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Abstract— Nonintrusive load monitoring (NILM) systems are
used to identify the energy consumption patterns of individual
devices in an electrical system, but broadening their market
availability is a significant challenge. In this article, an NILM
system using edge processing is proposed, in which energy
consumption data are processed directly on the device installed
at the monitored facility. Specifically, it uses a sequence-to-
point approach based on a convolutional neural network (CNN)
implemented on an Arm Cortex-M7 microcontroller. This article
also reports the results of an extensive 12-month testing phase.
The NILM system was installed in two real houses in central Italy
to evaluate its installation and potential application in real-world
scenarios. This study presents a promising solution that enables
the widespread adoption of NILM systems by reducing their
implementation cost and complexity and addresses the privacy
concerns associated with cloud-based data processing. The results
of our real-world testing provide compelling evidence of the
potential of the proposed NILM system in various applications,
including smart homes, building automation, and industrial
energy management.

Index Terms— Convolutional neural network (CNN), deep
learning (DL), edge deployment, energy disaggregation, nonin-
trusive load monitoring (NILM).

I. INTRODUCTION

ANALYSIS of the energy consumption of each device in
an electrical system is a valuable tool for identifying

inefficient or malfunctioning devices and implementing appro-
priate energy-saving measures. This type of analysis can be
achieved using either intrusive load monitoring (ILM) systems
or nonintrusive load monitoring (NILM) systems.

ILM systems require a transducer to be installed on each
device to measure its energy consumption accurately. They
provide precise results but can be challenging to implement
due to space constraints, which make installing transduction
and communication systems difficult.

On the contrary, NILM systems measure the total absorbed
power and disaggregate the individual contributions of each
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device using the specific energy consumption models (signa-
tures) of different electrical loads. Although simpler than ILM
systems from a hardware standpoint, NILM systems require
suitable algorithms to identify individual device absorptions
accurately [1], [2].

The choice of a monitoring solution depends on the instal-
lation requirements. For example, an NILM system can be
placed in a switch box inside a property or at a distance from
it. Local NILM systems can acquire voltages and currents,
process them in real time, and display or store results on
a remote server. In contrast, remote systems can only use
data available in the cloud, which has limited measurement
frequencies due to storage and data transmission limitations.

Broadening the availability of NILM systems is a significant
challenge in the industry. Companies developing NILM solu-
tions [3], [4], [5] focus on business-to-business (B2B) services
rather than the business-to-consumer (B2C) sale of hardware.
This is primarily because NILM technology is mainly used for
energy management and monitoring in commercial and indus-
trial settings, not in residences. These companies typically
offer a wide range of services to businesses and organizations,
such as energy audit, monitoring, and reporting and energy
efficiency consulting. This approach allows them to collaborate
with customers closely to gain a deep understanding of their
specific energy usage patterns and provide tailored solutions
for reducing energy consumption and costs. However, this
makes it difficult to compare NILM systems proposed by
researchers with commercially available NILM systems, as the
former systems are not readily accessible to the general public.

Various techniques have been proposed in the literature,
which differ in the sampling frequency of signals, the approach
used to recognize devices, and the algorithmic technique used.
Such techniques have evolved, and the ensuing state-of-the-art
is interesting to analyze.

Since Hart [6] proposed the first NILM system in the 1980s,
significant developments have occurred. Over the next two
decades, research on this topic focused on finding new signa-
tures capable of uniquely identifying devices and developing
classifiers capable of providing indications based on these
signatures. This type of approach often involves detecting
events before their classification.

After an event is detected, the features (and then the
signature) associated with the appliance that caused it are
extracted. This approach can therefore be divided into three
basic steps: event detection, feature extraction, and load iden-
tification. These techniques can be grouped within a so-called
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event-based framework, where “event” means a change in the
electrical parameters of the aggregate signal.

Dong et al. [7] proposed a system based on the detection
of power signal events and the associated parameters, such
as the active power range, reactive power range, harmonic
content range, presence or absence of spikes, number of
phases (single or double), and event searching time. The
detected events are linked to appliance operational cycles
through a clustering algorithm. For the approach in [8],
detected power signal events are linked to appliances by
minimizing the discrepancy of various considered parameters,
such as effective voltage, effective current, active power,
reactive power, apparent power, power factor, total harmonic
distortion, and voltage–current (V –I ) trajectory. Over the
years, efforts have been directed toward identifying features
extractable from events that allow for unique appliance dis-
crimination and preferably remain constant across various
operating states. Therefore, Teshome et al. [9] decomposed the
aggregate current into two orthogonal components and defined
V –I trajectories with respect to each of the two components.

This direction was further pursued by Gupta et al. [10], who
continuously measured the electromagnetic interference effects
produced by appliances during their activation or deactivation.
This system continuously processes the voltage measured at a
domestic socket to obtain its Fourier transform. The processing
result reveals more significant harmonic content after the
occurrence of appliance switching operations. The appliance
causing the harmonic content is identified using a k-nearest-
neighbor classifier. Similarly, in [11], the effects of switching
operations on the absorbed current signal were evaluated to
realize galvanically isolated measurement systems.

These methods share the following limitations. First, the
efficiency of event detection algorithms that struggle to find
the right tradeoff between false positives and false negatives
is a problem. The noise in aggregate power signals often
hinders the identification of minor loads. Previously proposed
event-based systems consistently perform excellently because
of features that can be measured accurately following an event,
such as those described above. However, these systems have
poor generalization ability, such as during operation on unseen
houses after training or the availability of data from other
houses [12]. Moreover, most of these systems struggle with
computational requirements, which grow significantly with
the loads to be disaggregated and are thus often unusable in
real-world scenarios [9].

Finally, many of these systems detect the activities of
appliances but cannot provide a quantitative indication of their
energy consumption. The ability to obtain information about
the status of various appliances nonintrusively is important
for many applications where NILM systems are implemented,
such as smart home automation and ambient assisted living.
NILM systems are used to obtain the energy consumption
details of individual appliances and may be applied to rec-
ommendation systems.

In around 2010, a new trend emerged in the field of NILM
systems research, namely, systems that do not require an initial
event detection phase. The input of such a system is a window
of samples of the aggregate signal (therefore time series data);

these samples are processed continuously, without waiting for
event occurrence. These systems are generally known in the
literature as nonevent-based systems. The concept of features
or signatures is unnecessary, as the models use the aggregate
power signal itself in place of features.

Kolter et al. [13] was among the first researchers to propose
systems belonging to this category by applying discriminative
sparse coding to energy disaggregation. This approach involves
training discriminative models for each category of appliances.
The individual energy consumption is obtained as a combina-
tion of basis functions multiplied by activations.

Hidden Markov models (HMMs) are widely used for
nonevent-based NILM systems. In particular, Kim et al. [14]
first proposed a factorial HMM (FHMM) in which the behav-
ior of each appliance is modeled through an independent
HMM. In this way, following a training phase, the FHMM
can infer the hidden states of appliances from the aggregate
consumption signal, thus separating individual consumption.
In [15], HMMs are employed in a Bayesian framework that
combines multiple models of individual appliances to form
a general model of appliances. Bonfigli et al. [16] proposed
a bivariate FHMM that uses both active and reactive power
consumption data. Paradiso et al. [17] showed that additional
information, such as house occupancy and appliance usage
times, can improve the disaggregation result.

In 2015, Kelly and Knottenbelt [18] proposed the use
of deep learning (DL) in nonevent-based NILM systems.
Although ANNs had been used in previous work on NILM,
they were designed as classifiers in the load identification
phase of event-based systems. In [18], for the first time, the
aggregate power signal was processed through an ANN using
moving-window processing, and the problem was addressed
as a blind source separation problem. The authors showed
that these types of structures outperformed combinatorial
optimization [13] and FHMM models [14], [15]. DL algo-
rithms have the interesting advantage of not requiring the
manual extraction of features, such as individual appliance
consumption, ON–OFF state transition, and operation duration,
which are instead automatically learned using ANNs.

In recent years, Zhang et al. [19] made a concrete
contribution to this field by developing a convolutional neu-
ral network (CNN) structure called the sequence-to-point
approach.

The sequence-to-point approach is a framework, and
it has been improved using bidirectional layers [20] and
self-attention mechanisms [21]. However, the complexity of
these models incurs significant computational costs during the
training and inference phases. In particular, the performance
gains of these models are more aligned with increases in
training data rather than an increase in model complexity.

The availability of training data is a primary challenge
in developing effective, efficient NILM systems. DL models
for nonevent-based NILM systems require so-called labeled
datasets, namely, temporal sequences of aggregate power
(system input) and the corresponding temporal sequences of
appliance-level power (system output). At present, the only
dataset that provides a satisfactory amount of data is the
REFIT dataset [22]. The model proposed in [19] achieves
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an excellent balance between complexity and performance,
outperforming both FHMM and previous DL models. This
algorithm has been tested on several public datasets; in particu-
lar, its generalization capability was tested in [23] by providing
a system with data on homes belonging to datasets other than
the one presented in training. Thus, in this work, DL models
are used to demonstrate the feasibility of a solution based
on a small, low-power microcontroller for real-time energy
consumption monitoring.

The potential of these systems cannot be fully evaluated
using existing datasets. The variability of submonitored loads
in different homes within the same dataset, along with the fixed
sampling frequencies, restricts the evaluation process. More-
over, a major metrological challenge is the limited knowledge
about, or even the impossibility of, determining the uncertainty
associated with the measurement of quantities such as current
and power in these datasets.

Cloud-based energy disaggregation systems generally entail
sending energy consumption data to a remote server, where
they are processed and made available for user access from
anywhere via a Web browser. These solutions are convenient
because they do not require dedicated hardware to process
data, but they have some disadvantages. For example, sending
data to a remote server may be affected by service interruptions
because it involves some latency and depends on the quality of
the Internet connection. In addition, processing data remotely
involves high data management and security complexities.

In contrast, in an edge solution, such as the one proposed
in this article, energy consumption data are processed directly
on the device installed at the monitored facility. The processed
data can be accessed locally or transmitted to a remote server
via the Internet. This approach has several advantages over
cloud solutions. For example, edge solutions can process data
in real time, eliminating the latency present in cloud solutions.
They are also easier to install and manage, as they do not
require a reliable Internet connection. This also makes these
types of systems cheaper than their cloud counterparts despite
requiring more knowledge for managing real-time systems.
In addition, data access is limited only to authorized devices
at the monitoring site, so no costs are incurred for transmit-
ting data or maintaining a remote server. In summary, edge
solutions for NILM offer greater reliability, privacy, security,
and convenience than cloud solutions.

This article, an extended version of [24], offers the follow-
ing contributions.

1) An edge solution based on a small, low-power micro-
controller is developed using the state-of-the-art model
proposed in [19] for real-time energy disaggregation.
This solution can be implemented within a home without
requiring prior knowledge of the electrical system or
connected loads.

2) A comprehensive architecture is outlined for a metering
system suitable for capturing and monitoring various
electrical measurements generated by household appli-
ances. This system captures the aggregate consumption
of the electrical system and each appliance and transmits
the data wirelessly to a central concentrator. The mea-
surements are collected and processed using a certified

class 0.2 single-phase onboard meter, which ensures the
reliability of the metrological data.

3) The system’s ability to evaluate and characterize NILM
system performance is demonstrated using reliable data.

4) Results from the implementation of the system in
two Italian households (for six months each) are pre-
sented. The experimental phase lasted one year, from
January 2022 to February 2023 (inclusive).

II. NILM AS A NONLINEAR REGRESSION PROBLEM

Nonevent-based DL models are implemented in the pro-
posed system. These models are based on a supervised
learning mode. This category of systems involves showing
both input samples and expected output samples during the
training phase. These samples constitute labeled datasets. For
nonevent-based NILM systems, a dataset is labeled when both
the time sequences of the aggregate absorbed power signal
and the time sequences of the power absorbed by individual
appliances (or the time sequences of their ON/OFF state) are
provided. The data pair (X t , Yt ) is therefore available, where
X t indicates the reading of the aggregate absorbed power and
Yt indicates the reading of the absorbed power at the appliance
level. A supervised nonevent-based model aims to learn the
relationship between X and Y . Thus, the problem formulated
in (1) can be approached as a nonlinear regression problem

X = f (Y ). (1)

A sequence-to-point approach is used in this work. Given
an aggregate power reading window, an ANN is trained
for exclusively predicting the midpoint of an appliance-level
power reading window. In this way, the overall time series is
obtained through sliding-window processing.

In this approach, with t denoting a generic moment in time
and W denoting the window length, the power absorbed by
the monitored appliance at the central point of the window
Yt+(W/2) is estimated for each window X t :t+W−1.

This approach is based on the premise that Yt+(W/2) can
be depicted as a nonlinear regression of the input window
X t :t+W−1. Consequently, the estimated power consumed by a
household appliance at any given time must be influenced not
only by past power readings but also by future ones.

Several models used to depict the relationship f between
the X and Y series have significant limitations. Models, such
as FHMMs, can be considerably influenced by factors, such
as the existence of unknown appliances, base loads, and noise.
The implementation of these models therefore requires the
explicit modeling of these variables.

In contrast, the use of DL models does not need their
explicit modeling because these models separate the consump-
tion profile of an appliance by treating everything else as
background.

The necessary features, such as the individual appliance
consumption, ON–OFF state transition, and operation duration,
are learned automatically by the neural network; in other
words, manual extraction is unnecessary.

This process does not require the use of specific infor-
mation about consumption sources or their power profiles.
A DL model can generalize to new consumption sources
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that may appear over time. Thus, this model can be used
to separate independent signals associated with different con-
sumption sources in various situations without needing specific
information about the consumption sources or their power
profiles.

A. Model Configuration

The implemented sequence-to-point model consists of con-
volutional layers, so it is a CNN. CNNs are ANNs designed
to exploit the inherent properties of certain 2-D data struc-
tures in which spatially close elements are correlated (local
connectivity).

The same process can be applied to 1-D data sequences.
A 1-D CNN effectively derives features from a fixed-length
segment of a dataset; the location of a feature in the segment
is unimportant. 1-D, 2-D, and 3-D CNNs work in the same
way. Their difference lies in the structure of the input data and
how the filter and the convolution kernel act on the data.

In this work, a suitable 1-D CNN is implemented to process
the time sequence of the aggregate power signal and predict the
midpoint of the time sequence of the absorbed power at the
appliance level. Since the only dimension in a time series is
time, the kernel flows in only one direction.

Let X be a time series of length N , represented as a
1-D vector X = [x1, x2, . . . , xN ]. A filter (or kernel) is a small
window of values that flow along the time series to perform
convolution. Let F be the filters to be used in the convolutional
layer. Each filter has a length Flen.

The convolution operation between a filter f and a segment
of the time series X is defined as follows:

(F ∗ X)i =

Flen∑
j=1

fi · xi+ j−1 (2)

where i is the index at which the filter is running along the
time series and j is the index within the filter.

For each kernel, a 1-D convolutional layer extracts 1-D
local patches (subsequences) of the original sequence through
sliding-window processing. It then applies identical transfor-
mations to these patches. For each kernel, since the same
transformation is applied to each patch, a pattern learned at
a certain position in the sequence can also be recognized
at a different position. This makes the 1-D CNN translation
invariant (for temporal translations).

The proposed 1-D CNN involves the following building
blocks.

1) Input Layer: In this layer, data are preprocessed through
a sliding-window technique such that each input contains
599 samples of the aggregate active power reading. The
data are sampled at a sampling rate of 1/8 Hz, so each
input sequence covers a time interval of 4792 s.

2) First 1-D Convolutional Layer: In the first 1-D con-
volutional layer, 30 filters (or kernels) of length 10
(kernel size) are defined, which allows the ANN to
learn 30 different features. In these layers, the step
(stride) at which the kernel moves along the input
sequence is also defined. The number of filters in each
layer is a hyperparameter chosen by the programmer.

The features learned by, and thus the weights assigned
to, each filter are the result of training. In this work,
a stride equal to 1 is defined. A kernel of size 10 moving
along an input sequence of size 599 with a stride equal
to 1 produces an output sequence of 590 elements.
However, a padding process is used to fill the input
sequence with a certain number of zeros at the beginning
and end of the sequence to output the same number of
elements as the input sequence (599). The output of the
first 1-D convolutional layer is thus an array of 30 × 599
neurons, that is, 30 output sequences resulting from
applying 30 filters to the input sequence.

3) Second 1-D Convolutional Layer: The result of the first
1-D convolutional layer is directly fed into the second
layer. Thirty filters are also defined to be trained in
this layer. Although the input of this layer is now 2-D
instead of 1-D (a 30 × 599 matrix), the transformation
applied by this layer is still 1-D convolution. Therefore,
the kernels move along a single (temporal) direction.
Eight dimensions are chosen for the kernels in this layer.
The kernels in this case are no longer vectors of a
length equal to the imposed kernel size (1 × 8) but
a 30 × 8 matrix.

4) Third, Fourth, and Fifth 1-D Convolutional Layers:
Three more 1-D convolutional layers are added to learn
higher level features. The kernel numbers of layers 2–4
are 40, 50, and 50, respectively, and the kernel sizes
are 6, 5, and 5, respectively. The stride is kept equal
to 1 for these three additional layers. The padding pro-
cess is provided for all convolutional layers. All neurons
in the five 1-D convolutional layers predict using the
ReLU activation function.

5) Flatten Layer: This layer transforms the entire output
matrix of the fifth and final 1-D convolutional layer into
a single vector (1 × 29 950).

6) Dense Layer: This layer reduces the output dimension
from 29 950 (from the flatten layer) to 1024. The neurons
in this layer also use the ReLU activation function.

7) Output Layer: This layer provides the value of the
midpoint of the appliance power reading and thus has a
single neuron. This neuron receives the weighted sum of
the 1024 output elements from the previous layer as its
input. It then applies a linear activation function, which
is effectively the same as applying no activation function
at all.

Fig. 1 shows the overall structure of the implemented
1-D CNN.

B. Training Settings

Over the past decade, numerous public datasets have been
released to enable researchers to assess and compare the
performance of their NILM algorithms with that of new
proposals. These datasets differ in sampling frequency, num-
ber of monitored homes, and availability of submonitored
data (measurements obtained directly from household appli-
ances or other loads). In some cases, submonitored data are
accessible but not synchronized with the aggregate power
measurement.
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Fig. 1. Sequence-to-point approach proposed by Zhang et al. [19].

A dataset that fulfills the following requirements can
be used to evaluate the performance of DL-based NILM
systems:

1) a sampling frequency of 1 Hz or more, which enables
the assessment of the impact of sampling frequency on
NILM system performance through the ability to obtain
the lowest frequencies, starting from the original data;

2) synchronous measurements of aggregate and
appliance-level values of all quantities;

3) a sufficient number of houses (at least >1);
4) a sufficient number of classes of household appliances;
5) a sufficiently long acquisition period, which guarantees

a sufficient amount of training data.
The most complete datasets in this regard are ECO [25] and
ENERTALK [26]. ECO provides aggregate measurements of
active power, voltage, current, and power factor at 1 Hz for
six homes and 18 appliance classes; however, at the appliance
level, only active power is available. ENERTALK provides
both aggregate and appliance-level active and reactive power
measurements at 15 Hz for 22 homes but has a small number
of measured appliance classes.

The primary datasets used to train DL-based NILM systems
and their distinguishing characteristics are given as follows.

1) The reference energy disaggregation dataset
(REDD) [27] offers high- and low-frequency data,
with voltage and current measurements at 15 kHz
and 1 Hz, respectively.

2) The U.K. domestic appliance-level electricity
(U.K.-DALE) dataset [28] comprises aggregate power
and appliance-level data at 1/6 Hz for five houses.

3) The REFIT dataset [22] provides aggregate and
appliance-level power measurements for 21 U.K. homes
at a sampling rate of 1/8 Hz. However, the most common
appliances used in NILM systems may not be available
in all 21 homes.

REFIT is the largest among these datasets. Therefore, although
its low sampling rate prevents the assessment of its influence
on performance, its wide availability of examples allows for
a sufficiently robust NILM system. Therefore, in the current
study, the training phase is conducted using the REFIT dataset.
The proposed system uses a CNN to identify and recognize
individual household appliances. The focus is on developing

TABLE I
HOUSES FROM THE REFIT DATASET USED FOR THE TRAINING PHASE

an NILM system capable of separating the electrical power
consumption of the three major household loads (dishwasher,
washing machine, and fridge) from the total consumption. This
is because these loads are commonly targeted by NILM system
developers for disaggregation in the market [5].

Therefore, each DL model should be trained using data
from one household appliance. The REFIT dataset contains
measured consumption data for 21 homes, but not all of them
contain data for the three abovementioned loads. Table I shows
the homes used to train each model and the total number of
samples available.

Table I also shows the houses and the relative number of
samples used as the validation set. The validation set plays
a crucial role in the training process of a DL model, as it
enables the evaluation of the model’s ability to generalize
to unseen data. Moreover, the model’s performance during
training can be assessed continuously using the validation set
by monitoring it at the end of each epoch. This helps avoid
a common problem in DL called overfitting [29], where the
model becomes too tightly fit to the training data, hindering
its ability to perform well on new data. For each appliance,
validation is performed using the entire dataset of a single
house, according to the methodology established in [23],
during the model presentation.

The data for training are preprocessed before being used for
training. Preprocessing involves normalizing the data using the
following equation:

x ′

k =
xk − x̄

σx
(3)

where xk is the kth sample, x̄ is the mean of the aggregate or
appliance-level power reading, and σx is the standard deviation
of the aggregate or appliance-level power reading. After the
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Fig. 2. Proposed architecture for the installation and performance evaluation of the NILM system.

data are normalized, they can be fed into the models for
training.

The CNNs are implemented on a desktop computer
(64-bit Windows 10 operating system) using TensorFlow [30]
for model development and training. The adopted cost
function, implemented in TensorFlow, is the mean squared
error (MSE) (4) and is applied to each batch during the training
phase

MSE =
1
N

N∑
i=1

(
Yi − Ŷ i

)2
(4)

where Yi is the actual value, Ŷ i is the predicted value, and N is
the number of processed samples.

The parameters of each CNN are updated after one iteration
of every batch of data. The batch size chosen for train-
ing is 1000, so the neural network parameters are updated
every 1000 samples. Each model is trained for ten epochs.

The Adam optimizer [31] is used to drive the model training
process. Adam is a highly efficient optimization algorithm
that is widely adopted by DL practitioners. It operates by
using an adaptive learning rate that is dynamically adjusted
based on the mean and variance of the gradients of the
cost function according to the weights of the ANN. During
the training phase, Adam continuously monitors the mean
and variance of the gradients, thus effectively fine-tuning
the learning rate. By increasing (decreasing) the learning

rate for slowly (rapidly) changing weights, Adam effectively
eliminates oscillations and accelerates convergence toward the
global minimum solution.

III. ARCHITECTURE OF THE PROPOSED SYSTEM

The proposed architecture is based on a distributed
data acquisition system and communicates through a Wi-Fi
network.

The first developed device (see the NILM system in Fig. 2)
measures the aggregate active power and disaggregates it using
the model described in Section II. This system also measures
reactive power, voltage, and current, but these are not used for
the performance evaluation of this NILM system. The NILM
system consists of the following:

1) a measurement unit (an EVALSTPM32 board);
2) a processing unit (a NUCLEO-H743ZI2 board);
3) an ESP32 Wi-Fi module for connection to a wireless

local area network (WLAN).
The main device is placed immediately downstream of the
general power meter located at the user’s connection point to
ensure that the aggregate active power can be measured.

In addition, ad hoc power meters are developed, and each
of them consists of the following:

1) a measuring unit (an EVALSTPM32 board);
2) a USR-W610 Wi-Fi module for connection to

the WLAN.
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Fig. 3. Pin connections of the EVALSTPM32 board for voltage and current
measurement.

These appliance-level power meters enable the measurement
of electrical quantities related to the operation of individual
household appliances (active power, reactive power, root-
mean-square (rms) voltage, and rms current).

The established WLAN has a star topology; both the NILM
system and the appliance-level power meters are connected
to a concentrator via the Wi-Fi network. Specifically, the
implemented communication and data archiving infrastructure,
concisely schematized in the right part of Fig. 2, consists of
the following:

1) an access point, which creates the wireless network
where all nodes are connected;

2) an Intel NUC NUC5i7RYH system, which is the main
part of the network and enables the management of the
nodes connected to the network using a Python script,
downloads the measurement data, and stores them in a
MySQL database;

3) an external hard disk for storing the MySQL database.
Furthermore, a Web server is developed based on Node-RED
to check the whole system and plot few-point measurement
data.

The proposed system is shown in Fig. 2.
For a clear, concise understanding of the connections

involved in the schematic in Fig. 2, Fig. 3 shows a detailed
view of the EVALSTPM32 board’s phase and neutral con-
ductor connections for voltage and current measurements,
respectively. In the voltage measurement circuit, the N termi-
nal is deliberately left unconnected to the neutral conductor.
This is because the shunt for current measurement is already
placed at the same potential as the N terminal, which elimi-
nates the need for a separate connection.

A. NILM System and Appliance-Level Power Meters

The pretrained DL models (Section II) are uploaded to
the NUCLEO-H743ZI2 board. This is a high-performance
microcontroller from STMicroelectronics that is based on
the Arm Cortex-M7 architecture. This board is part of

the STM32H7 series and offers advanced features, includ-
ing a floating-point unit, hardware encryption, and up
to 2 MB of flash memory. The NUCLEO-H743ZI2 board
also includes various communication interfaces, including
Ethernet, USB, CAN, and various serial ports. It is designed
for use in a wide range of applications, including indus-
trial automation, motor control, and consumer electronics.
This microcontroller can be programmed using different inte-
grated development environments (IDEs) and supports a range
of development tools and software libraries provided by
STMicroelectronics.

The IDE used in this work is STM32CubeIDE. The models
are implemented through X-CUBE-AI, an expansion package
dedicated to AI projects running on STM32 Arm Cortex-
M-based MCUs. The X-Cube-AI core engine, schematically
shown in Fig. 4, offers an NN mapping tool to create and
implement pretrained DL models for embedded systems with
limited hardware resources.

The generated STM32 NN library can be integrated into
an IDE project or a makefile-based build system. The code
generator quantizes weights, biases, and activations from
floating-point precision to 8-bit precision and maps them onto
a specialized C implementation for supported kernels. This
technique aims to reduce the model size, improve CPU and
hardware accelerator latency, and reduce power consumption
without compromising model accuracy.

A validation mechanism is provided to compare the accu-
racy of the generated model with that of the uploaded
DL model using the same input tensors (fixed random inputs
or custom dataset). The scheme of the validation engine is
shown in Fig. 5.

The NUCLEO-H743ZI2 receives input data for models
via the EVALSTPM32, which is the measurement unit. The
EVALSTPM32 is a single-phase meter with a class 0.2 rating
that uses a shunt transducer to acquire power line currents.
This board offers SPI/UART pins that allow for interfacing
with a microcontroller during application development. The
EVALSTPM32 calculates the rms values of voltage and cur-
rent; instantaneous voltage and current waveforms; and active,
reactive, and apparent power and energies. This board is
a mixed-signal IC family that comprises an analog section
and a digital section. The analog section incorporates two
low-noise, low-offset programmable-gain amplifiers, and up
to four second-order 24-bit sigma-delta ADCs, among other
components. The digital section consists of a digital filtering
stage, a hardwired DSP, a digital front end, and a serial
communication interface. The board’s power data registers
supply filtered or instantaneous measurements, with a wide-
band bandwidth of 3.6 kHz, which can be used to measure up
to the 72nd harmonic of a 50-Hz signal.

An SPI is used to connect the EVALSTPM32 to the
NUCLEO-H743ZI2. This interface is configured with a clock
frequency of 10 MHz and full-duplex transmission mode.
The SPI is configured on the NUCLEO-H743ZI2 using the
STM32CubeIDE HAL library. Once the SPI is configured,
the firmware on the NUCLEO-H743ZI2 requests the active
power, reactive power, rms current, and rms voltage readings
from the EVALSTPM32 using the SPI protocol.
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Fig. 4. X-Cube AI core engine.

Fig. 5. AI validation firmware embedding the tested C model.

Fig. 6. Implemented NILM system.

Communication occurs when the NUCLEO-H743ZI2 sends
the request and the EVALSTPM32 replies with the requested
data. Once the data are read, the NUCLEO-H743ZI2 processes
the active power data using the abovementioned models to
obtain appliance-level active power information. After the
data are processed, the NUCLEO-H743ZI2 uses the ESP32
module to connect to the Wi-Fi network. The NUCLEO-
H743ZI2 board then sends the data to the concentrator using
a TCP-based response–response protocol. The ESP32 mod-
ule is configured as a client, and communication occurs
asynchronously. The response–response protocol allows for
bidirectional communication between the NUCLEO-H743ZI2
and the concentrator, thus enabling the sending of data in
both directions. A photo of the described NILM system
is in Fig. 6.

As schematized in Fig. 2, each appliance-level power meter
consists of one EVALSTPM32 measurement unit connected
to the WLAN via a USR-W610 converter. The USR-W610
is a serial-to-Wi-Fi and serial-to-Ethernet converter capable of
bidirectional transparent transmission between RS-232/RS-485
and Ethernet/Wi-Fi. It allows the assignment of work details
and the transparent transmission of serial data and TCP/IP data
packets via a converter.

The USR-W610 can open a TCP socket as a server or
a client. Each wireless module is set to receive TCP mes-
sages through the TCP socket’s server side to ensure good
implementation of the proposed WLAN network architec-
ture (Fig. 2). The TCP data are then converted by the wireless
module for the RS-232 interface. The EVALSTPM32 board
adopts a request–response serial communication handshake,
so the bidirectional TCP server socket connection can address
the requirement of the communication protocol. The modules
are addressed by a static IP address stored in the USR-W610
network configuration to ensure point-to-point communica-
tion. Fig. 7 shows one of the appliance-level power meters,
and Fig. 8 shows the overall installed system.

B. Central Concentrator and Web Server

The main part of the system is the Intel NUC NUC5i7RYH
system, which manages the nodes connected to the net-
work using a Python script, downloads measurement data,
and stores them in the MySQL database. The system is
based on a fifth-generation Intel Core i7-5557U processor
(3.1–3.4 GHz Turbo Dual core, 4 MB cache, 28 W TDP). The
Intel NUC supports Intel’s hyperthreading technology and has
16-GB DDR3 memory. The OS used to manage the system
is Windows 7.

The application program is written in Python [32], an
object-oriented programming language suitable for developing
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Fig. 7. Appliance-level power meters.

Fig. 8. Overall system installed in the two houses observed during the test
phase.

distributed applications, scripting, numerical computing, and
system testing.

The following tasks are performed by the main program.

1) Establish a connection with the NILM system and all
appliance-level power meters.

2) Send the read request to each node connected to the
network and receive the data.

3) Store the data in the MySQL database.

Each power meter is accessed through the multithreading
approach. In particular, the Python script manages a number
of threads equal to the number of power meters to ensure
that all communication ends within the sampling time (8 s).
Ultimately, all acquired data are stored in a MySQL record.

The timestamp is synchronized using an NTP protocol. The
main program is shown in Algorithm 1.

The Web server allows data supervision during monitoring.
The interface is developed in Node-RED [33], a programming
tool for wiring together hardware devices, APIs, and online
services. For each monitored load, this user interface shows
four different graphs for rms voltage, rms current, active
power, and reactive power. The graphs show a time window

Algorithm 1 Main Program
connect to host
while True do

take current time
read processed and unprocessed data from the NILM
system
for each appliance-level power meter do

read Vrms, Irms, P and Q
store data in a MySQL database
if sample time is elapsed

repeat
else

wait

Fig. 9. Web server of the system developed in Node-RED.

corresponding to the last hour of acquisition (hence 450 points
considering the sampling frequency of 1/8 Hz); they can be
used to compare the aggregate quantities with the appliance-
level quantities. The data are obtained directly from the
MySQL database. Fig. 9 shows the Web server.

C. Calibration of the Measurement Unit

A series of measurements is initially performed using
the power meters to ensure that their measured values are
metrologically valid. A Fluke 6100 A electrical power stan-
dard is used for this initial verification process. This is a
highly accurate voltage and current standard that provides a
reference for measuring electrical power and energy. After
the power meters are verified, more detailed measurements
are obtained using a HARMONICS-1000, a single-phase
measuring system for harmonics and flicker. This system
enables the simultaneous generation of load voltage and cur-
rent and thus a highly detailed assessment of the accuracy
and reliability of power meters under different operating
conditions.

The procedure used in the following calibration is based on
the approach presented in the ISO publication “Guide to the
Expression of Uncertainty in Measurement” [34].

In this calibration, the transducer response is provided as
a function of the applied quantity in (5) to derive the Ki

coefficients from a least-squares fit to the calibration data

R = K0 +

N∑
i=1

Ki V i (5)
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Fig. 10. Setup for calibrating the power meters.

where R is the transducer response, V is the applied quantity,
Ki is the coefficients characterizing the transducer, and N is
the polynomial order of the calibration function. A polynomial
order of 1, which is equivalent to linear interpolation, is chosen
in this work. In the measurements, a variable resistor of
known magnitude is utilized as the load. Data are acquired
over resistances of 23–136 �, and the load is powered at
voltages of 220–240 V. In total, the voltage, current, and
active power are acquired at 15 different points. Fig. 10 shows
the calibration setup used in the measurement process. The
transducer response R j is measured for each input voltage V j ,
current A j , and active power Pj . The Ki coefficients in (5)
are calculated using the least-squares fit of the measurement
sets (V j , RV

j ), (A j , R A
j ), and (Pj , R P

j ).
The uncertainty associated with the deviation of the mea-

sured data from the fit curve is represented by the standard
deviation ur as follows:

u2
r =

∑N
j=1

(
d2

j

)
(n − m)

(6)

where d j is the difference between the transducer inputs
and the responses calculated using (5), n is the number of
individual measurements in the calibration measurement set,
and m is the order of the polynomial plus one.

The coefficient of variance cV is calculated using (7) to
account for measurement variability

cV =
ur

µ
(7)

where µ represents the mean of the set of measurements. The
calibration results indicate that the coefficients of variance
of voltage, current, and active power are 0.11%, 0.13%,
and 0.87%, respectively.

The noise in the input channels is characterized to further
ensure the reliability and accuracy of the measurement system.
The intrinsic noise of acquisition and measurement sys-
tems can compromise load identification and measurement
accuracy. The noise characterization results indicate that the
level and type of noise in the input channels are below the
resolution of the ADC measurement system. Therefore, noise
is not a significant factor in the measurements and does not
affect the accuracy of the results.

Overall, these calibration and noise characterization pro-
cedures ensure the reliability and accuracy of the measured
values and provide a solid foundation for the subsequent data
analysis and interpretation.

IV. EXPERIMENTAL RESULTS

As part of the development phase of the proposed
system, the performance of the implemented prototype in
real-world scenarios was tested. The NILM system and the
appliance-level power meters were installed in two houses in
central Italy—one in Marche and the other in Abruzzo.

From February 2022 to January 2023, the system collected,
processed, and archived the data of each house (six consecutive
months for each house). This extensive testing phase ensured
that the system’s performance was thoroughly analyzed and
its effectiveness verified under various operating conditions.

The system is designed to acquire data at a sam-
pling rate of 1/8 Hz. The DL algorithm, implemented using
the NUCLEO-H743ZI2 board, processes time windows
of 599 points, which are equivalent to 4792 s or approxi-
mately 80 min. The algorithm starts processing when a new
active power measurement is available (every 8 s).

An important feature of the implemented system is that
it can operate without requiring any prior knowledge of the
appliances to be monitored. For evaluating the performance
of the system, its ability to recognize the absorption patterns
of the monitored appliances was initially analyzed, starting
from the aggregate energy consumption. Various load profiles
of the appliances were considered, and the responses provided
by the system were examined.

The obtained results, plotted in Figs. 11 and 12, show the
four consumption patterns of the monitored dishwashers and
washing machines against the acquisition time. The consump-
tion patterns depended on the various work cycles set for the
appliances, which were considered during the analysis to gain
valuable insights into the system’s performance.

The cycle considerations for the dishwashers and washing
machines could not be applied to the monitored fridges.
Instead, their daily consumption was analyzed, as presented
in Fig. 13, which illustrates four examples of daily consump-
tion patterns. This figure provides crucial information about
the system’s ability to recognize the daily consumption pat-
terns of fridges accurately. The left and right graphs in Fig. 13
refer to the first and second houses, respectively. In particular,
the two fridges had different consumption patterns, but the
DL algorithm adapted without prior knowledge of these appli-
ances, demonstrating its excellent flexibility and adaptability.

These figures depict the system’s ability to
recognize the distinct consumption patterns of different
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Fig. 11. Load profiles of dishwashers for different work cycles and corresponding disaggregation result.

Fig. 12. Load profiles of washing machines for different work cycles and corresponding disaggregation result.

appliances accurately. System accuracy and reliability are
qualitatively evident from their analysis.

For a quantitative evaluation of system performance, the
accuracy of the system in estimating the energy consumption
of the appliances in each work cycle was determined using
metrics typically adopted for NILM systems.

The percentage relative error in estimating energy consump-
tion, often called the signal aggregate error (SAE) in NILM
literature, was computed using the following equation:

SAE =
Êc − Ec

Ec
· 100 (8)

where Êc indicates the estimated energy consumption per
work cycle and Ec indicates the actual energy consumption

per work cycle, as measured using the appliance-level power
meters. For each appliance, 50 work cycles were considered
(25 for each house). Fig. 14 shows the percentage relative
error (or SAE) in the estimation of energy consumption per
work cycle. For the same reasons explained above, in the
case of the fridges, daily consumption was considered work
cycles.

The results are summarized in Table II, which presents the
absolute and percentage relative errors in estimating the total
energy consumed in the 50 work cycles (50 days for the
fridges). These metrics offer a comprehensive evaluation of
the system’s accuracy in estimating energy consumption.

The analysis of the percentage relative error in (5) was
extended to a half-yearly basis. An additional metric was
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Fig. 13. Daily consumption patterns of fridges and corresponding disaggregation results.

Fig. 14. Percentage relative error (or SAE) in the estimation of energy consumption per work cycle (for dishwasher and washing machine) and daily energy
consumption (for fridge).

TABLE II
ABSOLUTE AND PERCENTAGE RELATIVE ERRORS IN

ESTIMATING TOTAL ENERGY CONSUMPTION

considered to compare the proposed system with those in the
literature.

The mean absolute error (MAE) was computed to evaluate
the accuracy of the model’s predictions. The MAE, computed
using (9), measures the average absolute difference between
the actual and estimated active power at each time step

MAE =
1
T

T∑
t=1

∣∣ p̂t − pt
∣∣ (9)

where p̂t is the estimated power value at time step t , pt is
the measured power value at time step t , and T is the time
interval considered.

Table III shows the percentage of relative errors and MAEs
obtained for the different appliances over the entire dataset
for each house (half-year basis). For a thorough explanation
of the results in Table III, Table IV provides additional met-
rics obtained from a related study [23]. D’Incecco et al. [23]
trained a sequence-to-point DL model on the REFIT
dataset [22], as was done in this work, but they assessed
its generalization capability using the U.K.-DALE [28] and
REDD [27] houses as test sets. These datasets, along with
REFIT, are widely used to evaluate the performance of energy
disaggregation algorithms.

This study elucidates the model’s robustness and applica-
bility to real-world scenarios through the above assessment.
The findings demonstrate that the model can generalize well
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TABLE III
PERCENTAGE RELATIVE ERROR AND MEAN ABSOLUTE

ERROR ON A HALF-YEARLY BASIS

TABLE IV
PERCENTAGE RELATIVE ERROR AND MEAN ABSOLUTE ERROR ACHIEVED

IN [23] BY TRAINING THE MODEL ON THE REFIT DATASET

to different datasets and households despite being trained on
consumption patterns related to U.K. homes and installed in
two Italian homes with different appliances and usage patterns.
This indicates that the model can effectively adapt to different
settings and perform well under various conditions.

The results presented in [23] were obtained by processing
the data offline; in other words, the model was trained and
tested on prerecorded data. In contrast, the results of the cur-
rent article were obtained via the real-world implementation
of the measurement system, where the model was applied to
real-time acquired data. This further confirms the effectiveness
and reliability of the model for on-field applications. Overall,
these findings provide important insights into the model’s
generalization ability, applicability, and scalability, which are
critical factors for its practical implementation and adoption.

V. CONCLUSION AND FINAL REMARKS

The proposed system offers an embedded solution energy
disaggregation by leveraging a pretrained DL model. Specif-
ically, this model is a sequence-to-point ANN designed to
predict the midpoint of the window of an appliance-level
power reading from the corresponding aggregate power
window. The public dataset REFIT, which provides the con-
sumption details of 21 U.K. houses, was used to train this
model.

An architecture was developed to evaluate the performance
of the proposed NILM system. An appliance-level power meter
was installed on each appliance to be analyzed: dishwashers,
washing machines, and fridges. A WLAN network with a
star topology was established, where both the NILM system
and the appliance-level power meters were connected to a
concentrator via Wi-Fi.

The implemented NILM system consists of an
EVALSTPM32 board for measuring electrical quantities,
a NUCLEO-H743ZI2 board for processing the acquired
signals, and an ESP32 Wi-Fi module for connecting the
system to the WLAN. The appliance-level power meters

comprise an EVALSTPM32 board for measuring electrical
quantities and a USR-W610 Wi-Fi module for connecting
to the WLAN. Notably, the data processing section is not
included in the appliance-level power meters.

The WLAN network is managed using an Intel NUC
NUC5i7RYH, which downloads measurement data and
stores them in a MySQL database. Testing was conducted
for 12 months; the system was installed in two houses in
central Italy, one in Marche and one in Abruzzo, and tested
for six months for each house. During this time, the system
processed the overall consumption of the houses to obtain
details on the individual consumption of their dishwashers,
washing machines, and fridges. Data analysis showed that the
NILM system adapted satisfactorily to both houses despite
the differences in the absorption profiles of the appliances.
In addition, the system adapted when the same appliance
had different duty cycles (as in the case of the dishwashers
and washing machines). The six-month maximum relative
percentage errors for the dishwashers, washing machines, and
fridges were 11%, 12%, and 10%, respectively.

Overall, these results were highly satisfactory, especially
compared with those of a prior study where the model
was evaluated offline using prerecorded data. The outcomes
of the present study were obtained through the real-world
implementation of the measurement system, where the model
was applied to real-time-acquired data. This confirmed the
effectiveness and reliability of the model for on-field applica-
tions, specifically its generalization ability, applicability, and
scalability. Such findings provided crucial insights into the
practical implementation and adoption of the model.

The system was designed and implemented to demonstrate
the feasibility of a solution based on a small, low-power
microcontroller for real-time energy consumption monitoring.
The microcontroller was chosen for its excellent performance
and numerous integrated peripherals, which enabled the devel-
opment of a highly energy-efficient system. Because of its
Arm Cortex-M7 architecture and maximum clock frequency
of 480 MHz, the microcontroller can handle complex DL
algorithms while maintaining low power consumption.

The small size (20 × 20 mm) of the microcontroller enabled
the creation of a compact energy consumption monitoring
system. This feature is particularly important in areas needing
a minimally invasive, low-environmental-impact solution, such
as in the Internet of Things, where devices must be compact
and nonintrusive.

The proposed solution is not intended to become a com-
mercial product. Instead, it is designed to demonstrate the
feasibility of real-time energy consumption monitoring using
a solution based on a small, low-power microcontroller.
Nonetheless, the small size and low power consumption of the
proposed system make it potentially suitable for commercial
energy consumption monitoring solutions [34], [35].

Access to commercial energy consumption monitoring solu-
tions through NILM remains limited, especially for end con-
sumers. Companies developing NILM solutions [3], [4], [5]
focus on B2B services rather than direct B2C hardware sales.
This is mainly because NILM technology is primarily used
for energy management and monitoring in commercial and
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industrial settings, not homes. These companies typically offer
a wide range of services, such as energy audit, monitoring,
and reporting and energy efficiency consulting, to businesses
and organizations. This approach allows them to collaborate
closely with customers to gain a deep understanding of their
specific energy usage patterns and provide tailored solutions
for reducing energy consumption and costs. However, this
increases the difficulty of comparing NILM systems proposed
by researchers with commercially available NILM systems,
as the former systems are not readily accessible to the general
public.
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