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Abstract— Acoustic-based hand-tracking technology leads to
the next generation of the Human-Computer interaction (HCI)
mechanism. This approach uses embedded speakers and micro-
phones on commercial devices to send and receive acoustic signals
simultaneously, then the echo can be processed to obtain the
hand’s position. However, existing tracking approaches do not
support multistroke input, as a result, the trajectory is incapable
of character recognition with models trained by simple character
images from databases such as MNIST and EMNIST. In this
article, V-Pen is proposed to estimate the status of the hand with
the energy information acquired from the echo. Subsequently,
Zadoff-Chu (ZC) sequences are used to obtain the initial position
of the hand and track the hand continuously with the change of
phase for a smooth trajectory. While inputting the characters,
V-Pen allows the user to input multiple strokes to get rid of
redundant trajectory which affects the recognition. The results
show that V-Pen achieves an average error of 4.3 mm for
tracking and 94.8% recognition accuracy for 52 English letters,
ten numbers, and 20 Chinese characters.

Index Terms— Acoustic tracking, hand trajectory recognition,
time-of-flight (ToF) estimation.

I. INTRODUCTION

HAND tracking and recognition have emerged as a com-
pelling Human-Computer interaction (HCI) mechanism,

garnering significant attention in various HCI-related domains
[1] such as mobile phones [2], virtual reality (VR), and
augmented reality (AR) devices [3]. In contrast to traditional
HCI systems that rely on physical contact with keyboards or
touch pads [4], hand tracking and gesture recognition present
a novel communication approach, offering unique possibilities
for gaming and interactive experiences [5].

Hand tracking methodologies can be broadly categorized
into four types, as outlined in Table I: wearable-sensor-based
[6], [7], radio frequency (RF)-based [8], [9], camera-based
[10], [11], and acoustic-based solutions [12]. Wearable-sensor-
based solutions leverage precise hand motion data acquisition,
achieving optimal accuracy for gesture recognition. RF-based
approaches find extensive application in localization and
tracking, yet their resolution is constrained by the speed of
light. Unlike the first two types, which necessitate external
devices, the ubiquity of built-in cameras in most smart devices
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facilitates the implementation of vision-based hand sens-
ing. However, this approach contends with privacy concerns,
susceptibility to lighting conditions, limited viewing range,
and high power consumption. Moreover, obtaining accurate
distance information from visual data poses a significant chal-
lenge. To address these limitations, acoustic-based approaches
have been introduced. The compatibility of these approaches
is similar to vision-based ones as smart devices also have
embedded speakers and microphones [13].

Acoustic-based hand-tracking solutions exploit physical
phenomena named Doppler shift (DS) [20], coupled with
advancements in signal modulation techniques. These solu-
tions often incorporate either active or passive acoustic sensing
through embedded transceivers [12]. Active sensing methods,
represented by AAMouse [16], high-precision acoustic tracker
(CAT) [21], and DopLink [22], provide accurate tracking of
hand movements down to centimeter-level precision. However,
these methods require the user to hold the tracking device
physically, introducing limitations in terms of implementation
flexibility.

Conversely, passive acoustic sensing methods, or device-
free tracking solutions, are becoming increasingly popular due
to their innate benefits [12]. The operation of a device-free
passive sensing system typically consists of three stages.
In the first stage, the system determines a coarse-grained
estimation of the hand’s position by measuring the absolute
distance of the signal transmission path. Yet, due to bandwidth
limitations, the resolution of these measurements is relatively
low. For instance, low-latency acoustic phase (LLAP) [17]
calculates absolute distance using a delay profile, yielding
a resolution of only 6.16 cm. Acoustic multitarget tracking
(AMT) [19] utilizes modulated Zad-off Chu (ZC) sequences
[23] to compute time-of-flight (ToF) [24], capitalizing on their
high auto-correlation and weak cross correlation properties.
However, this approach may produce redundant results even
in the absence of a hand. The second stage involves continuous
hand tracking by applying relative distance changes to the
initial known position. Technologies such as FingerIO [25],
LLAP [17], and Strata [18] leverage phase changes to detect
fine-grained distance variations. However, the error accumu-
lates over time. The last stage is to recognize the tracking
results. Current research lacks support for multiple stroke
inputs for single characters. For example, LLAP [17] over-
looks characters like the lowercase “i.” Moreover, LLAP [17]
uses MyScript [26] instead of the readily available MNIST
[27] and EMNIST [28] databases, thereby increasing the costs
associated with commercial applications.
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TABLE I
HAND TRACKING SOLUTIONS AND COMPARISON

Fig. 1. Input a character in the air using V-Pen.

To address the aforementioned limitations, this article
presents V-Pen, a novel hand tracking and recognition system.
V-Pen accesses the energy of the echo to ascertain hand
movements, then filters out superfluous absolute distance data
gathered when the hand remains stationary. This process
allows for more precise estimation of absolute distances.
Furthermore, the system takes advantage of the period when
the user moves from the end of the current character to the
start of the next character to reevaluate the absolute dis-
tance, mitigating the accumulation of phase errors. A notable
enhancement offered by V-Pen is its ability to accommodate
multiple stroke inputs for a single character as Fig. 1 shows,
which significantly improves recognition performance.

The key contributions of this article are threefold.
1) To the best of our knowledge, V-Pen is the first work that

allows the user to input characters with multiple strokes
using acoustic hand tracking. Thus, the accuracy of the
recognition is improved accordingly.

2) V-Pen proposed a hand status estimation method based
on the echo’s energy to remove redundant distance
estimation results, which improves the tracking accuracy.

3) V-Pen has been successfully integrated as an input
method on commercial mobile phones. The sys-
tem’s performance boasts an average tracking error of
merely 4.3 mm and maintains a remarkable recognition
accuracy rate of 94.8% for 52 English letters, ten num-
bers and 20 Chinese characters.

The structure of the article is organized as follows:
Section II starts with an overview of the V-Pen and then
illustrates algorithms in detail. Section III demonstrates
the implementation of the V-Pen on a commercial mobile
phone. Section IV introduces the system performance. Finally,

Section V illustrates the concluding remarks and discusses
future works.

II. METHODOLOGY

A. Overview

The workflow of the V-Pen signal processing is shown in
Fig. 2. The V-Pen system architecture has two components:
the transmitter and the receiver. On the transmitter side, the
signal designed was modulated and then transmitted by the
transmitter on the mobile phone as shown in the upper part
of Fig. 2. For the receiver, an initialization step was required,
which contains the demodulation of the received signal and
transceiver synchronization. This step was ensured to acquire
precise ToF measurements. Subsequently, the algorithm would
be waiting for the determination of the initial hand’s position.
During this period, the hand status estimation algorithm was
used to detect the start and the end of hand movement. Upon
the hand arrived at the desired start position and stops, the
hand status estimation algorithm would catch this moment and
allow the system to estimate the initial position of the hand.
With the initial hand position determined, V-Pen ensured con-
tinuous and smooth hand trajectories by tracking the relative
distance by monitoring the phase change. It then calculated
the hand’s coordinates utilizing the distance data procured
from the phone’s dual microphones. In the concluding stage,
V-Pen activated its multistroke writing functionality, which
comprises two modes: normal writing and stroke change.
The transition between these modes was easily instigated by
detecting short-term distance variations. When these changes
fall beneath a specified threshold, it indicates the completion
of the current stroke or character. The recorded trajectory will
next be saved for recognition. After finishing the writing of the
current character, the system would reset the initial position
using the period that the hand moves to the desired start
position for the next character. Sections II-B–II-K will discuss
the algorithms in detail following the order of the workflow.

B. Signal Design

Two distinct signals were designed for different algorithm
modes. When obtaining the initial position or re-locating
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Fig. 2. V-Pen signal processing flowchart.

the hand following the completion of writing one character,
a single frequency sinusoidal wave at 19.5 kHz was utilized
in conjunction with a ZC signal occupying a bandwidth of
20–24 kHz. In order to facilitate implementation on commer-
cial devices, the sampling rate was set to 48 kHz. The equation
used for generating the ZC sequence is provided below

z[n] =

{
e− jπ u

Nz c
n(n−1), for odd Nz c

e− jπ u
Nz c

n2
, for even Nz c

(1)

where Nzc is the length of the sequence, u is a parameter
that specifies the ZC sequences, which is also called the
root index, and n is the time index. In this article, the ZC
sequence was generated with a length of 63 and a root index
of 1. A length of 63 strikes a balance between resolution
and bandwidth, allowing V-Pen to achieve precise tracking
accuracy with around 4 kHz bandwidth. Regarding the choice
of the root index, one of the valuable characteristics of the
ZC sequence is that two sequences that were generated with
co-prime root indexes have nearly zero cross correlation [19].
V-Pen used 1 for convenience as there is only one transmitter
in the system.

After determining the initial position, the ZC signal was
replaced with an additional set of seven sinusoidal waves.
These sinusoidal waves were generated with frequencies start-
ing from 21 kHz, then, a constant gap of 350 Hz between
each consecutive frequency until 23.1 kHz. It is important to
note that the generation of the ZC signal continues during
this stage, although the amplitude of the ZC signal was set to
zero. It aims to prevent the loss of synchronization between
the transceivers when the ZC signal is needed for resetting
the absolute distance. This modification ensures a seamless
and uninterrupted tracking process throughout the handwriting
input session.

C. Modulation

One notable characteristic of ZC sequences is that their
correlation properties remain unchanged regardless of whether
fast Fourier transform (FFT) [29] or inverse fast Fourier
transform (IFFT) operations are applied to the sequence.
Exploiting this property, the real part of the FFT results of the

Fig. 3. Frequency spectrum of the modulated ZC signal.

Fig. 4. Demodulation procedure.

generated sequence could be inserted into the central portion
of a 384-bit blank array. Subsequently, an IFFT operation
was performed on the array. The real part of the resulting
signal was extracted to obtain the modulated sequence. In this
configuration, the modulated signal occupied the frequency
band of 20–24 kHz, with a period of 8 ms. The frequency
spectrum of the modulated ZC sequence is shown in Fig. 3.

The sinusoidal waves can be conveniently generated as
follows:

cos(2× π × fc × t) (2)

where fc is the carrier frequency and t represents time. The
modulated ZC sequence and sinusoidal waves were added
together for transmission.

D. Demodulation

The demodulation process can be separated into two dis-
tinct paths as shown in Fig. 4. To process the ZC signal
and neutralize potential interference caused by the sinusoidal
waves, the carrier frequency fzc = 19.5 kHz of the wave sent
together with the ZC signal was employed for demodulat-
ing the received signal. The conventional procedure of I Q
demodulation [30] was applied, retaining only the real portion
of the demodulated results Izc. Despite the demodulation
process generating an additional sinusoidal wave at a higher
frequency, it was unnecessary to filter it out due to the weak
cross correlation between the ZC sequence and other signals.
Furthermore, for the ensuing correlation computation, which
requires a reference signal, the previously acquired modulated
ZC signal is also demodulated at the frequency of 19.5 kHz.
This demodulation result was referred to as the reference
signal in Section II-E. Another demodulation path caters to
the sinusoidal waves, employing their inherent frequencies f
(e.g., 21 kHz) for demodulation.
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Fig. 5. Correlation graph for synchronization.

To preserve the DS information caused by the moving
hand, a high-efficiency low-pass filter known as the cascaded
integrator-comb (CIC) filter [31] was utilized. Additionally,
the CIC filter played a crucial role in down-sampling, thereby
reducing the volume of data to be processed in subsequent
steps. The CIC filter parameters were set as follows: a deci-
mation ratio (R) of 16, a delay (M) of 17, and the number of
stages (N) set to 3. These parameter settings ensured efficient
filtering while maintaining the integrity of the DS information.
For this particular pathway, both the I and Q components were
retained for future phase change measurement.

E. Transceiver Synchronization

Correlation peaks can arise from both the direct signal path
between the transceivers and the echo originating from nearby
objects. However, the direct path produced the strongest
peak due to its relatively higher energy compared to the
echoes. At the initiation of the algorithm, considering that
the transceivers take some time to be stable, the initial
80 000 samples were ignored. The correlation between the
next demodulated 6000 samples and the reference signal was
assessed. As anticipated, correlation peaks are observed at
consistent intervals equal to the length of the ZC signal
(N = 384) in Fig. 5. These peaks signify the moments when
the receiver captures the signal directly transmitted from the
transmitter. The synchronization process only needs to be
performed once at the algorithm’s start, as the subsequent
correlation peaks can be reliably predicted.

F. Hand Status Estimation

Prior to obtaining energy information, the initial step
involves filtering out environmental noises. To achieve this,
a CIC filter was already implemented during the demodulation
process. By computing the total energy of the I Q signal within
each signal block, it becomes evident that the energy levels
vary significantly based on the hand’s status. However, due to
the presence of noise, it is not feasible to determine the hand’s
status solely by setting a threshold. Therefore, an additional
three-stage CIC filter was employed to further mitigate the
noise as shown in Fig. 6(a), with the delay and decimation
factor both set to be 1.

Ultimately, by leveraging the energy change ratio between
consecutive signal blocks and appropriate threshold values,
it becomes straightforward to ascertain the status of the hand as
shown in Fig. 6(b). When initializing the V-Pen, the algorithm
captured the highest and lowest energy ratios while assuming

Fig. 6. Energy information and hand status estimation. (a) Energy filtering.
(b) Hand status estimation based on energy ratio.

a static environment. Subsequently, the thresholds th1 and
th2 were established by adding 0.02 to the maximum ratio
value and subtracting 0.02 from the minimum ratio value
obtained. These values were chosen to establish a tolerance
range around the extreme energy ratios observed during ini-
tialization. This choice enables the algorithm to gracefully
accommodate variations in real-world scenarios while retain-
ing sensitivity to significant changes in the hand’s status. The
counter variable plays an essential role in filtering transient
fluctuations, it increases when energy ratios deviate from the
threshold range. Upon reaching a predefined threshold of 5,
the counter triggers a reset of the status estimation to 0,
indicating the cessation of hand movement. During algorithm
development, it was observed that the energy ratio might
not change rapidly enough or fail to reach thresholds during
slow hand movement or near cessation due to directional
changes. Consequently, additional thresholds E1 and E2 were
introduced to provide extra tolerance for these phenomena.
The quantity of data included in E1 and E2 was fine-tuned
based on hand status estimation performance to strike a
balance between sensitivity and specificity. In order to achieve
a precise estimation of the hand condition, specific conditions
based on these thresholds were devised in Algorithm 1.

G. Initial Position Estimation

Following the application of demodulation to the received
signal, a correlation is established between this signal and the
reference signal as shown in Fig. 7(a). In order to minimize
the impact of environmental noise under 17 kHz [16] and
direct signal interference, the disparity between two successive
correlation results was computed.

Subsequently, the ToF could be determined by locating the
correlation peak resulting from the movement of the hand
[19]. For example, in Fig. 7(b), the absolute distance could
be obtained by utilizing ToF and the speed of sound

Absolute distance

=

(
Speed of sound (cm/s)

Sampling rate

)
× (Delay in sample)

=

(
34 300
48 000

)
× (384− 351) = 23.58 cm. (3)
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Algorithm 1 Hand Status Estimation
Input: Energy Ratio
Output: Status Estimation

1: Initialize:
2: Status estimation = 0 (0 indicates the hand is NOT

moving and 1 indicates the hand is moving)
3: Counter = 0
4: E1 ← last three consecutive energy ratio values
5: E2 ← last five consecutive energy ratio values
6:
7: if status estimation == 0 then
8: if energy ratio>= th1 or energy ratio <= th2 then
9: status estimation ← 1

10: else
11: status estimation ← 0
12: end if
13: else
14: if energy ratio< th1 or energy ratio > th2 then
15: counter += 1
16: end if
17: if energy ratio>= th1 or energy ratio <= th2 or all of

E1 > 1 or all of E1 < 1 or (max(E2) − min(E2)) >

(th1 − 0.02− (th2 + 0.02)+ 0.002) then
18: counter = 0
19: end if
20: if counter = 5 then
21: status estimation ← 0
22: counter ← 0
23: end if
24: end if

Fig. 7. Correlation results. (a) Correlation of two consecutive signal blocks.
(b) Correlation difference of two consecutive signal blocks.

However, the raw ToF results still exhibit considerable levels
of noise as Fig. 8(a) shows, especially when the hand remains
stationary. Recognizing that ToF should remain relatively
stable over short time intervals, only ToF measurements with a
maximum difference among five consecutive readings below
a predefined threshold (i.e., 6 cm in V-Pen) were recorded.
Another limitation of the ToF approach is that the correlation

Fig. 8. Initial position estimation from ToF. (a) Raw distance results from
ToF and smoothed results of V-Pen. (b) Hand status estimation based on
energy ratio.

peak persists regardless of the presence of a moving hand.
By utilizing the hand status information, valid initial position
estimation results could be derived based on the hand status
shown in Fig. 8(b). When the hand status estimation indicates
that movement has stopped, the average of the last ten distance
values was computed as the final result.

H. Relative Distance Measurements

The variation in phase reflects the alteration in the relative
distance of the signal transmission path. A phase change of
2π corresponds to a wavelength change in distance [32].
To achieve precise measurement of the phase change in the
signal, the local extreme values detection (LEVD) algorithm
was implemented by LLAP [17], which was inspired by the
well-known empirical mode decomposition (EMD) algorithm
[33]. This algorithm compares the local extreme values with
a threshold (i.e., five times the standard deviation of I/Q
measured under a static environment) and extracts the signal
that represents the echo from the hand, thus, enabling accurate
determination of the phase change. However, while imple-
menting LEVD in V-Pen, it was observed that the algorithm
could be wrongly triggered under noise. For example, LEVD
was activated by local extreme values caused by the noise
as Fig. 9 shows, and then output the wrong phase change
as a result. Once LEVD has been initialized (i.e., found two
satisfied extreme values with a difference larger than the
threshold), the modified LEVD in V-Pen and the original
version show similar performance as indicated by Fig. 9.
The pseudocode of the modified LEVD algorithm is given
in Algorithm 2. Additionally, as there were several sinusoidal
waves, each of them can extract independent distance change
information. Theoretically, the total distance change measured
by each sinusoidal wave should be the same, however, it can
be affected by the noise. As the speed of the hand remains
constant during a very short period (i.e., 8 ms), the distance
change should be linear during this time. V-Pen measured
the linearity of the distance change detected and ignored the
measurements from the frequency with the most nonlinear



9600111 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Fig. 9. Results of the original and improved LEVD algorithms.

distance changes. The rest of the results were averaged to
reduce the noise.

I. Hand Position Estimation

With the original initial position and continuous relative dis-
tance change information, the length of the signal transmitting
path was monitored. As there were two microphones on the
mobile phone, each of them can provide distance information.
Establishing one microphone and the speaker to be the focus
of the ellipse as demonstrated in Fig. 10, two equations can
be formulated. Equation (4) can be simplified to be a standard
equation of a circle as the transceivers share the same position

x2
+ y2

=
p2

1

4
(4)

4(x − L/2)2

p2
2

+
4y2

p2
2 − L2

= 1. (5)

Then the coordinates of the hand can be obtained by solving
the above equations

x =
L2
− p2

2 + p1 p2

2L
(6)

y =

(
−

(
L2
− p2

2

)
(L + p1 − p2)(L − p1 + p2)

)1/2

2L
. (7)

J. Enhancement for Input Applications

For the purpose of recognition, not all the tracking results
are needed. For example, the number “4” is usually written
in two separate strokes. If only one stroke is allowed, the
trajectory will be mixed with redundant contents. To solve this
problem, the algorithm continuously detects the total moving
distance in the last 0.8 s. A threshold (i.e., 1.5 cm in V-Pen)
was set to detect whether the hand stops moving, then the
system goes into the stroke change mode accordingly. There
would be a black spot on the screen displaying the current
position of the hand. Once the hand stops moving, which
indicates that it has been moved to the start position of the next
stroke, the system will be back to normal writing mode. If the

Algorithm 2 V-Pen LEVD Algorithm
Input: I/Q Vectors
Output: Echo Reflected by Hand

1: Initialize:
2: Echo from hand = D(t), t = 0, . . . , T
3: Echo from where else = S(t), t = 0, . . . , T
4: Extreme list = E(n), n = 0
5: Extreme update value = EV , EV = 0
6: I/Q mean value in a static environment = Send
7: All extreme values in the current signal block = peaklocal
8: All extreme values found = peakmax and peakmin
9: Initialization (ini) = f alse

10:
11: S(0) = Send
12: if ini == f alse and peakmax is not empty and peakmin

is not empty then
13: compare location of latest peakmax and peakmin
14: update: latest extreme is a max/min
15: n ← n + 1, E(n) ← latest peakmin/peakmax
16: n ← n + 1, E(n) ← latest peakmax/peakmin
17: ini ← true
18: end if
19: if ini == f alse then
20: S(t)← S(0), t = 1, . . . , T
21: end if
22: if ini == true then
23: if peaklocal is empty then
24: if EV == 0 then
25: S(t)← S(0), t = 1, . . . , T
26: else
27: S(t)← S(t − 1) ∗ 0.9+ EV, t = 1, . . . , T
28: end if
29: else
30: for t ← 1 to T do
31: if both latest extreme and S(t) is max/min and

S(t) is larger/smaller than E(n) then
32: E(n) ← S(t)
33: end if
34: if one of latest extreme and S(t) is max and the

other is min then
35: n ← n + 1, E(n) ← S(t)
36: update: latest extreme is a max/min
37: end if
38: if E(n)− E(n − 1) > threshold then
39: EV ← 0.1 ∗ (E(n)+ E(n − 1))/2
40: S(t)← S(t − 1) ∗ 0.9+ EV
41: else
42: S(t)← S(t − 1) ∗ 0.9+ EV
43: end if
44: end for
45: Send ← S(T ) ∗ 0.9+ EV
46: end if
47: end if
48: D(t)← I/Q − S(t), t = 0, . . . , T

hand does not move in the stroke change mode, the system
will consider it as the end of the current character, so that the
number of strokes needed can be fully controlled by the user,
instead of setting it as a fixed number.
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Fig. 10. Intersection of the ellipses.

K. Character Recognition

To recognize the trajectory, the MNIST [27] and EMNIST
[28] datasets were used for English letters and numbers. The
recorded coordinates of the trajectory were used to draw
images. These images then will be used as input for the model
trained by the mentioned database. Additionally, Qpen [34]
was used for Chinese characters.

III. IMPLEMENTATION

V-Pen has been successfully implemented on a commercial
mobile phone Huawei P20 Pro, using Java for all processing
algorithms. The application consists of four main threads.
The first thread is responsible for playing acoustic signals,
while the second thread writes received signals to a file. The
remaining two threads handle signal processing and drawing
the results, respectively.

Similar to CTrack [35], the implementation of the V-Pen
system is primarily constrained by the design and perfor-
mance of the embedded transceivers. To achieve optimal echo
strength, it is necessary for the hand to be positioned facing
the transmitter, and the transmitter’s power should ideally be
high. However, due to the hardware configuration involving
two microphones facing opposite directions and the main
speaker positioned opposite one of the microphones, using
the main speaker as the transmitter would compromise one
of the microphones’ ability to capture a significant amount of
echo. Consequently, the signal is routed through the earpiece
while the user writes in the air above the screen. As a result,
the effective range of the V-Pen system is affected by the
power of the earpiece, as it is only a tenth of the main
speaker’s output. The decision to utilize Samsung S5 for
algorithm implementation in previous research was influenced
by the high signal-to-noise ratio (SNR) of its transceivers,
a characteristic that may not be present in newer phone models.
The noise level of the received signal is discernibly higher in
comparison to earlier studies, as evidenced by comparing the
I/Q signal from V-Pen and the graph given in LLAP [17].
This suboptimal SNR can affect the accuracy of distance esti-
mation. Furthermore, the performance of distance estimation

for signals from Mic2 is impacted by its physical distance
from the signal source. Consequently, the absolute distance
estimation process exclusively relies on Mic1, necessitating
the hand to stop right above the earpiece at the end of the
initial position estimation or absolute distance reset phase, the
height of the hand is then determined through absolute distance
estimation. Therefore, the position of the hand can be con-
firmed as (0, height). Regarding the latency of the algorithm,
no issues were observed with the Kirin 970 processor, which
was developed in 2017. The performance of the V-Pen system
might be improved with the adoption of newer, more advanced
devices.

IV. PERFORMANCE EVALUATION

Three assessments of V-Pen’s performance were evaluated.
Firstly, its 1-D-ranging capabilities were evaluated by measur-
ing both 1-D relative and absolute distance errors. The effects
of the hand configuration were also discussed. Secondly,
a square template was employed to evaluate its 2-D tracking
performance. Finally, the accuracy of trajectory recognition
was evaluated.

A. One-Dimensional Ranging

1) Relative Distance Ranging Error: To assess the relative
distance ranging performance, a ruler was placed near the
mobile phone to measure the ground truth distance, and the
hand was moved from a position 20 cm away from the mobile
phone and brought to a stop at a 15 cm position. The ranging
error is defined to be the absolute value of the difference
between the algorithm’s results and the ground truth values
measured by the ruler. Fig. 11(a) illustrates the cumulative
distribution function (cdf) of the measurement error under
different noise levels. Under a normal environment (i.e.,
45 dB), the average error over 50 movements was found to be
2.9 mm, which is comparable to LLAP [17] and Strata [18] as
they all rely on detecting phase changes. The 90th percentile
measurement error was determined to be 5.2 mm. While there
are noises from speech and music, the ranging error also
increases accordingly. The average error in environments with
noise levels of 55 and 65 dB was measured to be 6.8 and
9.1 mm, and the 90th percentile measurement error was around
11.2 and 13.5 mm, respectively. The sub-centimeter level of
average measurement error demonstrates the high robustness
of V-Pen. Additionally, the error was evaluated while the hand
moved at different distances under a normal environment.
As shown in Fig. 11(b), when the hand position is within
the range of 50–25 cm, the average error is 4.4 mm, and
the standard deviation varies from 1.8 to 7.7 mm. The results
indicate that V-Pen slightly outperforms LLAP [17] due to
improvements made in the LEVD algorithm. However, errors
of over 10 mm occur when the hand is more than 30 cm away
from the device, which is attributed to the limited power of
the transmitter. Moreover, when the hand is too close to the
device (e.g., 5 cm), the performance also slightly deteriorates
due to the multipath effects.
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Fig. 11. One-dimensional ranging performance evaluation. (a) Movement error under different noise levels. (b) Relative distance measurement error at
difference distance. (c) Absolute distance measurement error at different distances.

2) Absolute Distance Ranging Error: The absolute distance
ranging performance was demonstrated in Fig. 11(c), the error
was measured by moving the hand from any position and
stopping at a distance of 15 cm away from the device. In a
normal environment, the average and median errors were
1.30 and 1.07 cm, which outperforms LLAP [17] (i.e., average
1.8 cm) and is similar to Strata [18] (i.e., median 1.0 cm).
However, the performance under noise was not evaluated in
Strata [18] while the average error of V-Pen only increased
to 1.53 and 1.68 cm when the noise levels reached 55 and
65 dB, respectively. The minor impact on accuracy caused by
noise underscores the robustness of the ToF-based method.
The absolute distance estimation shows a similar performance
when the hand stops between 15 and 25 cm as shown in
Fig. 11(c), the error is averaged as 1.26 cm. Similar to the
relative distance ranging performance, the accuracy decreases
when the hand is 30 cm away from the device, as the power
of the transmitter and the strength of the received echo can
also affect the absolute distance ranging performance. Also,
when the hand is too close to the device, the accuracy drops
as well.

3) Effects of Hand Configurations: The hand-tracking sys-
tem’s performance was also evaluated across diverse hand
configurations, encompassing variations in the number of
fingers and hand poses. Specifically, the evaluation was per-
formed in scenarios where the user held out 4–5 fingers, 2–3
fingers, and 1 finger. When the palm faced down, the relative
distance error ranged from 2.9 to 8.6 mm, the performance
dropped as the number of fingers held out decreased, and the
absolute distance error varied from 1.3 to 1.6 cm. The change
in number of the fingers adjusts the size of the area facing
the transmitter on the bottom, which results in a difference
in the strength of the echo received. Based on the results of
the experiment, the area facing down is directly linked to the
relative distance measurement accuracy. However, the absolute
distance estimation appeared to be less affected by variations
in hand configuration. Another group of experiments was
repeated by letting the palm face left. When 4–5 fingers were
held out, the area facing downward decreased significantly
compared to the palm facing down scenario, resulting in an
expected drop in performance. Notably, in scenarios where
users held out 2–3 fingers, the bending of the remaining fingers
increased the area facing downward, resulting in enhanced
tracking accuracy compared with the 4–5 fingers case. The
accuracy measurements when palms faced left included a

Fig. 12. Template and multiple tracking results.

Fig. 13. Effects of 3-D variations. (a) Ground truth 3-D movement. (b) 2-D
trajectory obtained by V-Pen.

relative distance error of 7.3 to 11.7 mm and an absolute
distance error of 1.6 to 1.8 cm. Remarkably, the absolute
distance error exhibited resilience to variations, similar to
the observations when the palm faced down. Additionally,
the system exhibited consistent performance when tilting the
palms at a 45◦ angle, showcasing comparable results to config-
urations with no tilt. This resilience to variations in hand poses
underscores the system’s adaptability in real-world scenarios,
further emphasizing its robust tracking capabilities. In the
subsequent performance evaluations, the default setting will
be palm facing down with five fingers held out. Additionally,
the accuracy when 2–3 fingers were held out will be discussed
to assess system performance under slightly nonideal hand
configurations.

B. Two-Dimensional Tracking

In order to assess the 2-D tracking performance, a 5×5 cm
square template was employed. Once the initial position of



HAN et al.: V-Pen: AN ACOUSTIC-BASED FINE-GRAINED VIRTUAL PEN INPUT SYSTEM 9600111

Fig. 14. Tracking results for 52 English letters, ten numbers, and 20 Chinese characters.

Fig. 15. Normalized confusion matrix.

Fig. 16. Examples of misclassification results. (a) Classify “i” as “j.”
(b) Classify “r” as “y.” (c) Classify “V” as “U.”

the hand is determined, the template will be displayed on the
screen for the user to follow its outline while moving their
hand. The user interface provides real-time visualization of the
tracking results, allowing the user to make small adjustments
to compensate for any errors during movement. An exam-
ple of the template and some tracking results are given in
Fig. 12, which shows the fine accuracy and repeatability of
the V-Pen. The definition of 2-D error is defined as the
distance between the points on the tracking results to the
nearest point on the template, which is the same as LLAP [17]
and Strata [18]. The system achieves an average and median
tracking error of 4.3 and 4.0 mm for 2-D tracking, which
outperforms LLAP [17] (i.e., average 4.6 mm) and Strata
[18] (i.e., median 5.7 mm). While using the 2–3 fingers hand
configuration, the average tracking error dropped to 4.7 mm.

The superior performance on absolute distance estimation
significantly contributes to the 2-D tracking accuracy.

Additionally, a noteworthy difference in the error magnitude
between the x-axis and y-axis was observed, because the hand
position estimation algorithm has different tolerance to the
distance measurements error in different moving directions.
Specifically, during the transition from coordinates (0, 10) to
(1, 10), inducing a 0.5 cm deviation in the y-axis necessitates
distance measurement errors of approximately 1.2 and 1.0 cm
for each microphone, respectively. In contrast, achieving a
0.5 cm error along the x-axis during the progression from
(0, 10) to (0, 9) requires significantly smaller distance mea-
surement errors of approximately 0.42 and 0.02 cm for each
microphone, respectively.

Another factor that could affect the accuracy of the tracking
and recognition is the 3-D variation during the writing period.
Considering that the accurate 3-D variation of the hand is hard
to control, a simulation was performed. Assuming writing a
“Z” in the air and including some involuntary movements in
the 3-D, the moving trajectory can be drawn by the follow-
ing four positions as Fig. 13(a) shows: (0, 10, 0), (5, 10, 3),
(0, 5,−3), and (5, 5, 2). As Section II-F stated, the algorithm
assumed that the hand is always in the 2-D plane. When
there is a movement in the 3-D, the algorithm is actually
calculating the rotated position of the ground truth along with
the x-axis. The estimated hand position is given in Fig. 13(b),
the maximum error of the trajectory is still under 1 cm for
a 3 cm 3-D variation in this case. In real application, the
variations would be expected to be much less than 3 cm.

C. Trajectory Recognition

To assess the recognizability of the trajectory captured by
V-Pen, Qpen [34] was used for Chinese characters, and the
models trained with MNIST [27] and EMNIST [28] datasets
were utilized [36] for numbers and English letters. V-Pen
allows the user to input multiple strokes and control the
number of strokes required (e.g., two strokes for number “4”
and three strokes for letter “E”). For the purpose of evaluation,
three participants were engaged in the experiments, with each
individual performing multiple repetitions of writing every
character, ranging from 3 to 5 times. The volume of the
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characters is constrained to a maximum of 10×10 cm, and the
average dimension of the characters written was 3.2 × 5.9 cm.
A demonstration was given to the volunteers regarding how the
system works, such as how to write the next stroke or finish the
current character. And they were given 10 min to get familiar
with the system before experiments. Examples of English
letters and digit numbers tracked by V-Pen are illustrated in
Fig. 14. The tracking results in the figure benefit from the
multistroke input function and have greater similarity to the
real-world handwritten trajectory compared with the previous
research. V-Pen achieves an impressive recognition accuracy
of 94.8% for 52 English letters, ten numbers, and 20 Chinese
characters. Regarding the recognition accuracy while using the
2–3 fingers hand configuration, as there is only a 0.4 mm drop
in the 2-D tracking performance, the recognition performance
remains similar. For 3-D variations during the movement, the
sub-centimeter error incurred in the tracking results also does
not affect the recognition accuracy as the shape of the character
remains similar. In comparison, LLAP [17] achieved over
90% recognition accuracy by sacrificing some characters and
relying on MyScript [26]. In contrast, V-Pen offers enhanced
flexibility and a cost-effective approach for future imple-
mentations, enabling precise recognition of English letters
and numbers without the need for a third-party recognition
platform.

The confusion matrix delineating misrecognized English
characters is presented in Fig. 15. Characters sharing similar
shapes or structures as given in Fig. 16, such as “V” and
“U,” are particularly susceptible to confusion, a common
phenomenon in prior literature [28]. Remarkably, for numeric
characters, the model, trained on the MNIST dataset, exhib-
ited commendable performance, achieving a flawless 100%
recognition accuracy for the ten numbers. In terms of Chinese
characters, V-Pen attains an accuracy rate of 86%. Notably, the
recognition dataset contains the entirety of Chinese characters,
diverging from V-Pen’s focus on a set of 20 commonly used
characters. Consequently, instances of misclassification often
result in the recognition of characters beyond the selected 20,
precluding the generation of a meaningful confusion matrix in
this context.

V. CONCLUSION

This research presents V-Pen, an innovative acoustic-based
hand-tracking solution designed for input systems. V-Pen
achieves remarkable tracking accuracy at the sub-centimeter
level, ensuring precise and reliable tracking results. More-
over, the algorithm’s efficient processing capabilities enable
real-time applications, enhancing user experience and system
responsiveness. In addition, a novel hand status estimation
algorithm is introduced to tackle issues caused by redun-
dant data, resulting in further improvements in tracking
performance. Furthermore, to overcome limitations com-
monly encountered in previous approaches, V-Pen successfully
addresses the challenge of substandard recognition accuracy
for characters with multiple strokes. These advancements
collectively contribute to the effectiveness and usability of
V-Pen as an input system solution.

Future work will study further improvements on the absolute
distance estimated with limited bandwidth, and investigate the
solution to overcome the multipath effects in order to use
a single sinusoidal wave to measure accurate phase change
instead of the averaging results from multiple waves.
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