes the reflection at the calibration plane, where the
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Fig. 9. X-ray inspection of paired standards: (a) load standard,
(b) female–female adapter (network), and (c) load connected with a
female–male adapter (network-load).

Fig. 10. Magnitude of the error vector of the VNA’s error terms between
SOLR and SRM methods.

effects of the pin gap would be most pronounced [28]. This
could also explain the fact that the SOLR calibration did not
show such ripple, since all one-port standards have the same
pin gap, and the discrepancy in the female–female adapter is
not relevant since it is only used to solve the seventh error
term, which depends only on the reciprocity property of the
network.

A final comparison is made comparing the calibrated
female–female adapter with both calibration methods. In both
SOLR and SRM methods, the adapter was assumed to be
unknown but reciprocal during the calibration process. The
reference S-parameters of the adapter were provided by the
manufacturer and used to establish the error metric. However,
no uncertainty bounds were available. Fig. 11 depicts the
calibrated adapter derived from both SOLR and SRM methods.
These measurement results are compared to the reference S-
parameters of the adapter. Both calibration procedures deliver
comparable results with similar errors.

Although SOLR and SRM delivered similar results in this
experimental example, it is important to note that for the SOLR
method, all SOL standards already have been characterized
beforehand, whereas for the SRM method only the match stan-
dard must be characterized. In addition, it is noteworthy that
we achieved results comparable to metrology-level calibration
using only S-parameter definition of a single standard, namely
the match standard, which sets the reference impedance.
This can be particularly advantageous when using economical

Fig. 11. Comparison of the calibrated female–female adapter using SOLR
and SRM methods.

Fig. 12. Block diagram illustration of the numerical simulation concept to
generate realistic synthetic data for the MC analysis.

coaxial calibration kits, as the S-parameters of the open and
short standards do not need to be specified.

B. Statistical Numerical Analysis

The procedure for the numerical analysis involves creating
synthetic data of CPW standards using the model developed in
[29], [30], and [31]. To emulate an on-wafer setup accurately,
we utilize error boxes from an actual on-wafer setup that was
extracted using multiline TRL calibration on an ISS kit. Details
on the measurement setup can be found in [10], where the
accuracy of the CPW model was tested, and the measurement
datasets are available via [32]. In this numerical setting, the
objective is to generate SRM standards based on the CPW
model and embed them in the error boxes of the actual VNA
setup, introducing different randomness at each iteration to
perform the MC analysis. A block diagram summarizing this
numerical experiment is depicted in Fig. 12.

Regarding the geometric parameters of the CPW structure
used for simulation, we employed the following values, which
are based on the measured ISS [10]: signal width of 49.1 µm,
ground width of 273.3 µm, conductor spacing of 25.5 µm,
and conductor thickness of 4.9 µm. The substrate is made
of lossless Alumina with a dielectric constant of 9.9. The
conductor is made of gold with conductivity of 41.1 MS/m.

For the SRM standards, we implemented match, short, and
open standards as non-ideal standards, as shown in Fig. 13.
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Fig. 13. Models used to simulate non-ideal load standards. (a) 50 �

match standard with L0 = 5 pH, C0 = 0.5 fF, (b) short stan-
dard with L0 = 10 pH, C0 = 0.5 fF, and (c) open standard with
C0 = 10 fF, L0 = 0.5 pH. All standards are offset by a 200 µm CPW
line segment.

Fig. 14. Block diagram showing the inclusion of crosstalk in the MC analysis.

To create the network-load standards, we used a 4 mm CPW
line as the reciprocal standard, which is combined with the
non-ideal match, short, and open standards. Additionally,
as discussed in Section IV, we created half-network-load
standards using half of the reciprocal standard, i.e., a 2 mm
CPW line. The reference impedance for both ports was set to
Z (ref)

a = Z (ref)
b = 50 �. It is worth noting that in the SRM

calibration procedure, all standards are not specified, except
for the match standard that sets the reference impedance.

Various sources of uncertainty were considered in the MC
analysis, including VNA noise, asymmetry in the one-port
standards, variation in the reciprocal network, variation in
the match standard, and crosstalk. To model VNA noise
in the MC analysis demonstration, Gaussian noise with a
standard deviation of σnoise = 0.001 was employed [10].
To introduce asymmetry, we introduced a 10% Gaussian
variation in the lumped elements of the one-port standards
in Fig. 13 and cross-sectional variation in the CPW offset
segment [10]. Similarly, the reciprocal standard was varied
by adjusting the CPW cross section parameters [10] and the
length uncertainty of ±20 µm. The match standard was cre-
ated separately and perturbed similar to the one-port standards.
To introduce crosstalk, we included a capacitive coupling
between the symmetric one-port standards using a randomly
assigned capacitor, as shown in Fig. 14. The capacitance
has a standard deviation of σCX = 0.25 fF, corresponding
to a standard deviation coupling of approximately −30 dB
at 150 GHz.

To verify the accuracy of the calibration, we included a
stepped impedance line as device under test (DUT), which
uses the same CPW structure with the only exception of
signal width equal to 15 µm. The data have been processed
using Python with the help of the package scikit-rf [33]. The
frequency response o of the DUT before and after embedding
it in the error boxes is depicted in Fig. 15.

Fig. 15. DUT S-parameter response before and after embedding within the
error boxes.

Fig. 16. Mean-value and the uncertainty bounds of the calibrated DUT
from the MC analysis. The uncertainty bounds are reported as 95% Gaussian
distribution coverage.

Fig. 17. Uncertainty budget of the calibrated DUT due to various uncertainty
sources in SRM calibration based on the full-network approach, reported as
95% Gaussian distribution coverage.

After conducting 5000 runs of the MC analysis, we obtained
the results illustrated in Fig. 16. The figure displays the
mean-value of the calibrated DUT and the uncertainty bounds
based on the full and half-network variants. As can be seen
from the figure, the mean value of the MC analysis is in
agreement with the reference data of the DUT, indicating a
proper convergence of the MC simulation. On the other hand,
the uncertainty bounds of both full and half-network variants
show similar values, with the half-network showing slightly
higher uncertainty, which is probably due to the fact that the
reciprocal network used in the network-load standards requires
a stricter requirement of being half of the reciprocal network.

To examine the impact of each uncertainty source,
we repeated the MC analysis, considering each uncertainty
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Fig. 18. Uncertainty budget of the calibrated DUT due to various uncertainty
sources in SRM calibration based on the half-network approach, reported as
95% Gaussian distribution coverage.

source individually. The results in Figs. 17 and 18 show the
uncertainty budget for the full and half-network cases, respec-
tively. The calibration process is mainly influenced by the
symmetric and reciprocal standards since these standards must
be symmetric for the one-port standards, and the reciprocal
network needs to be replicated in the network-load standards.
Interestingly, the smallest contributor to the uncertainty bud-
get is the crosstalk. Noise has a minor effect compared to
the uncertainty in calibration standards, but is slightly more
significant than crosstalk. Finally, the match standard shows
most of its impact on the S11 response, while a minor impact
can be seen in the S21 response.

As already observed in Fig. 16, the half-network approach
shows a slightly higher overall uncertainty than the full-
network approach. However, it should be noted that only with
the half-network approach is it possible to implement the
standards at a constant distance, as illustrated in Fig. 4.

VI. CONCLUSION

This article presents a new VNA calibration method based
on partially defined standards. The proposed SRM method uses
one-port symmetric standards, a two-port reciprocal device,
a combination of the reciprocal device with the one-port
device, and a match standard. Only the match standard must
be characterized among all standards, defining the calibration’s
reference impedance.

We have extended our proposed method to the particular
case of an on-wafer setup, where the probes are fixed in
distance. To do this, we restricted the two-port reciprocal
device to be symmetric, allowing us to use half of it to define
the network-load standards.

To validate the effectiveness of the proposed SRM method,
we conducted coaxial measurements, demonstrating its capa-
bility to achieve results comparable to metrology-level
accuracy while relying solely on the provided S-parameters
of the match standard. Additionally, an MC analysis of the
SRM method was performed using synthetic data based on
CPW model and error boxes derived from an actual on-wafer
measurement setup. This numerical analysis aimed to evaluate
various sources of uncertainty impacting the calibration pro-
cess. Our findings highlighted the significance of variations
in symmetrical standards and the influence of the reciprocal
network, which plays a crucial role as part of the network-load

standards. Interestingly, crosstalk showed minor influence
compared to other sources of uncertainties.
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