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Abstract— In this article, a method to fast classify (intradural
hemorrhage, epidural hemorrhage, and cerebral parenchymal
hemorrhage) and locate the bleeding points by using the sin-
gularity expansion method (SEM) and backpropagation (BP)
neural network optimized by genetic algorithm (GA) and sparrow
search algorithm (SSA) is proposed. In the simulation model, the
bleeding spot with a radius of 3 mm is successfully identified by
the approach. The test accuracy in the simulation for both the
bleeding’s localization and classification are 98.0% and 97.4%,
respectively. Head phantoms that have all been improved over
the previous phantom established are used for experiments.
A bleeding target with a volume of 3 mL can be identified in the
microwave detection system. In the experiment, the accuracy of
classification and localization of the bleeding type are 90% and
94.7%, respectively. The final results demonstrate the capability
and effectiveness of the method. Faster determination of bleeding
point type and orientation means that patients can be provided
with different rescue measures accordingly.

Index Terms— Classification of cerebral hemorrhage, local-
ization of cerebral hemorrhage, microwave signal, singularity
expansion method (SEM), sparrow search algorithm-genetic
algorithm-back propagation (SSA-GA-BP) neural network.

I. INTRODUCTION

STROKE has become one of the diseases with extremely
high mortality. On average, one in four people over the

age of 25 in the world may have a stroke. The longer it takes,
the more blood you will bleed. The golden rescue time for a
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stroke is 4–5 h, the earlier treatment means less harm to the
patient [1]. Therefore, to save more patients’ lives, the time
for early diagnosis and treatment of stroke is very precious.
At present, the general medical instruments used to detect
the bleeding point of stroke are computed tomography (CT)
detectors and magnetic resonance imaging (MRI) detectors [2].
However, these two instruments are complex to use and bulky,
and they are not portable medical devices, so they are not
convenient for outdoor rescue and other special scenes.

Microwave tomography (MWT) is a new imaging technique,
which has been applied to the early diagnosis of breast
cancer [3]. At present, a novel stroke detection system using
microwave imaging technology is being gradually deepened by
various research groups. One of the advantages of microwave
monitoring is equipment volume. Besides, the detection cost
is low, and the detection speed is fast. So, the microwave
detection system is expected to become a new generation
of equipment to detect strokes for public [4], [5]. MWT
technology is a kind of non-destructive testing. In the early
stage, different dielectric properties of various brain tissues
responding to microwave signals can be used to reconstruct
the real brain structure. Therefore, brain structures without
abnormalities and those with hemorrhagic spots can also be
distinguished due to their different electromagnetic proper-
ties [6].

There are now several research groups dedicated to early
stroke detection and identification system research, in general,
most of the research is looking for bleeding point targets in
simple phantoms and imaging-detected targets [7], [8], [9].
Some methods are time-consuming using inverse scattering.
The inversion method among these methods can correctly eval-
uate the performance of the reconstruction model method. But
the iterative time cost is fatal [2], [10], [11]. Rodriguez-Duarte
et al.’s [12], [13] team at the Polytechnic University of Turin
has been working on microwave stroke classification detection.
They proposed a method by using differential approximations
and distorted Born approximations to image the target [12],
[13]. Mariano et al.’s [14] team at the Polytechnic University
of Turin used a dataset generated by full-wave simulation to
test the type and direction of stroke. The group of King’s
College London, Strand, London, applied the distorted Born
iterative method, two-step iterative shrinkage thresholding
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(DBIM-TwIST) algorithm to differentiate the hemorrhagic
and ischemic strokes [15], [16], [17]. In the latest study,
the team from Czech Technical University used support vec-
tor machines (SVMs) to establish a comprehensive training
set, which can classify hemorrhagic stroke and ischemic
stroke [18]. The head phantom used in this reference only
contains one material with dielectric properties equal to the
average dielectric parameters of a human head. In this article,
the raw signals were set as the input data of the learning-by-
example (LBE) strategies. The study in [18] is a continuation
of the previous research in [19]. In [18], the raw signals
were proposed by using the principal component analysis
(PCA) algorithm to improve the accuracy of the classification.
However, the algorithms proposed in [19] only trained on
the data obtained from numerical simulations. The above
research teams have made a great breakthrough in the research
on the imaging part of the stroke. Stroke rescue detection
needs the necessary conditions of urgency and speediness.
Qualitative analysis of the bleeding type and bleeding location
is in the first place. Analyzing the bleeding type first and
then determining the location can narrow the imaging range,
which is the necessary prerequisite for small-scale and high-
efficiency imaging in detection. Determining the type and the
orientation of the bleeding point is also very important for
early rescue and protection of patients.

To solve the above problems, this article proposed a method
using singularity expansion method (SEM) and sparrow search
algorithm-genetic algorithm-backpropagation (SSA-GA-BP)
neural networks to quickly classify and locate the types of
bleeding points. In this study, only the time-domain signal is
needed to extract the feature singularity as the input data of
the neural network. The attenuation factor and amplitude at the
corresponding frequency are extracted from the time-domain
signal. Classification efficiency can be significantly increased
by using fewer features and fewer classification labels. This
method combines the signal processing method and the neural
network to identify the cerebral hemorrhage, which saves a lot
of detection time. Table I provides a side-by-side comparison
between the work presented in this article and the most recent
related research.

The details of the research in this article are described as
follows. In Section II, the details of establishing the 2-D head
model by applying the finite-difference time domain (FDTD)
method are shown. The details of the proposed method used in
the simulation will be shown in Section III. The results of the
simulation and discussions are shown in Section IV. Section V
shows the experiment verification of the proposed method. The
conclusion of this article is presented in Section VI.

II. HEAD MODELING IN SIMULATION

In this section, the details of the 2-D model of the brain in
the simulation and the electromagnetic characteristics of brain
tissues will be shown. The details of the antenna set around
the head model will also be introduced in this section.

A. Electromagnetic Characteristics of the Brain Tissue

The structure of the human brain is complicated. Fig. 1 is
an MRI of the real head, which shows the main structure of

Fig. 1. MRI of the human brain.

the human head. This MRI of the head is the key data for
simulation modeling. It can be seen in Fig. 1 that the scalp is
the outermost layer of the head, which is together with subcu-
taneous fat to protect the head. The skull plays a supporting
and protecting role. Further inside are meningeal structures,
including cerebrospinal fluid, and fat tissues between the skull
and the brain. Deep inside the brain are the gray matter and
white matter. In Fig. 1, the chosen main structures in the
simulation modeling are labeled.

The electromagnetic characteristics of human brain tissue
are the basis of analyzing the propagation of microwave
signals in the brain. Human tissues have different electrical
properties [20]. Human biological tissues show different reac-
tion effects in the external electromagnetic field due to their
different electrical characteristics. Electrical characteristics
include conductive characteristics and dielectric characteris-
tics [21].

FDTD iterative analysis is applied in this study. The ideal
frequency band is selected within 1–5 GHz according to
relevant research results [22]. The electromagnetic parameters
of the brain tissue at 1 GHz are shown in Table II.

B. FDTD Simulation of Head Model

The head modeling in this article is based on the 2-D
FDTD method. Before the iterative operation of FDTD, the
analysis and processing of the MRI are carried out. The MRI
is separated and labeled for each brain tissue so that the
electromagnetic parameters can be assigned to each computing
cell in the subsequent iterative operation [16], [23], [24]. Fig. 2
shows the established 2-D head model and the location of
the antenna array. Each color represents a tissue. The portion
outside the head in the figure is set as an air layer.

To simulate the antenna position of the stroke detection
equipment, the 16 antennas are evenly arranged around the
scalp. During the detection, one antenna transmits a signal,
the other antennas receive the signal, respectively. In this
simulation, the emitted signal is set as the sixth-order Gaussian
pulse signal [25].

III. SIGNAL DATA PROCESSING AND CLASSIFICATION

In this section, the approach of signal processing is speci-
fied. Different bleeding point types and orientations are set as
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TABLE I
RESEARCH METHODS AND RESULTS OF THE ABOVE TEAMS

TABLE II
ELECTROMAGNETIC PARAMETERS OF BRAIN TISSUES

different category labels for the collected raw signals. Then,
the unique feature singularity information is extracted from the
original signals. Finally, the GA-BP neural network is used
in the simulation stage to classify the location and type of
bleeding points. In the experimental detection phase, the SSA-
GA-BP neural network is used to classify the location and type
of bleeding targets.

A. Set Category Label

In this section, a bleeding spot with a radius of 3 mm is set
in the brain model. Three bleeding types and four orientations

Fig. 2. Simulation model of the head and the location of the antennas.

of the bleeding target are used as the labels of the received
raw signals. In the simulation, each type of bleeding target has
four orientations. Fig. 3(a) shows the epidural hemorrhage,
which is one of the most common types of hemorrhage in
reality. Also, four positions (top left, top right, bottom left,
and bottom right) of the epidural hemorrhages are shown in
Fig. 3(a). In Fig. 3(b), the intradural hemorrhages with four
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Fig. 3. Three different types of bleeding points with a radius of 3 mm are
set in the 2-D model. (a) Epidural hemorrhage model with bleeding points in
four directions. (b) Intradural hemorrhage model with bleeding points in four
directions. (c) Parenchymal hemorrhage model with bleeding points in four
directions.

orientations are shown, and in Fig. 3(c), the parenchymal
hemorrhages with four orientations are shown. The raw signals
obtained from these 12 simulation models are first labeled by
the three bleeding types. Then, four orientations were used
as the second labels to distinguish the signals obtained from
different locations of cerebral hemorrhage.

The central coordinate position of each bleeding point will
be shown in Table III. In this article, each orientation of a
particular kind of bleeding point is set as a label, so there
are 12 different types of labels in total. After determining the
tag, the FDTD method is applied to obtain the raw signals.
During the detection, one antenna transmits a signal, the other
antennas receive the signal, respectively. A 16 × 15 signal
matrix is obtained after a single detection.

TABLE III
FEATURE POLES INFORMATION OF DIFFERENT TYPES AND DIFFERENT

LOCATIONS OF BLEEDING POINTS

Fig. 4. Signals received by A8 and emitted by A1 in 12 bleeding models.

Then, a total of 12signal matrices are obtained. Fig. 4 shows
the signals related to different types of bleeding received by
the A8 antenna, when the A1 antenna emits the signal. Signals
1–4 are the signals of the epidural hemorrhage located at the
top left, top right, bottom left, and bottom right. Signals 5–8
are the signals of the intradural hemorrhage located at the top-
left, top-right, bottom-left, and bottom-right directions. Signals
9–12 are the signals of the parenchymal hemorrhage located
at the top left, top right, bottom left, and bottom right. It can
be seen from the figure that the amplitude difference between
different signals is not obvious, and it is hard to judge the
label category by these raw signals.
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B. Extraction of Feature Poles

After obtaining all the raw signals related to different types
of bleeding points, the singular point expansion method is
applied to the analysis of transient electromagnetic fields due
to the natural resonance phenomenon of the electromagnetic
system itself [26], [27]. Signal pole extraction is a very impor-
tant application in radar target recognition, nuclear magnetic
resonance, speech recognition, and other fields.

The current model-based linear prediction pole extraction
methods mainly include the Prony method, the general pencil
of functions (GPOFs), and the matrix pencil method (MPM).
In the direction of early breast tumor target recognition,
the characteristic poles of the tumor are extracted through
the Prony algorithm in the singular point expansion method,
so that different growth stages of the tumor can be identi-
fied [28], [29], [30]. Finally, this research chooses the Prony
algorithm to extract the characteristic poles of the signals.

The Prony algorithm is actually a polynomial calculation
method, and its most essential problem is to extract pole
information from instantaneous data with equal time intervals.
Here, the signal y(t) obtained by FDTD iteration is discretized
to obtain y(n). Denote y(n) as a signal model of attenuation
exponential sum

y(n) =

p∑
m=1

bm · zn
m, n = 0, 1, . . . , N − 1. (1)

The pole information is represented by zm

zm = esi ·t
= e(−αi + jωi )t , m = 1, 2, . . . , M. (2)

In order to perform signal analysis, it is necessary to extract the
characteristic components from the signal represented by (2),
that is, it is necessary to extract the best M . Prony’s theoretical
definition constructs a sample function matrix R

R =


r(0, 0) r(0, 1) . . . r(0, pe)
r(1, 0) r(1, 1) . . . r(1, pe)

...
...

. . .
...

r(pe, 0) r(pe, 1) · · · r(pe, pe)


(pe+1)×(pe+1)

where p is the real order of the Prony algorithm, generally
take Pe = N/2, and N is the time step of the signal. During
FDTD iteration, the iteration time step is set as 6000 steps,
so N = 6000

r(i, j) =

N−1∑
n=Pe

y(n − j)y∗(n − i). (3)

The following uses singular value decomposition (SVD) to
determine the effective rank P of the matrix R. The dimension
of the matrix S(p) is (p + 1) × (p + 1)

S(p)
=

p∑
j=1

Pe−p+1∑
i=1

σ 2
j jv

i
j

(
vi

j

)H
(4)

where σ 2
j j is singular values of matrix R

vi
j =

[
v(i, j), v(i + 1, j), . . . , v(i + p, j)

]T
. (5)

v(i, j) is a factor on row i and column j of matrix v.

Finally, a and z need to be solved. The relationship between
a and z is as follows:

1 + a1z−1
+ · · · + apz−p

= 0 (6)

where a is represented by the following equation:

ai =
S(−p)(i + 1, 1)

S(−p)(1, 1)
, i = 1, . . . , p. (7)

S(−p) is the inverse matrix of S(p). At this time, assuming that
z has been obtained, (1) can be simplified to the equation of
parameter b in the following equation:

8b = y(n)

8 =


1 1 . . . 1
Z1 Z2 . . . Z1
...

...
. . .

...

Z N−1
1 Z N−1

2 . . . Z N−1
P

. (8)

The relationship between b and 8 is b = [8H8]
−1

8H
· y.

According to b, the information contained in the characteristic
singularity can be obtained, including amplitude, attenuation
factor, and frequency. The amplitude, attenuation factor, and
frequency can be calculated by using the following equation:

Am = |bk |

αm =
ln|zk |

1t

fm = arctan
[

Im(zk)

Re(zk)

]
/2π1t. (9)

Then, the corresponding feature pole information, including
amplitude, attenuation factor, and frequency of all the signals,
can be obtained according to the abovementioned method.
Table III shows the feature poles information. Different infor-
mation corresponds to signals obtained from the simulation
model with different bleeding points. The center coordinates
are the positions of the bleeding points. They are the coor-
dinates of the center of the bleeding point in the set 2-D
model. The bottom-left corner of the 2-D model in Fig. 2
is defined as the coordinate origin. In Table III, only a set of
information at 1 GHz corresponding to each signal is shown.
There are 2200 sets of pole information obtained in the actual
calculation. The data volume is so huge that it cannot be fully
displayed here.

C. SSA-GA-BP Neural Network

This section shows the procedure of classifying the feature
poles dataset obtained in Section III-B. There are many types
of neural networks at present, but in this study, the SSA-GA-
BP neural network is selected as the neural network model for
classification. BP neural network is the most complete series
of artificial neural network methods so far, and it is easier to
apply to actual test scenarios [31], [32]. BP neural network is
mainly composed of an input layer, hidden layer, and output
layer [33].

In this study, two networks are designed. The output layer
of the first network has three outputs to help classify the type
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Fig. 5. Flowchart of the optimization algorithm.

of bleeding target. The output layer of the second network has
four outputs to help locate the bleeding target.

The overall performance of the BP network particularly
depends on the initial weights and bias. So, how to obtain the
initial weights and biases correctly is a key issue in improving
the performance of the BP neural network [34]. The most
suitable weights and biases for the network need to be chosen.
The number of hidden layers and the number of nodes in
the BP neural network play a decisive role in the training
speed and recognition accuracy of the entire network [35].
SSA-GA optimization of the BP neural network can focus on
solving these two problems. The SSA intelligence algorithm is
a relatively novel swarm intelligence optimization algorithm.
The core of the algorithm is inspired by sparrows’ strategies
of finding food and dealing with natural enemies. Compared
with other popular optimization algorithms, the sparrow search
algorithm (SSA) improves the search accuracy of the sample
target and reduces the optimization time.

The genetic algorithm transforms the selection of initial
weight and threshold into the problem of solving the optimal
value of the function and assigns it to the BP neural network
after selection. In terms of the selection of hidden layers, too
many hidden layers and the number of nodes will have a
negative impact on the network and negatively damage the
processing capacity of the network.

The flowchart of the optimization algorithm is shown in
Fig. 5. In the optimization process, the data are initialized
first. Then, the SSA algorithm is used to find the appropriate
number of hidden layer nodes. GA optimization algorithm
optimizes the corresponding weight and bias. Then, the stop-
ping condition is checked to decide whether to continue or
to repeat the above loop. The stopping condition is whether
the loss function (multiclass cross-entropy) in the network has
converged within the set epochs. It will also check whether
the current number of SSA iterations is the same as the set
number of stops.

It is worth noting that the signal in the simulation stage is
obtained under the ideal condition, so its characteristics are
more obvious, and the optimal network can be obtained only
by GA algorithm optimization in the simulation stage. The
number of nodes, the weight, and the bias in the network are

Fig. 6. Final network structure optimized by the genetic algorithm. (a) First
neural network for judging the type of bleeding point. (b) Second neural
network for judging the direction of the bleeding point.

all the optimization results of the GA algorithm. The number
of hidden layers has been verified by multiple tests, and two
layers can meet the classification accuracy requirements. One
hidden layer can meet the location accuracy requirements in
the localization network.

During the simulation, the final network structure optimized
by the genetic algorithm is shown in Fig. 6. Fig. 6(a) is the
first neural network for judging the type of bleeding point in
the simulation phase. The number of nodes in the first hidden
layer is 14. The number of nodes in the second hidden layer
is 18. The number of nodes in the output layer is 3. Fig. 6(b)
is the second neural network for judging the direction of the
bleeding point in the simulation phase. This neural network
is a single hidden layer neural network with six nodes, the
number of nodes in the output layer is 4.

The ultimate research purpose is not only to determine the
type of cerebral hemorrhage point but also to determine the
location of the hemorrhage point, to facilitate the later imaging
processing, or to provide corresponding protection measures
for patients. The specific process of the overall detection
method is shown in Fig. 7. First, the raw signals are collected
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Fig. 7. Specific process of the overall detection method.

from FDTD models. Then, the raw signals are processed by
SEM method to achieve the characteristic poles, which are
set as the input data of the neural network. The first network
classifies the type of cerebral hemorrhage, whereas the second
network judges the orientation of cerebral hemorrhage.

IV. SIMULATION RESULTS AND DISCUSSION

This section contains the results and discussions of the
proposed method in the simulation model.

The obtained 2200 sets of extreme point information were
randomly divided into two groups, one group was used to
test the first network for judging the type of bleeding point,
and the other group was used to test the second network
for judging the direction of bleeding point. Both networks
have 1100 feature poles information. To improve the accuracy
of judgment, the pole data are cleaned by the data cleaning
method, which is also a method for data quality analysis. The
data cleaning method is the process of reviewing and verifying
data to remove duplicates, correct errors, and provide data
consistency. After data cleaning, there are 1037 sets of data
input into the first network and 1008 sets of data input into
the second network. The data cleaning procedures of the two
networks are different because the number of label categories
is different. Although the number of cleaned data is different,
it does not affect subsequent tests. In this study, 85% of the
total data is selected as the training set and 15% as the test set.
That is, the first network has 882 sets for training and 155 sets
for testing. The second network has 857 sets for training and
151 sets for testing.

Fig. 8 shows the confusion matrix diagram for the bleeding
point type classification network. Fig. 8(a) is the training
set’s confusion matrix diagram, and Fig. 8(b) is the test
set’s confusion matrix diagram. The abscissa represents the
predicted label of the sample, where 1 represents epidural
hemorrhage, 2 represents intradural hemorrhage, and 3 rep-
resents parenchymal hemorrhage. The ordinate represents the

Fig. 8. Confusion matrix diagram of the classification neural network.
(a) Training set’s confusion matrix diagram. (b) Test set’s confusion matrix
diagram.

Fig. 9. Relationship between loss function value (multiclass cross-entropy)
and epochs in the classification network.

Fig. 10. Confusion matrix diagram of the localization network. (a) Training
set’s confusion matrix diagram. (b) Test set’s confusion matrix diagram.

true label of the sample. The accuracy of the training set is
98.9%. The accuracy on the test set is 97.4%.

Fig. 9 shows the relationship between loss function value
and epochs. The multiclass cross-entropy is used as the loss
function. Multiclass cross-entropy is used to handle multi-
ple classes, calculating the cross-entropy for each class and
summing them up. The loss function measures the degree of
difference between the predicted classification value and the
true value. The smaller the loss, the closer the prediction is
to the true label. The convergence of loss values reflects the
efficiency of learning features of deep learning algorithms.
The loss function is infinitely close to 0 and the change trend
does not rebound. At this time, the network stops training and
converges.
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Fig. 11. Relationship between loss function value (multiclass cross-entropy)
and epochs in the localization network.

Fig. 10 shows the confusion matrix diagram for judging
the localization network of bleeding points. Fig. 10(a) is the
final training set’s confusion matrix diagram of the judgment
results, and Fig. 10(b) is the test set’s confusion matrix
diagram of the judgment results. The abscissa represents
the predicted label of the sample, where 1 represents top
left, 2 represents top right, 3 represents bottom left, and
4 represents bottom right. The ordinate represents the true
label of the sample. The accuracy of the training set is 98.7%.
The accuracy on the test set is 98.0%. Fig. 11 shows the
relationship between loss function value (multiclass cross-
entropy) and epochs.

The above confusion matrixes show the feasibility of the
method proposed in this article. To further verify the feasibility
and practicability of the signal analysis method SEM and SSA-
GA-BP network, the experimental verification of the brain
phantom is carried out in Section V.

V. EXPERIMENTAL VERIFICATION

This section introduces the design, and test details of the
experiment system. The experimental validation is a critical
part. In this section, the details of establishing a phantom of
the real human head are presented. The human head model
consists of the skull, cerebrospinal fluid (CSF), white matter,
gray matter, and blood in experiments. Antenna details around
the model are also covered in this section. At the same time,
the above algorithms are also verified in this experimental
system.

A. Phantom Establishment of the Human Head

In this experimental system, a skull model is made based
on real MRIs of real patients. The skull model is composed of
two parts, one is a hollow skull and the other is a mandible.
The main materials of this skull phantom are polyvinyl alcohol
and calcium sulfate. The front of the skull phantom, the side
of the skull phantom, the top of the skull phantom, and the
interior of the skull phantom are shown in Fig. 12(a)–(d). This
skull provides a container for filling the white matter and gray
matter mimicking materials.

Fig. 13 is a skull model filled with mimicked brain tissue
materials. At the same time, there are eight head phantoms
with eight hemorrhagic sites at different locations established
to obtain raw signals. The bleeding target is assumed by red

Fig. 12. Skull phantom used in this experiment. (a) Front of the skull
phantom. (b) Side of the skull phantom. (c) Top of the skull phantom.
(d) Interior of the skull phantom.

Fig. 13. Head phantom filled with tissue-mimicking materials. Eight
hemorrhagic sites at different locations for experimental verification were
replaced by red simulated fluid of 3 mL. (a) Top-right dura mater hemorrhage.
(b) Bottom-right dura mater hemorrhage. (c) Top-left dural hemorrhage.
(d) Bottom-left parenchymal hemorrhage. (e) Top-right parenchymal hem-
orrhage. (f) Bottom-right parenchymal hemorrhage. (g) Top-left parenchymal
hemorrhage. (h) Bottom-left parenchymal hemorrhage.

simulated fluid with a volume of 3 mL. The composition of
the red simulated blood material here is 1.5%–2% sodium
alginate and 1% potassium chloride. Iron trioxide is used
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Fig. 14. Measured relative permittivity of the developed materials and the
actual relative permittivity of real brain tissues.

as a coloring agent to make the color similar to that of
blood. Fig. 13(a)–(d) are the top-right dura mater hemorrhage,
the bottom-right dura mater hemorrhage, the top-left dura
mater hemorrhage, and the bottom-left dura mater hemorrhage.
Fig. 13(e)–(h) are the top-right parenchymal hemorrhage,
bottom-right parenchymal hemorrhage, top-left parenchymal
hemorrhage, and bottom-left parenchymal hemorrhage. In the
experiment, red simulated blood with similar electrical proper-
ties to the real blood solution was used to fill in the simulated
material. The bleeding target is with a size of 5 mm in radius.
The use of simulated liquid filling is to mimic the real bleeding
case that occurred in the human head.

The head model used in this experiment is a simplified
model to validate the capability of the proposed signal-
processing algorithm. Therefore, the skull, white matter, gray
matter, and a small amount of CSF and blood are included. The
electrical characteristics of the white matter, gray matter, CSF,
and blood-mimicking materials inside the model are measured
by the vector network analyzer in the 0–10-GHz frequency
range at room temperature.

Fig. 14 shows the comparison between the measured electri-
cal characteristics of the developed materials and the electrical
characteristics of actual brain tissues. In this study, the scale
of all the materials of the simulated brain tissue is adjusted to
mimic the real brain tissue. So, the difference in the measured
dielectric parameters between the developed material and the
actual brain tissue is smaller than before [36], as shown in
Fig. 14.

B. Antenna Design

The antenna used in this system is a “12-line Archimedes
antenna.” The working frequency range of the antenna is 0.8–
10 GHz. The antenna size is 60 × 60 mm. The antenna
feeding method adopts balun feeding to realize the impedance
matching between the coaxial line and the radiator. The
antenna used in this experiment is designed by electromagnetic
simulation software, as shown in Fig. 15(a). Fig. 15(b) is the
prototype of the antenna used in the experimental system.
Fig. 16 is the photograph of the measurement setup for the
used antenna. The reflection coefficient (S11) obtained from
the simulation and the measured reflection coefficient (S11) of

Fig. 15. Antenna model and antenna object. (a) Antenna model diagram in
Electromagnetic simulation software. (b) Antenna’s physical photograph.

Fig. 16. Measurement setup of the used antenna.

Fig. 17. Reflection coefficient (S11) magnitude of the antenna in this
experiment.

the used antenna are shown in Fig. 17. The frequency range
of the used antenna in which the reflection coefficient is lower
than −10 dB is 0.8–10 GHz.
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Fig. 18. Antenna radiation patterns of E-plane at different frequencies.
(a) E-plane radiation pattern at 1 GHz. (b) E-plane radiation pattern at 3 GHz.
(c) E-plane radiation pattern at 5 GHz. (d) E-plane radiation pattern at 7 GHz.

Fig. 18(a)–(d) is the simulated and measured far-field radi-
ation patterns in the E-plane at 1, 3, 5, and 7 GHz. It can
be observed in Fig. 18 that the simulated and measured
far-field radiation patterns of the used antenna are similar
over the whole frequency. The antenna has a wide half-power
beamwidth (about 70◦) at each measured frequency.

C. Experiment System Setup

The experiment system setup includes a vector network
analyzer Agilent E5080B, a switch box, a laptop, an antenna
array with eight antennas, and a head model. Fig. 19(a) shows
the photograph of the experiment setup. The laptop is used to
control the switch box. Four antennas are connected to port 1
of the vector network via the switching matrix, and the other
four antennas are connected to port 2 of the vector network
via the switching matrix. These eight antennas are evenly
arranged around the head phantom. Fig. 19(b) shows the
detailed diagram of the antenna arrangement and the location
label of the bleeding target.

During the experiment, one signal was propagated in the
head phantom through two antennas. A program in the laptop
computer controls the RF switch box to switch the antenna.
The obtained S21 results are displayed on the vector network
analyzer. Eight groups of signals are stored by the laptop.

D. Experimental Verification

In this experiment system, the raw data are S21 which are
detected in the range of 0.8–10 GHz. Fig. 20 shows four
waveforms of S21. S21(o5 − 2) is the S21 when antenna II
emits a signal, antenna V receives the signal. S21(o5 − 3) is the
S21 received by antenna V, when antenna III emits a signal.

Fig. 19. Measurement setup. (a) Photograph of the measurement setup.
(b) Photograph of detailed diagram of the antenna arrangement and the
location label of the bleeding target.

Analogous to S21(o5 − 2) and S21(o5 − 3), S21(o5 − 7) and
S21(o5 − 8) are the same. After getting all the S21, these data
are processed by inverse Fourier transform (IDFT) algorithm
to obtain the time domain data. These time domain signals are
set as the input data y(t) in the Prony algorithm.

After the calculation of the Prony algorithm, the feature
poles of different signals are obtained. Here, the feature poles
are still used for two classifications. All the data are randomly
divided into two groups. One group of data is used to train the
neural network to identify the type of bleeding, and another set
of data is for the second network to identify the direction of
bleeding. Due to a lack of materials that mimic the dura mater
of the brain, there are two labels for the type of bleeding:
one refers to dural bleeding, and the other one refers to
parenchymal bleeding. Eight positions of the bleeding point
are shown in Fig. 19(b). Positions 1–4 are dural bleeding, and
positions 5–8 are parenchymal bleeding. The orientation labels
are divided into four categories: 1) 5 are top right; 2) 6 are
bottom right; 3) 7 are top left; and 4) 8 are bottom left. The
136 feature poles are used in the network to determine the type
of bleeding. The 116 feature poles are used for the training
set, and 20 feature poles are used for the test set. The other
133 feature poles are used to judge the bleeding direction. The
114 feature poles are used for the training set, and 19 feature
poles are used for the test set.

The above two sets of data are, respectively, input to two
SSA-GA-BP networks which are shown in Fig. 21 for training.
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Fig. 20. S21 received by antenna V and emitted by antennas II, III, VII,
and VIII, respectively, under the condition of simulating the bleeding point
in position 1.

During the experimental verification, the SSA-GA-BP network
is used because of the actual signal noise problem. The
significance of extracting the poles of the original signals is
that noise has an impact on experimental original signals. The
SEM pole extraction is applicable for processing noise signals.
The SSA is added in the experimental verification to optimize
the number of nodes, and GA to optimize the weight and bias.
As a result, the optimal network is given. In this way, SSA and
GA are processed in parallel to form an overall optimization
algorithm, which improves the accuracy when the number of
training samples is small in the experiments.

Fig. 21(a) is the first neural network for judging the type of
bleeding point. The number of nodes in the first hidden layer
is 14, the number of nodes in the second hidden layer is 18,
and the number of nodes in the output layer is 2. Fig. 21(b) is
the second neural network for judging the direction of the
bleeding point in the experimental verification phase. This
neural network is a single hidden layer neural network with
16 nodes, and the number of nodes in the output layer is 4.

Fig. 22 shows the confusion matrix of the final training
set and test set in the classification network. Fig. 22(a) is
the final training set’s confusion matrix of the classification
results. Fig. 22(b) is the final test set’s confusion matrix
of the classification results. Fig. 23 shows the relationship
between the multiclass cross-entropy and epochs during the
training of the bleeding-type classification network. It can be
seen in the figure that within the set epochs, the network
converges. Fig. 24 shows the confusion matrix of the final
training set and test set in the localization network. Fig. 24(a)
is the training set’s confusion matrix with the localization
results. Fig. 24(b) is the test set’s confusion matrix with the
localization results. Fig. 25 shows the relationship between the

Fig. 21. Final network structure optimized by the genetic algorithm and
SSA algorithm. (a) First neural network for judging the type of bleeding
point. (b) Second neural network for judging the direction of the bleeding
point.

Fig. 22. Confusion matrix diagrams of classification neural network.
(a) Training set’s confusion matrix diagram. (b) Test set’s confusion matrix
diagram.

multiclass cross-entropy and epochs during the training of the
bleeding localization network.

In this experiment, the final accuracy rate of the training
set for classifying the type of bleeding point is 93.1%, and
the final accuracy rate of the test set is 90%. The final
accuracy rate of the training set for judging the location of
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Fig. 23. Relationship between the loss function value (multiclass cross-en-
tropy) and epochs in the classification network.

Fig. 24. Confusion matrix diagram of the localization neural network.
(a) Training set’s confusion matrix diagram. (b) Test set’s confusion matrix
diagram.

Fig. 25. Relationship between the loss function value (multiclass cross-en-
tropy) and epochs in the localization network.

the bleeding point is 96.5%, and the final accuracy rate of
the test set is 94.7%. Although there are some classification
errors, the overall classification accuracy is good. The location
of simulated bleeding targets in physical brain phantoms can
be successfully detected and classified. The final results of the
experiment prove that the detection algorithm proposed in this
article is robust.

VI. CONCLUSION

Cerebral hemorrhage is a disease with a high fatality rate.
The localization and classification of cerebral hemorrhage
are judged directly by microwave signal, which saves pre-
cious life-saving time for patients. This study proposes a
method for quickly determining the type and direction of the
bleeding point. The simulation experiment and the designed
microwave cerebral hemorrhage detection system are used to
verify the feasibility of the Prony characteristic singularity

signal processing algorithm combined with the SSA-GA-BP
network. In the simulation, the test accuracy of classification
and localization of the type of bleeding was 97.4% and 98.0%,
respectively, which means the bleeding target with a radius of
3 mm can be located and classified successfully.

To validate the applicability of this method, experimental
verification was conducted. The ability of the proposed method
was demonstrated on a head phantom filled with developed
materials of each brain tissue. In the experiment, the test
accuracy of classification and localization of the bleeding
type are 90% and 94.7%, respectively. The results show
that the proposed method can successfully identify cerebral
hemorrhage with a volume of 3 mL. After accurate computer
timing, 20 s are taken for the processing procedure (including
signal extraction, signal feature poles information extraction,
and using the trained well network to get the final classification
result).

The method proposed in this article still takes less time
in the whole detecting procedure compared with the general
medical instruments. All the results in this article show that
the proposed method saved a lot of time for testing. In an
emergency, it means more lives can be saved.

In this study, the original microwave signal data is not used
to directly input the neural network for training. The feature
pole information extracted by the signal processing algorithm
in the early stage is the data input to the neural network. The
reason why pole extraction is necessary can be divided into
two categories. The first is the stability of the final results. The
“end-to-end” mode is the original microwave signal directly
input to the neural network. The neural network in this mode
requires more parameters. This will cause more uncertainty.
This type of judgment has more factors of interference, which
will cause poor stability. While the input data is the processed
signal rather than the original signal, it is more stable. The
second is to use neural networks as an auxiliary tool for
judgment. It means that signal processing is an important part
of this study. The classification and localization do not depend
entirely on the learning of neural networks.

In the future, different sizes of the hemorrhage point could
be detected to help improve the applicability of this proposed
method. More situations of the real human brain will be
considered to improve the detection accuracy of the cerebral
hemorrhage point.
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