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Abstract— Surface defect detection is one of the most
important vision-based measurements (VBMs) for intelligent
manufacturing. Existing detection methods mainly require mas-
sive numbers of defect samples to train the model to detect
the defects. Nowadays, inadequate defect samples and labels are
inevitably encountered in industrial data environments due to
the highly automated and stable production lines escalatingly
deployed, causing fewer and fewer defective products to be pro-
duced. Consequently, manual interventions are deeply required to
analyze the abnormal sample once an unseen defect accidentally
emerges that significantly decreases productivity. To this end,
this article proposes a novel few-/zero-shot compatible surface
defect detection method without requiring massive or even
any defect samples to detect surface defects. First, a novel
contrastive generator is proposed to use defects’ text descriptions
to synthesize “fake” visual features for those rare defects. Then,
the synthesized visual features (for support samples) are fused
with “real” visual features (for query samples) into a similarity
graph to align the relationships between support samples and
query samples. After, a class center optimization (CCO) method
is proposed to iteratively update the similarity matrix of the
graph to obtain the classification probabilities for the query
samples. Eventually, the proposed method solves the problem of
the lack of defect samples and the inability of few-shot learning-
based methods to recognize unseen classes. Massive experiments
on eight fine-grained datasets show that our method gains an
average of +8.29% improvements on few-shot recognition tasks
and achieves an average of +8.23% improvements on zero-
shot recognition tasks compared with the state-of-the-art (SOTA)
method. Moreover, the proposed method is deployed in a real-
world prototype system, and the method’s feasibility is finally
demonstrated. The core code of the proposed method is available
at: https://github.com/NDYBSNDY/AsC.

Index Terms— Contrastive learning, few-shot learning, gen-
erative learning, graph embedding (GE), surface recognition,
vision-based measurement (VBM), zero-shot learning.
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I. INTRODUCTION

AUTOMATED industrial production can reduce labor
costs and increase productivity. Recent research has

used Bayesian techniques for manufacturing methods [1] to
significantly reduce the production process cost by producing
input parameters for the desired outcome. Similarly, collective
robotic systems for constructing multistory buildings [2] reach
state-of-the-art (SOTA) construction speeds. With the rapid
development of vision computing in recent years, vision-based
measurement (VBM) has become one of the most critical and
influential methods for automated industrial production [3],
[4]. Surface defect recognition, as an essential part of auto-
mated industrial production, has the critical role of improving
production efficiency and reducing labor costs. Compared with
manual defect recognition, VBM-based machine inspection
methods are more objective and efficient. However, due to
the environmental constraints on defect sample collection,
the types of defects occurring in the production process
are uncertain and random. This requires VBM-based defect
recognition models to have the ability to fit a few samples and
the flexibility to adapt to complex production environments.

However, the remaining surface defects, i.e., the rare-seen
or unseen defects, are still hard to detect since there are not
enough such defect samples that can be trained. To solve the
problem, existing few-shot models [11], [12], [13], [14], [15]
only require very few support samples to prompt the model
to detect the query samples. The core idea of these methods
is to pretrain a model from other related training samples (the
samples that are relatively common and easy to collect) in
advance. Then, the pretrained model extracts the features from
the support samples (rare-seen samples and hard to collect) and
tries to update itself to know the defects. After, the updated
model extracts the features from query samples and tries to
infer the defects of query samples. These methods require at
least one defect sample to conduct the query inference. The
more defect samples, the higher the accuracy of these detection
models. However, in industrial detection practice, some defect
samples are hard to collect in advance or have never appeared
because the well-optimized smart manufacturing environment
has further reduced the defect rate. Consequently, manual
interventions are deeply required to analyze the abnormal
sample once an unseen defect accidentally emerges that will
significantly decrease productivity. Therefore, enabling defect
inference without using any support samples becomes one of
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the most critical challenges in the surface defect detection
field.

To solve the nonsample problem, the zero-shot mechanism
is reasonably considered. The basic idea of zero-shot learning
for visual computing is to train a cross-modal network to
synthesize the visual features from the corresponding semantic
features [16], [17], [18], [19], [20]. Based on this cross-modal
network, the model can synthesize the unseen visual features
without truly learning the sample, i.e., only by describing
this object in texts. Then, the synthesized visual features are
matched with the visual features of the query sample to infer
the category of the query sample. However, existing zero-shot
learning methods are designed for general image classification
tasks that do not perform well in surface defect detection. This
is because these zero-shot learning methods directly match
the synthesized visual features with query samples without
considering the support information in the industrial data
environment, which hardly guarantees detection accuracy.

To this end, this article proposes a few- and zero-shot
compatible model by considering both synthesized samples
and support samples. The proposed method can detect surface
defects in both few-sample and nonsample data environments.
First, a novel contrastive generator model is proposed to
synthesize the visual features according to the semantic fea-
tures. Then, the synthesized visual features are filtered and
considered as support samples to augment the real support
samples. After, a graph-based center feature update method is
proposed to match the visual query features to the synthesized
support visual features iteratively. The experimental results on
massive real-world surface defect datasets show the proposed
method significantly outperforms SOTA methods in both few-
shot tasks and zero-shot tasks. In the highlights, compared
with SOTA methods, our method has significant improvements
in both few- and zero-shot surface defect detection. Moreover,
the proposed method is deployed in a prototype manufacturing
scenario, an automated hot-rolled steel surface detection line,
to demonstrate its feasibility and applicability. In summary,
the work has the following contributions.

1) Compared with deep-learning-based methods, the pro-
posed method can be decoupled into two phases: sample
generation and class inference, and only the class infer-
ence phase needs to be deployed in the application,
which can significantly reduce the model complexity.
Meanwhile, the graph-based class inference method
has different feature space distributions and graphs
when dealing with different query samples, which is
more adaptable to the complex and changing industrial
environment.

2) Compared with few-shot learning-based methods,
we integrate zero-shot learning, where the types of
defects that can be recognized are no longer limited
to known classes with support samples, and support
samples for unknown classes are obtained through the
proposed contrast generator instead of being collected.

3) Compared with zero-shot learning-based methods, our
approach uses inference rather than a fixed model for
sample prediction, which allows different samples to
have different spatial distributions, seen/unseen class

predictions do not affect each other, and the proposed
method focuses more on unlabeled query samples rather
than labeled seen samples or unseen generated samples.
Since there is no need to tradeoff the seen/unseen class
focus, we achieve the simultaneous optimal performance
of the seen/unseen class prediction instead of the tradeoff
performance.

4) Compared with SOTA, the proposed method gains
an average of +8.29% improvements on few-shot
defect recognition tasks and an average of +8.23%
improvements on zero-shot defect recognition tasks. The
proposed method is deployed in a real-world proto-
type system to evaluate the feasibility and practical
implementation.

II. RELATED WORK

A. Different Methods of Defect Recognition

In the latest research, different methods (including methods
based on Deep Learning, Few-Shot Learning and Zero-Shot
Learning) are used for surface defect recognition and the
advantages and disadvantages of different methods are shown
in Table I.

The core idea of deep-learning-based methods is to train
a fixed classifier to recognize defects through many samples.
However, the lack of defect samples leads to the inability to
train an accurate convolutional neural network (CNN). Some
recent studies [5], [6] have utilized the relevant parameter
information of defects to compensate for the wrong recogni-
tion of some defect types due to the lack of samples. However,
extra information often leads to labeling noise. Yu et al. [7]
dealt with labeling uncertainty through knowledge transfer
and collaborative learning. Since defect datasets often suffer
from data imbalance, deep stochastic chain [8] and gradient-
based [9] methods can deal with the difference between defect
samples of the same class. The latest research has theoretically
solved some existing problems in defect recognition, but
in real industrial environments, existing deep-learning-based
methods inevitably have some disadvantages as follows.

1) Existing methods incorporate multiple methods (e.g.,
collaborative learning and deep random chains) on deep-
learning networks, leading to complex structures and
difficulty fine-tuning the model for nonspecialists.

2) Deep-learning methods obtain a fixed model through
training, which leads to models that cannot self-optimize
in the application environment, have poor generalization
capabilities, and are inflexible.

3) Methods that utilize parameter information to sup-
plement samples lead to models that are difficult to
reproduce and tune due to the lack of uniform standards
for different parameter representations.

4) The category of the dataset used to evaluate the model
is 6, which makes it impossible to know the performance
of the model in industrial scenarios where defect types
are random and diverse.

The core idea of few-shot learning is to pretrain a model
from other related training samples (the samples that are
relatively common and easy to collect) in advance. Then, the
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TABLE I
COMPARISON OF STATE-OF-THE-ART DEFECT RECOGNITION TECHNIQUES

pretrained model extracts the features from the support sam-
ples (rare-seen samples and hard to collect) and tries to update
itself to know the defects. After, the updated model extracts
the features from query samples and tries to infer the defects
of query samples. In recent studies, in order to better learn the
local features of defects and reduce background interference,
Zhou et al. [10] designed a feature extractor with the class
agnostic mask to extract the defect features and Zhenyu et al.
[11] developed a multiresolution-based cropping enhancement
method to enhance the unlabeled defect images. By borrowing
the idea of multiscale feature extraction, a novel backbone
network, ResMSNet, was proposed [12], which realizes cross-
domain few-shot learning with the training set and target
defect dataset coming from different domains. Since with
few support samples (e.g., shot = 1), few-shot learning-based
methods often perform poorly, and some researchers have
also attempted to solve this problem by additional information
fusion. Zhao et al. [13] in fusing semantic information based
on feature relationships to effectively obtain high-dimensional
feature information in a few images. Song et al. [14] generated
distinguishable class features by learning affine parameters
from the original features, making the model more portable.
Effective inference methods often play a crucial role in model
performance and Xiao et al. [15] optimized the inference pro-
cess through graph embedding (GE) and optimal transmission
to improve model flexibility. It cannot be denied that few-
shot methods have advantages under a few defect sample
conditions, but some limitations seem to make them difficult
to apply.

1) These methods require at least one defective sample
(shot ≥ 1) for inference. This leads to the fact that
once an unseen defect appears unexpectedly (shot = 0),
the few-shot learning-based recognition method breaks
down outright, and manual intervention is required to
analyze the abnormal sample.

2) Detectable defect types are limited to known dataset
classes, which leads to the fact that to use the method
in production environments with a large number of

classes, it is necessary to build at least one support
sample for each possible defect type. However, due to
the limitations of production environments, collecting
comprehensive support samples of all types is an almost
impossible task.

3) Some methods dealing with different numbers of sup-
port samples (different shots) require training different
models, e.g., FaNet [13], which leads to complex model
deployment.

In order to detect novel defect types (classes with no support
set) that arise unexpectedly in real production environments,
a few studies have attempted to apply zero-shot learning to
defect recognition [16], [17], [18]. The basic idea of zero-
shot learning for visual computing is to train a cross-modal
network to synthesize the visual features from the correspond-
ing semantic features [19], [20], [21], [22]. Based on this
cross-modal network, the model can synthesize the unseen
visual features without truly learning the sample, i.e., only by
describing this object in texts. Then, the synthesized visual
features are matched with the visual features of the query
sample to infer the category of the query sample. However,
the application of zero-shot learning in the field of surface
defect recognition is not emphasized, which is mainly due to
as follows.

1) Zero-shot learning-based methods often train fixed mod-
els with a mixture of seen classes and generated samples
of unseen classes. Since the seen/unseen classes are not
differentiated, resulting in the accuracy of the two affect
each other, the model needs to tradeoff the attention paid
to the two to obtain a compromise performance.

2) Existing zero-shot learning models in the field of defect
recognition usually have many hyperparameters that
need to be selected and optimized, and manual parameter
tuning is time-consuming and laborious.

3) Zero-shot learning methods in vision are only applicable
to benchmark datasets (e.g., CUB, SUN, and AwA) with
samples >15 000, while defect datasets have no more
than 1000 samples.
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4) Zero-shot learning methods in the visual domain try
associating local features with attributes [21], e.g., a bird
includes a head, a beak, wings, and feet. This is entirely
inapplicable for surface defects where it is difficult to
disentangle local features.

B. Development of Few-/Zero-Shot Learning in Different
Fields

One-shot learning was first proposed by Fei-Fei et al. [23].
Since the method can quickly learn new knowledge with a few
training samples and generalize, it has been rapidly developed
in some fields where training data is rare.

In natural language processing, relational classification tasks
provide a basis for constructing structured knowledge (e.g.,
knowledge graphs) by judging the predefined relationship
between two target entities in an utterance. However, the
development has been slow due to the lack of training data.
Xu et al. [24] introduced few-shot learning into the relational
classification task for the first time and constructed the FewRel
dataset. Many researchers explored this basis [25], [26], [27],
[28], and the introduction of few-shot learning made the per-
formance of the relationship classification task continuously
improved [29], [30].

In medical image processing, due to the difficulty of
biopsy label acquisition, Qinghua et al. [31] first attempted
to introduce few-shot learning into the ultrasound breast
tumor diagnosis system and achieved excellent performance.
In recent years, the few-shot method has been widely used
in the medical field, including the recognition of COVID-19
from rare chest images [32], human cell categorization
in rare datasets [33], autism facial feature categorization
[34], skin image categorization [35], and healthcare safety
monitoring [36].

Palatucci et al. [37] proposed the concept of zero-shot
learning due to the ability of this method to detect rare or
unseen objects in an image. In some industrial application
scenarios, the zero-shot method was introduced.

In remote sensing scene classification, satellite images are
prone to new classes of objects beyond the expected scene,
which leads to the collapse of deep-learning-based meth-
ods. Li et al. [38] introduced zero-shot learning into remote
sensing scene classification and proposed a new method for
recognizing images from unseen classes. Further studies tried
to combine knowledge graphs with zero-shot learning and
achieved better performance [39]. The latest methods have also
continued to apply zero-shot learning to remote sensing scene
classification [40], [41], remote sensing image defogging [42],
and remote sensing image super-resolution [43].

In intelligent manufacturing scenarios, due to the diversity
and randomness of industrial faults, some real fault samples
are difficult to obtain or never occur, so zero-shot learning
methods have been widely used in the field of industrial fault
diagnosis in recent years [44], [45], [46], [47].

III. METHODS

The general framework of the few-/zero-shot visual inspec-
tion method is shown in Fig. 1, which consists of two parts: the
contrastive generator (see Section III-B) and the graph-based
few-/zero-shot inference (see Section III-C).

A. Problem Formulation

Let X , Y , and D = {X ,Y} denote the raw visual fea-
ture space, the corresponding image labels, and the dataset,
respectively. Assume Ds

= {X s
∈ X ,Y s

∈ Y} is a training
set consisting of seen classes and Du

= {X u
∈ X ,Yu

∈ Y}

is a test set consisting of unseen classes. The constraints are
Ds

∩ Du
= ∅ and Ds

∪ Du
= D. At the same time, the

class-level text features are provided A = As
∪ Au , where

As correspond to the seen classes in Ds , and Au correspond
to the unseen classes in Du . For the N -way K -shot task, N
unseen classes are selected as the test set in Du , in which K
with-labeled samples are reserved for each selected class as
the support set Dt , and the unlabeled samples in the test set
are the query set Dq . K is usually small or even nonexistent
(i.e., K = 0, K = 1, and K = 5). Unlike the common task,
the final support set of the proposed task is Dt

∪Da , and Da is
a text prompt extracted from Au corresponding to N classes.

B. Contrastive Generator

1) Visual Feature Synthesizing: Let as
∈ As be a text

feature of a seen class while x s
∈ X s be the visual feature

of the corresponding class. The input to the conditional
generation network G is obtained by splicing the text features
as and Gaussian noise ϵ ∼ N (0, 1). G outputs the synthetic
visual samples x̄ s

= G(as, ϵ). Meanwhile, the discriminator
network D is used to discriminate a real pair (x s, as) from a
synthetic pair (x̄ s, as). The feature generator network G and
the discriminator network D can be learned by optimizing the
following adversarial objective:

LG = −Eϵ∼pϵ

[
D(G(as, ϵ))

]
+ Lcls(G(as, ϵ))

LD = −Eϵ∼pϵ

[
D
(
G(as, ϵ)

)]
− Ex∼pd

[
D
(
x s)]

+ Lcls
(
x s).

(1)

LG is the loss function of generator G. It consists of a
discriminator error E and a class classification loss Lcls. LD

is the loss function of discriminator D that consists of a
synthesized visual feature discriminating error, a real visual
feature discriminating error, and a class classification loss Lcls.

2) Contrastive Loss for Real Features: Let the embedding
of a visual sample x s be denoted as f s

= E(x s), E is an
embedding function that maps the raw visual sample x s into
the embedding space. To learn the embedding function E , for
each data point f s embedded with real or synthetic features,
try to randomly take one sample f s+ of the same class as the
f s sample as a positive sample and f s+

̸= f s . And take N
samples randomly as negative samples f s−

j from the set of
all class samples not of the same class as f s+ samples. Then,
a positive sample f s+ is mixed with N negative samples f s−

j
into an unlabeled set of samples f s

j , and the correlation scores
between the real embedding and the other real embedding
samples are obtained by calculating the dot product similarity
between f s and f s

j . Finally, the known labeled sample f s

is used to distinguish the only positive sample in f s
j . For

example, as shown in Fig. 2, if the embedded real sample f s

class is Am, a randomly selected positive sample f s+ class is
also Am, but f s and f s+ are different pictures. Meanwhile,
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samples of classes different from Am (i.e., convexity, In,
blister, and bump) can be selected as negative samples f s−

j .
It is worth noting that since the known labeled samples

f s need to distinguish only the positive sample among the
set of N + 1 positive and negative samples, the size of N
(the number of negative samples) determines the classification
difficulty. If N is small, it is not easy to learn discriminative
class features, and if N is too large, it leads to long training
time and high overhead. At the same time, too accurate class
features may lead to the real embedded feature distribution not
being compatible with the synthetic feature distribution with
significant deviation, making the performance decline. Thus,
by weighing the model accuracy against the training overhead,
the number of negative samples (N ) is set to 25% of the total
number of samples (classes different from f s+).

In summary, consider using a contrast loss function called
InfoNCE1 to compute the expected loss of contrast embedding
LCR for the real embedding samples f s and f s

j . The formula
is shown as follows:

LCR

= −EF

[
log

exp(( f s)⊤ · f s+/τ)

exp(( f s)⊤ · f s+/τ)+
∑N

j=1 exp(( f s)⊤ · f s−
j /τ)

]
.

(2)

Here, N denotes the number of negative samples f s−
j ( f s−

j
and f s belong to different seen classes). f s

̸= f s+ but they
belong to the same seen class. τ > 0 is the temperature hyper-
parameter, which is used to control the convergence rate of the
model.

3) Contrastive Loss for Synthesized Features: Analogously,
to make the synthesized samples x̄ s fit the real embedding
space and increase the distribution distance between different
classes of generated samples. The positive and negative sam-
ples of the synthetic features are shown in Fig. 2, which are
selected in the same way as the real features, where the number
of negative samples is also taken as 25% of the total number of
samples (which are not of the same class as f s). The positive
samples are also taken randomly from among the samples of
the same class as f s . Referring to (2), let f̄ s

= E(x̄ s), the
contrastive loss LCS of the synthesized features is defined as
follows:

LCS

= −EF

[
log

exp(( f s)⊤ · f̄ s+/τ)

exp(( f s)⊤ · f̄ s+/τ)+
∑N

j=1 exp(( f s)⊤ · f̄ s−
j /τ)

]
.

(3)

During the contrastive generator training process, only seen
visual features X s , seen semantic features As , and seen labels
Y s are used. During the few-/zero-shot predicting, a generator
G(Au, ϵ) is used to generate the synthesized visual features
X u , after which the synthesized visual features are mapped to
the embedding space by the embedding function E : F̄u

=

E(G(Au, ϵ)), which includes only the features of the unseen
class. Raw features of unseen classes are also mapped to the
embedding space Fu

= E(X u).

1https://arxiv.org/abs/1807.03748

C. Graph-Based Few-/Zero-Shot Inference

1) For Zero-Shot Inference: In the industry-specific zero-
shot visual inspection process, first, the similarity matrix S
is obtained by calculating the feature similarities among the
support features F̄ t and the query features Fq synthesized
from the contrastive generator (see Section III-B). Then, the
similarity graph is constructed from the adjacency similarity
matrix S. The class center T̄ (0)

i is obtained by initializing the
support node T . Finally, the final classification probability
matrix Mi, j is obtained by continuously updating the class
center T̄ (k+1)

i with the classification probability matrix M (k+1)
i, j .

The predicted label is obtained as Ŷ i by selecting the maxi-
mum probability of Mi, j .

In the above process, all support embedding samples are
synthesized by the proposed generator G and the embedding
function E (see Section III-B), all query samples are processed
by the embedding function E , and all query and support
samples belong to the unseen class. Fig. 1 provides the
overview process of zero-shot inference.

Let S be the adjacent similarity matrix, and Si, j stores
a similarity value of feature i and feature j . Equation (4)
provides the definitions of S

Si, j =


w⊤
(

f̄ t
i ∥ f̄ t

j

)
, if i, j in F̄ t

w⊤
(

f q
i ∥ f̄ t

j

)
, if i in Fq , j in F̄ t

w⊤

(
f̄ t

i ∥ f q
j

)
, if i in F̄ t , j in Fq

w⊤

(
f q
i ∥ f q

j

)
, else.

(4)

Here, F̄ t is the synthesized visual feature embedding space
of the support set, while Fq is the real visual feature embed-
ding space of the query set, F̄ t

∈ F̄u , Fq
∈ Fu . f̄ t denotes

the synthesized visual embedding features. f q denotes the
real visual embedding features. w denotes a parameter matrix.
In the experiment, for each node in S, only Top-k similar
neighbors remain. The rest neighbors are marked as 0 in
similarities.

Before inference on query set categories, it is crucial to
construct a relational network containing support set label-
ing information and unlabeled query set information. The
proposed method constructs interrelationships between query
samples and support samples through GE to fully utilize the
known label information. The graph-based inference process
usually needs to initialize a center for each class and continu-
ously optimize the class centers to achieve class differentiation
during the inference process. Different methods of class center
selection [48], [49], [50] often affect the quality of inference
results and iteration efficiency. In order to obtain more rea-
sonable class centers, the self-attention (SA) mechanism is
introduced. By further correlating feature information between
samples, the proposed method obtains class center points with
rich defect feature information, which is also more global in
biasing the support sample distribution.

Eventually, the SAGE module is constructed to further
improve the class center optimization module (CCO) perfor-
mance through sample information integration and class center
initialization, which contains (5) and (6).

Given a diagonal matrix Di, j =
∑

j Si, j , the adjacency
matrix S, a normalization function Norm(·), a SA function
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Fig. 1. Overview framework of the proposed method for few-/zero-shot visual inspection.

Fig. 2. Example of positive and negative samples of real and synthesized
features, with synthesized sample resolution of 64 × 64 pixels.

Self(·), and a one-layer learn-able weight matrix W , the GE
is defined as follows:

T ∪Q = Self
(
Norm

(
D−

1
2 (S + ξ · E)θ D−

1
2 W

))
. (5)

Here, T is the GE for all support samples. Q is the GE
for all query samples. E is the node self-connection matrix
and ξ is the weight parameter that balances the importance
of the neighboring node and self-node information. θ is the
embedding ratio parameter.

Based on the support samples feature matrix T , the support
classes’ center feature matrix T̄ can be calculated by the
following formula:

T̄ (0)
i =

1
K

K ·(i−1)+K∑
k=K ·(i−1)+1

Tk (6)

where K is the number of support samples for a class. Tk

denotes the kth support sample feature while T̄ i represents
the i th class’ center feature. Here, (0) means the initial center
feature

T̄ (k+1)
i = (1 − α) · T̄ (k)

i

+ α ·

(
K · T̄ (0)

i +
∑N

j=1(M (k)
i, j ·Q j )

K +
∑N

j=1 M (k)
i, j

)
. (7)

T̄ (k+1)
i denotes the center feature of the i th class after (k+1)

iterations. α is an updating rate parameter. The updating is
faster if α is bigger and vice versa. In our experiments, α is
set to 0.2. Here, Mi, j represents the classification probability
of the j th query sample Q j belonging to the i th class. It is
calculated by measuring the distance between the class center
feature T̄ (k)

i and the query feature Q j , as defined in the
following:

M (k+1)
i, j = SinkHorn

(
||T̄ (k)

i −Q j ||
2, λ

)
. (8)

Here, λ is a regularization parameter that will be discussed
in the experiment. The settings of the Sinkhorn function are
referred from [53]

Ŷ i = arg max
i

(
Mi, j

)
. (9)

Finally, based on the iterated probability matrix M , the zero-
shot inference can be conducted by selecting the maximum
value of M j for the given query sample j , the predicted label
matrix for all classes is Ŷ i , as shown in (9).
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2) For Few-Shot Inference: The key challenge of few-
shot inference is that the number of support samples is too
small (normally only one to five samples) compared with
the training and query samples, causing a serious distribution
skewness problem. To handle the problem, based on the idea
of zero-shot inference proposed, we try to augment the support
set F t by adding extra synthesized samples F̄ t from the
feature generator (see Section III-B). However, it was observed
in the experiment that simply adding F̄ t into F t does not
obviously improve the classification accuracy. The reason for
this phenomenon is that some synthesized samples f̄ t might
deviate from the real visual feature distribution. These deviated
samples will disturb the model inference.

To guarantee the quality of the synthesized samples, we do
not directly add F̄ t into F t . Instead, F̄ t is filtered in advance
by a classifier based on F t in which only the correct classified
samples F̄ t are added into F t . The inference process is similar
to the zero-shot inference. See (5)–(9). The only difference is
the similarity graph construction, as defined in the following
equation:

S̄i, j =


w⊤
(

f̄ t
i ∥ f̄ t

j

)
, if i, j in F̄ t

w⊤
(

f t
i ∥ f̄ t

j

)
, if i in F t , j in F̄ t

w⊤
(

f̄ t
i ∥ f t

j

)
, if i in F̄ t , j in F t

w⊤
(

f t
i ∥ f t

j

)
, else.

(10)

Let F̄ t ′

be the filtered synthesized sample set. We then have
the augmented support set F̂ t

= {F̄ t ′

∪F t
}. It is worth noting

that ¯|F t ′

| ≫ |F t
|. Based on the support set F̂ t and the query

set Fq obtained by filtering, the similarity graph Ŝ for few-
shot inference is re-constructed [refer to (4)].

Finally, based on the new similarity graph Ŝ, few-shot
inference can be conducted through (5)–(9).

IV. EXPERIMENTS

A. Preliminaries

1) Datasets: To verify the effectiveness of the proposed
method for surface defect recognition, we validated it on
eight different datasets, which mainly include three surface
defect datasets (MSD-Cls [15], FSC-20 [13], and MT-CF)
and five fine-grained datasets DTD,2 EuroSAT,3 RESISC45,4

MED-3 (consists of a blood cell image database,5 multisource
dermoscopic images of pigmented lesions HAM10000,6 and
optical coherence tomography (OCT) images7), and GTSRB.8

MSD-Cls [15] is a metal surface defect dataset that contains
aluminum and steel with different defect types. In MSD-Cls,
only a few training data are about steel defects. However, the
test data are all about aluminum defects that cause a serious
cross-domain problem, making it hard to detect accurately.
FSC-20 MT-CF dataset consists of the oil pollution defect

2https://paperswithcode.com/dataset/dtd
3https://paperswithcode.com/dataset/eurosat
4https://paperswithcode.com/dataset/resisc45
5https://github.com/Shenggan/BCCD_Dataset
6https://dataverse.harvard.edu
7https://www.kaggle.com/datasets/paultimothymooney/kermany2018
8https://paperswithcode.com/dataset/gtsrb

database,9 the annotated road crack image database Crack-
Forest,10 and the magnetic tile surface defect database.11

Noting that MSD-Cls, MT-CF, and MED-3 are cross-
domain datasets consisting of more than three different
datasets from the same industrial domain, the significant data
differences are extremely challenging. RESISC45, GTSRB,
and DTD datasets are fine-grained multicategory datasets with
insignificant class characteristics compared to conventional
few-shot visual inspection datasets. Extra experiments, includ-
ing ablation study, hyperparameter study, and base generator
discussions, are conducted on the MSD-Cls dataset.

2) Dataset Splits: To simulate the few-sample data envi-
ronment, all the above datasets are narrowed by randomly
selecting 10–50 samples for each class. Then with reference
to the PS-split,12 the database is divided into the training and
validation set Ds (seen class) and the test set Du (unseen
class).

3) Experimental Setups: In few-shot inference compari-
son experiments, we follow the different backbone network
settings of the SOTA methods (i.e., ResNet-12 [62], ResNet-
18 [62], and WRN [63]). In zero-shot inference comparison
experiments, CLIP [64] was used to extract visual features X
and corresponding text features A of the seen classes for all
methods (using only class names as text cues).

4) Evaluation Metrics: For few-shot tasks, accuracy (acc)
and way-shot metrics are applied. Here, the way denotes the
number of classes in Du while the shot means the number
of support samples for each class. For example, a five-way-
one-shot means five to-be-classified classes with one support
sample for each class during the testing.

For the generalized zero-shot learning (GZSL) task, follow-
ing the metrics,13 Top-1 classification accuracy on seen classes
(S) and unseen classes (U ) are evaluated. The harmonic mean
(H ) of S and U is used to represent the final performance of
zero-shot visual inspection where H = 2 × S × U/(S + U ).

To report stable results, 10 000 random draws with 95%
confidence are conducted to obtain the average accuracy values
for each evaluation.

B. Evaluations

1) Few-Shot Inference Comparison: Table II provides the
way-shot results of few-shot visual inspection.

For the zero-shot comparison, the few-shot competitive
methods are adjusted to zero-support samples if their source
codes are available. Else, “−” in Table II denotes that zero-
shot inference can not be reproduced for the corresponding
method. On the dataset with mixed seen and unseen classes,
our method achieves an average from +25.4% to +37.25%
improvement compared with PTNET and GTnet. Notably, this
is the first attempt to apply the few-/zero-shot compatible
models in industry-specific visual inspection domains and
achieves a significant improvement.

9http://faculty.neu.edu.cn/songkc/en/z-dylm/263267
10https://github.com/cuilimeng/CrackForest-dataset
11https://github.com/abin24/Magnetic-tile-defect-datasets
12https://arxiv.org/abs/1707.00600
13https://arxiv.org/abs/1707.00600
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TABLE II
COMPARISON RESULT OF FEW-SHOT VISUAL INSPECTION

For one-shot tasks, our method obtains +5.87%, +4.72%,
+4.12%, and +7.93% improvements in MSD-Cls, MT-CF,
EuroSAT, and MED-3 datasets, respectively, compared to
the second-best method, while 4.01 decreases in GTSRB
dataset. Notably, our method obtains +12.79% and +11.12%
significant improvements over the second-best method in the
RESISC45 and DTD datasets, respectively, with improvements
>10%. For five-shot tasks, the highlight of the compari-
son results is that our method obtains +10.5%, +10.98%,
+13.65%, and +9.94% significant improvements in the MSD-
Cls, RESISC45, MED-3, and DTD datasets, respectively,
compared to the second-best method (the average improve-
ment was >10%). On other datasets (MT-CF and EuroSAT),
our method obtains +4.18% and +3.95% improvement, while
there is a 3.34 decrease in the GTSRB dataset.

The highlights also show from Table II that the pro-
posed method has significant improvements in MSD-Cls,
MED-3, RESISC45, and DTD. In detail, from +5.9% to
+13.4% improvements are achieved in MSD-Cls and MED-3
datasets (the training and testing classes are not inter-
sected) on the few-shot inference. From +10.1% to +13.2%
improvements are obtained in RESISC45 and DTD datasets
(relatively larger numbers of classes for the few-shot task) on
the few-shot inference. This indicates the proposed method
can obtain more critical class differentiation in nontrivial
datasets.

On the large-scale few-shot classification dataset FSC-20,
the proposed method improves +2.73% and +1.09% on one-
and five-shot, respectively, compared to FaNet, the method
applied to the FSC-20 dataset. It is worth mentioning that

Fig. 3. Qualitative results of one-shot retrieval. Correct and incorrect retrieved
instances are shown in green and red, respectively.

the proposed method obtained a significant improvement of
+41.53% on zero-shot.

Furthermore, the qualitative result of one-shot retrieval is
provided in Fig. 3. In Fig. 3, each row represents a class
such as “Am,” “bump,” and “damage.” Each cell in each row
is the to-be-retrieval sample. The green frames denote the
correct retrieval, while the wrong retrieval for red frames.
The last row indicates steel surface defects, and the other
four rows indicate aluminum surface defects. It can be seen
relatively high acc is obtained for aluminum damage, bump,
and convexity defect retrieval. However, relatively high acc is
observed on aluminum defect retrieval. This is because of the
unbalanced data distribution problem, very few steel samples
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TABLE III
COMPARISON RESULT OF ZERO-SHOT VISUAL INSPECTION

Fig. 4. Influence of the initial number of query samples q of our method
and compares with previous SOTA method GTnet. (a) GTnet. (b) Ours.

in the training set, of the dataset that need to be considered in
future research.

To evaluate the sensibility of the model on the initial number
of query samples, 1–15 query samples are applied to the
proposed method with the competitor GTnet, as shown in
Fig. 4. It is observed that the proposed method always keeps
stable no matter the initial number of query samples. On the
contrary, GTnet requires a larger initial number (greater than 9)
of query samples to get a fair performance. This demonstrates
the proposed method is insensitive to the initial query samples.
This is mainly because the proposed method uses synthesized
samples to augment the query samples, which reduces the
dependencies on the initial number of query samples.

2) Zero-Shot Inference Comparison: Table III provides
the comparison results of zero-shot visual inspection. It is
observed that our method significantly outperforms all com-
petitors in all datasets. In highlights, on the H metric, our
method achieves +10.64%, +21.92%, +11.28%, +20.17%,

+11.55%, and +2.72% improvements in MSD-Cls, MT-CF,
EuroSAT, GTSRB, DTD, and FSC-20, respectively, compared
with the highest records. On the H metric, our method signif-
icantly surpasses all SOTA methods. This demonstrates that
the proposed method can effectively balance the performance
between unseen and seen visual inspection. On the U metric,
our method obtains +9.54%, +16.83%, +6.21%, +1.65%,
+0.17%, +11.62%, and +11.56% improvement over SOTA
methods on the MSD-Cls, MT-CF, EuroSAT, RESISC45,
MED-3, GTSRB, and DTD datasets, respectively. This denotes
that the proposed method can synthesize “fake” features that
are very similar to the real features, and the synthesized fea-
tures can represent the real sample space distribution. On the
S metric, our method obtains +8.87%, +3.44%, +1.76%,
+6.83%, and +2.86% improvements in MSD-Cls, MT-CF,
EuroSAT, RESISC45, and GTSRB datasets, respectively, while
17.81, and 11.28 decreases in MED-3, and DTD dataset.
Interestingly, existing zero-shot methods have lower U scores
than S in industry-specific data environments. This is because,
in industry-specific data environments, there are not enough
training samples for the existing zero-shot methods to learn a
stable network for predicting unseen samples. On the contrary,
instead of using augmented samples for model training, our
method uses synthesized samples for model inference. This
significantly decreases the requirements for the number of
training samples.

To further reveal the performance of the method, three
representative methods, LisGAN, CE-GZSL, and CvcZSL, are
selected to construct the confusion heat maps, as shown in
Fig. 5. The x-axis represents the predicted defect classes,
while the y-axis refers to the real defect classes. The dark
color represents the high probability given by the model for
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Fig. 5. Confusion heat maps of the representative methods. The x-axis
represents the predicted defect classes, while the y-axis refers to the real
defect classes. (a) LisGAN. (b) CE-GZSL. (c) CvcZSL. (d) Ours.

predicting the class label. The more dark colors close to the
diagonal of the heat map, the more accurate the model is.

Obviously, the color distribution of Fig. 5(a) is chaotic
which means the corresponding method fails to conduct the
task. Fig. 5(b) and (c) has similar color distributions that are
close to the diagonal of the heat map. However, there are still
many dark colors that deviate from the diagonal of the heat
map which represents the wrong predictions. Fig. 5(d) has the
clearest color distribution that is close to the diagonal. It has
the best prediction performance. This further demonstrates the
comprehensive superiority of the proposed method on unseen
defect prediction compared with the existing methods.

C. Discussions

1) Ablation Study: The proposed method consists of RFFC,
SAGE, and CCO modules (see Section III-B). To ensure a
fair comparison and more clearly demonstrate the performance
of the proposed module, the baseline combines a traditional
few-shot learning model and a traditional generative zero-shot
learning model, similar to S2M2_R [51] and GAZSL [61].
The result of the ablation study is provided in Table IV.
Interestingly, the addition of the synthesized feature con-
trast module (RFFC) resulted in a significant improvement
(+13.67%, +5.2%, and +3.04%) in accuracy on fewer shots
(zero-shot, one-shot, and five-shot). This indicates the RFFC
can effectively generate unseen features for few-/zero-shot
predicting.

Furthermore, compared with the baseline using the SAGE
module alone, the accuracy was optimized on different shots
(+1.31%, +3.07%, and +1.47%). This demonstrates that
the SAGE module can optimize model performance through

TABLE IV
ABLATION STUDY

Fig. 6. Comparison of RFFC module effects. The visual analysis for different
classes of features synthesized by different zero-shot learning models, with
different colors representing that the synthesized features belong to different
classes. (a) GAZSL. (b) CE-GZSL. (c) Proposed.

sample information fusion. Using the combination of RFFC,
SAGE, and CCO modules compared with the RFFC module
alone, the accuracy was significantly improved on different
shots (+9.04%, +12.26%, and +10.26%). This shows that
SAGE as a feature preprocessing for the CCO module and the
combination of the two is more outstanding.

As shown in Fig. 6, we visualize the different classes
of features generated by the proposed model (contrastive
generator RFFC module), with different colors representing
different classes of the MSD-Cls dataset. It can be found that,
compared with GAZSL (the milestone model for zero-shot
learning) and CE-GZSL (the representative model for zero-
shot learning), after the first embedding space optimization
based on contrast learning, our method has a significant
distance between different classes of synthesized features,
a clear boundary between the generated different classes, and
a significant decrease of biased samples.

2) Hyperprameters Discussion: The hyperparameters used
in our method are k, θ , and λ. For the maximum similarity
retention k [k ≥ 1, see (4) and (10)] and the embedding graph
ratio θ [see (5)], the metric evaluated is the accuracy of one-
shot [Fig. 7(a)] and five-shot [Fig. 7(b)] classifications. The
dataset for the evaluations is MDS-Cls.

It is observed from Fig. 7(a) that the accuracy decreases
when θ increases and the maximum accuracy is obtained when
θ = 1. The accuracy first increases when k increases from 2 to
4 but then gradually decreases when k ≥ 6. Thus, all things
considered, for θ and k, the best settings at one-shot are θ =

1 and k = 6. Similarly, according to Fig. 7(b), for θ and k,
the best settings at five-shot are θ = 1 and k = 4.

For the regularization parameter λ [see (8)], one- to five-
shot classification experiments are conducted. As shown in
Fig. 7(c), the accuracy increases quickly when λ starts
from 0 to 5. After, the accuracy of one-shot, three-shot, and
five-shot classifications tend to be stable when λ continuously
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Fig. 7. Influence of hyperparameters. (a) 1-shot classification accuracies from
different hyperparameter values (k and θ ). (b) 5-shot classification accuracies
from different hyperparameter values (k and θ). (c) Graph of classification
accuracy versus hyperparameter λ. (d) Graph of classification accuracy versus
number of fake support samples.

Fig. 8. Memory consumption of the inference process with different
synthesized support samples.

increases. Thus, the reasonable setting of the regularization
parameter is λ = 5.

Since the proposed method generates samples from the
RFFC module as synthesized support samples for inference on
the query samples category, this leads to a different number of
synthesized samples with different accuracy rates. As shown
in Fig. 7(d), in zero-shot condition, the model performance
is optimal when the number of synthesized samples = 6,
and then it gradually decreases, which may be because some
biased synthesized samples cause the inference process to be
misguided, leading to the decrease of the accuracy rate.

Similarly, the model performance is optimal in the one- and
five-shot conditions when the number of synthesized samples
is 7 and 6.

The memory consumption of the model’s inference process
on the MSD-Cls dataset with different numbers of synthesized
support samples is shown in Fig. 8. A clear trend is that the
larger the number of synthesized support samples, the larger
the memory consumption of the model inference process,
while the query samples remain constant.

In summary, by weighing the relationship between model
size and accuracy, the number of synthesized support samples

TABLE V
EVALUATION OF INFERENCE TIME WITH DIFFERENT SUPPORT SAMPLES

TABLE VI
PERFORMANCE EVALUATION OF DIFFERENT BACKBONE NETWORKS

of the proposed method is uniformly set to 6 in practical
deployment. To ensure that the model obtains the maximum
performance while consuming as little memory as possible.

3) Inference Time Evaluation: To further understand the
performance of the proposed method, the model inference time
is evaluated on the MSD-Cls dataset, as shown in Table V.
Since the filtering phase of the few-shot inference process
can be completed before inference about the query sample
categories, the inference process of the proposed method is
decoupled into two phases (filtering + inference). The filtering
and inference time before decoupling and the inference time
without the filtering phase are validated here, respectively.

A clear trend is that the inference time becomes longer
as the support sample increases. Meanwhile, the inference
time of the proposed method alone is much smaller than the
time of both inference and filtering phases. Therefore, filtering
operations are performed before model deployment to improve
real-time prediction.

4) Backbone Network Discussion: In order to evaluate
the impact of different backbone networks on the proposed
method, it is evaluated on the MSD-Cls dataset using several
mainstream backbone networks (i.e., WRN-28-10, ResNet-12,
and ResNet-18). The test results are shown in Table VI, where
the accuracy of the proposed method is 46.69% and 78.92% on
WRN-28-10 for shot = 0 and shot = 1. The highest accuracy
is achieved on ResNet-18 for shot = 5. Overall, WRN-28-10
is more suitable to handle the MSD-Cls dataset with fewer
sample sizes.

D. Prototype Scenario

1) Hot-Rolled Steel Sample Collection: In order to evalu-
ate the performance of the method in practical applications,
we collected 15 types of hot-rolled steel surface defects from
our partner manufacturers. Some of the defect samples are
shown in Fig. 9(a), and the types of defects include contam-
inants (Co), inclusions (In), scratches (Sc), oxides (Ox), and
so on. This included 150 defect samples (10 for each defect
class) and 210 normal samples, and a hot-rolled steel surface
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Fig. 9. Prototype manufacturing scenario for hot-rolled steel defect classification based on the proposed method. (a) Hot-rolled steel defect samples.
(b) Production environment. (c) Cloud server results in feedback.

defect dataset (HRS-SD) was created. Ten defect classes and
their samples and all normal samples are split as the training
set. The five defect classes (50 defect samples) are split into
a test set for a few-/zero-shot defect classification.

2) Prototype Scene Building: A prototype manufacturing
defect detection scenario was established to evaluate the
model’s performance in a realistic scenario. The prototype sce-
nario consists of a production environment, an IoT middleware
(our previous work [65]), and a cloud server (Huawei kAi1s
accelerated cloud server).

The production environment is shown in Fig. 9(b), where
three industrial cameras with different angles (top-camera, left-
camera, and right-camera) were used to parallel obtain defect
samples of hot-rolled steel on the conveyor belt (running at
10 m/s and the length of 600 mm), with the top-camera
at 230 mm distance from the samples, and cameras with
resolution dimensions of 2594 × 1944 pixels. The images
were resized to 64 × 64 pixels to be passed to the server
to improve the speed of the model run.

Considering that in the realistic application environment,
multiple production lines may be monitored in real-time with
multiple cameras, which will lead to a large number of
product images being captured at the same time, it is not
easy to expand the devices and transmit image data quickly by
connecting the cameras directly to the server. Thus, to integrate
a large amount of image data quickly, the obtained image data
and the control signals of other devices (e.g., reject devices)
are integrated into a cloud server via the IoT middleware. The
reject device uses a programmable vision robot arm with five
degrees of freedom and a vision resolution of 640 × 480,
and the microprocessor is a Quad-core ARM A57 + 128-core
NVIDIA Maxwell.

The proposed method is deployed to perform defect detec-
tion response (controlling the reject device and conveyor belt)
and result visualization (displaying on an all-in-one machine)
on a cloud server with a Kunpeng 920 2.6 GHz processor.

It is worth mentioning that to perform real-time defect
detection, the proposed method is decoupled into three

TABLE VII
PROTOTYPE SCENARIO EXPERIMENTAL RESULTS

phases in the deployment, including feature generation based
on contrast learning (see Section III-B), support sample
filtering (see Section III-C2), and defect class inference
(see Section III-C1). Only the inference phase is deployed
on the server, and the feature generation and sample filtering
phases are preprocessed before deployment. First, the synthe-
sized features of seen/unseen classes are generated using the
class prompts provided by the experts. Then, the generated
seen class features are filtered. Finally, the unseen class syn-
thesized features, the filtered seen class synthesized features,
and the real support features are combined to form a feature
support library for use in the defect class inference stage.

In practical applications, to realize defect detection (includ-
ing classification and segmentation), a defect segmentation
model with segmentation and object detection functions is
introduced, which crops out the detected defects and then
passes them to our proposed classification model. More accu-
rate defect locations and smaller image sizes help improve
the proposed method’s accuracy and speed. The defect seg-
mentation model segments the image when the proposed
method finishes classifying the defects. The final visualization
is shown in Fig. 9(c).

3) Evaluation Results: For each experiment, we repeated
ten times to obtain the average value. Combining the parameter
analyses and inference time evaluations from Section IV-C, all
experimental parameters were fixed to θ = 1, k = 4, λ = 5,
and the number of synthesized support samples was four by
weighing model size, classification accuracy, and run time.

The experimental results are shown in Table VII, which
includes the average recognition time for K -shot classification,
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the time to send visual features on the network, and the
time to receive the results. Based on the experiment results,
it can be observed that the proposed method achieves an
average accuracy of 100% for five-shot classification. This
result indicates that for the classification of hot-rolled steel
surface defects in real manufacturing, the model performance
of our method is relatively high for both zero- and few-
shot. The time cost of classification is also acceptable for
manufacturing applications.

This work will be further collaborated with Metallurgical
Research Institute Company Ltd., and promoted in industrial
production lines.

V. CONCLUSION

In the field of surface defect recognition, our work focuses
on solving three problems: lack of training samples and model
complexity in deep-learning-based methods, recognition of
defect types limited to known classes in few-shot learning-
based methods, and inability to tradeoff attention to seen and
unseen classes in zero-shot learning-based methods. A novel
few-/zero-shot compatible surface defect classification method
is proposed. Extensive experiments on eight fine-grained
datasets show that our method improves by an average of
8.29% on the few-shot recognition task and 8.23% on the
zero-shot recognition task compared to SOTA methods. The
prototype scenario evaluation demonstrates that the proposed
method can recognize defect types in real-time. Meanwhile,
the average accuracy of the five-shot classification of hot-rolled
steel defects reaches 100%, proving the adaptability of the
proposed method in industrial environments.

The limitations of this method are as follows. 1) Compared
with the existing zero-shot learning methods, the accuracy of
the proposed method has significantly improved, but it has not
yet reached the expected accuracy for industrial applications.
The next step will explore associating the seen class sample
information with the unseen class and further optimizing the
recognition of the unseen class using the few-shot learning
idea. 2) Through experiments, it is found that although the
classification performance of the proposed method outper-
forms the methods based on few-shot learning on surface
defect datasets (i.e., MSD-Cls, FSC-20, and MT-CF), the
model size and inference time are not optimal. The next step is
introducing model compression methods, such as knowledge
distillation, to make the model more adaptable to real-time
industrial production environments.
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