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Abstract— Exposure from radio base stations (BSs) is often
only monitored over short periods, typically during the daily
hours of working days. However, BS exposure can vary through-
out the day and even between working days and weekends
or holidays. The objective of this study is to determine to
what extent short-term exposure measurements taken during
daily hours are representative of daily average exposure levels.
To achieve this goal, we analyzed a set of long-term measurements
taken by monitoring units located in sensitive areas, which
are characterized by a homogeneous distribution of users over
working hours, such as hospitals, train stations, and university
centers. Our results reveal that 6-min measurements taken on
working days can overestimate the average exposure level over
24 h if taken over a wider time interval than that commonly
considered for peak traffic and, therefore, higher exposure. Based
on the common pattern of exposure over time in various locations,
an extrapolation factor is proposed to predict daily exposure
levels from short-time measurements.

Index Terms— 4G long term evolution (LTE), 5G new radio
(NR), electromagnetic field (EMF) monitoring, extrapolation
factor, human exposure, measurements, wideband monitoring.

I. INTRODUCTION

HUMAN exposure to radio frequency (RF)
electromagnetic field (EMF) is the topic of specific

guidelines that suggest frequency-based limits for both general
public and occupational exposure. In 2020, the International
Commission on Non-Ionizing Radiation Protection (ICNIRP)
has released a revision [1] of its guidelines first published in
1998 [2], focusing on the RF range between 100 kHz and
300 GHz.
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Various monitoring activities are carried out worldwide to
assess compliance of exposure with limits set by national
and international guidelines and regulations [3], [4], [5],
[6]. The Serbian EMF RATEL system [7], [8], for exam-
ple, is a nationwide long-term monitoring system including
about 100 probes covering most cities, although short-term
monitoring campaigns are more widely adopted because they
allow covering a wider area with the same number of
probes.

One relevant aspect of exposure monitoring is the averaging
time. While RF monitoring usually relies on the root mean
square (rms) value of the electric field as the main quantity
for large-scale environmental monitoring, different averaging
times are used to assess the field strength. European guidelines
[2] and the Recommendation by the European Council issued
in 1999 [9] suggest 6-min averaging, while the updated version
issued in 2020 [1] suggest that 30 min are used. National laws
may introduce additional reference intervals. As an example,
Italy requires that exposure limits are averaged over 6 min [10],
while attention values and quality objectives are evaluated over
24 h [11].

The issue of time variability and averaging time is of
particular importance in the case of exposure to EMFs
emitted by base stations (BSs), due to the variability of
emitted power related to network loads management [12],
[13], [14], [15] and, for 5G new radio (NR) systems, also
to the temporal beam management functionalities [16], [17].
Furthermore, 5G pilot signals can show temporal varia-
tions, mainly due to changes introduced in the propagation
conditions [18].

Because of variability, short-time measurements of exposure
levels near BS sites could be not representative of long-term
exposure, which is an important parameter in epidemiological
studies [19]. In addition, the comparison of EMF levels to
exposure limits in the case of averaging over time intervals
longer than 6 min is a mandatory step for different exposure
regulations [19]. Surprisingly, a few studies have investigated
the relationship between short- and long-term measurements
and exposure parameters, performing some analysis on signals
radiated by pre-5G systems [20], [21] and/or in a limited
number of exposure contexts [22].

The goal of this work is to introduce a method to investigate
the relationship between short-time measurements and daily
exposure levels, over measurement sites subject to variegate
exposure conditions. Based on the results of the analysis,
we introduce an extrapolation factor to predict daily exposure
levels from short-time measurements for urban environments
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characterized by a homogeneous distribution of users over the
daily hours.

The article is organized as follows. Section II sheds light on
the positioning of our work, by analyzing the relevant litera-
ture. In Section III, the measurement system and methodology
are presented. Section IV details the experimental results.
Section V formally defines the extrapolation factor to correlate
6 and 30 min (i.e., short-term) measurements with 24-h
(i.e., long-term) averages. Section VI briefly discusses the
applications of our work. Finally, conclusions and future work
are drawn in Section VII.

II. RELATED WORK

The analysis of the temporal exposure variations is a central
aspect of EMF monitoring in mobile networks. Several EMF
monitoring initiatives are currently ongoing across Europe [3],
[7], [8], mainly lead by the agencies in charge of controlling
the EMF levels over the territory. The observation of such
trends over different time scales (hour, day, and week) allows
for ensuring that the measured exposure levels are always
within the maximum EMF limits imposed by law. Our work
is instrumental for the activities performed by environmental
protection agencies because we aim at reducing the amount
of time needed to perform a continuous measurement in a
single location while increasing the set of locations that can
be monitored over a given temporal window.

At a research level, the temporal variation of exposure is
tackled by works deploying exposimeters over the territory to
retrieve EMF measurements [23], [24], [25], [26], [27]. More
concretely, Frei et al. [23] collected exposure information with
exposimeters kept by volunteers for one week. The collected
data are then instrumental to compute average exposure values
over specific intervals of time (weekly, daily, nighttime, and
daytime). Birks et al. [24] targeted the EMF assessment over
children, by extracting median exposure values from differ-
ent microenvironments and different periods over the whole
temporal measurement windows. Aerts et al. [25] analyzed
over one year of measurements collected from an exposimeter-
based network, by computing maximum and 90% variability
of the exposure levels. More in depth, the proposed variability
metric is extracted from the EMF temporal variation and the
daily average. Velghe et al. [26] evaluated personal measure-
ments with exposimeters from different microenvironments
and different cities, by comparing exposure computed over
rush hours against the other periods of time. In addition,
a comparison between night hours and working hours is
performed. Aerts et al. [27] reported the outcomes from
a low-cost sensor network deployed over one year and a
half. The considered metrics include the temporal variability,
as well as more refined indicators like maximum exposure and
the difference between maximum and minimum exposure over
periods of time. In addition, daily and weekly EMF patterns
are extracted, by considering also the effect of temporal
smoothing.

Compared to [23], [24], [25], [26], and [27], our work is
different in terms of methodology and scope. First, we employ
monitoring units (not exposimeters), which are used by the
environmental agencies appearing in this work to ensure legal

TABLE I
MEASUREMENT SITES AND NUMBER OF DAYS SAMPLED

compliance against the limits. A monitoring unit is a more
complex device compared to an exposimeter and allows for
obtaining more detailed and reliable exposure data. In addition,
the adoption of monitoring units has an impact on the exposure
assessment, for two main reasons: 1) each environmental
protection agency owns a limited set of monitoring units
and 2) each monitoring unit has to be controlled by an
operator during the measurements, to protect the equipment
from damage.

Moreover, a further point of discontinuity of our work
compared to [23], [24], [25], [26], and [27] is the scope of
temporal monitoring. In this work, we aim to develop and test
an innovative methodology to estimate the average exposure
over a given time period, by collecting exposure data over
shorter time scales than the period selected for the average.

The second taxonomy of research includes the monitoring
of control signals for network troubleshooting. For example,
the work of Raida et al. [28] covers comprehensively the
measurements of control signals [like the reference signal
received power (RSRP)] over a long period of time. Obvi-
ously, the variation of RSRP is mainly due to a change in
the propagation conditions, an aspect deeply covered also
by the work of Chiaraviglio et al. [29]. Therefore, stabil-
ity in the RSRP values is observed when the propagation
conditions are kept unchanged [28]. Although we recognize
the importance of monitoring control channels, our work is
different in terms of scope because we focus on the exposure
assessment of the whole spectrum used by mobile operators.
In particular, the adopted monitoring units can measure the
total exposure over a given location, which includes both
the contributions of control channels (likely not varying over
time) plus the traffic channels, which instead naturally exhibit
strong variations between the different hours and the different
days.

III. MEASUREMENT SYSTEM AND SETUP

Measurement sites were chosen in the urban areas of Rome
and Turin, Italy (see Table I), characterized by the presence of
BSs with different mobile technologies. The chosen sites also
represent various spatial and temporal distributions of mobile
users: the monitoring stations were installed in a University
Department and a hospital in Rome and two areas close to a
University and a railway station in Turin. All locations are,
however, characterized by a similar exposure time trend over
daily hours.

Measurement setups are shown in Fig. 1. In more detail,
locations 1 and 2 are placed inside a building, close to the
thin glass of the window, in line-of-sight, and at a distance
of around 570 m from the closest radiating site. On the other
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Fig. 1. Measurement setups. (a) Location 1: Department of Electronic
Engineering (Rome). (b) Location 2: University Hospital (Rome). (c) Location
3: Polytechnic of Turin (Turin). (d) Location 4: Train station (Turin).

hand, locations 3 and 4 are in the Turin urban area in the open
air: the first one is in the city center on a terrace on the seventh
floor in the same building where the BS is installed and the
second one is on a balcony at the sixth floor at a distance of
about 22 m from the nearest BS.

Time series no. 1, 2, and 4 were acquired during 2022,
while time series no. 3 includes the beginning of the first
pandemic lockdown in Italy (March 2020). The total length
of each monitoring is shown in Table I.

Measurements were taken with two types of instruments.
1) In locations 1 and 2 (Rome), narrow-band monitoring

stations were used. An Anritsu MS27102A Remote
Spectrum Monitor working in the frequency range from
9 kHz to 6 GHz was connected through a type-N low-
loss cable to a Keysight N6850A passive broadband
omnidirectional antenna, with an operational band from
20 MHz to 6 GHz.

2) In locations 3 and 4 (Turin), a Narda 8059 wideband
monitoring station with an electric field sensor working
in the frequency band from 100 kHz to 7 GHz was used.

The wideband stations employed in locations 3 and 4 mea-
sure the total rms electric field level every 3 s and return as
output the average value every 6 min. Data are saved on a
remote FTP server once a day, by activating a modem for a
short time interval (less than 1 min). Validation of the collected
time series is then performed: data corresponding to 6-min
intervals during which the modem is transmitting is removed

and replaced by an interpolated value, to avoid the uplink
contribution introduced by the modem transmission. Each
6-min trace is then postprocessed to compute the exposure
average over 30-min intervals. In this way, we investigate
the behavior of exposure according to the averaging time
introduced by ICNIRP 2020 guidelines [1].

The narrow-band monitoring units employed in locations
1 and 2 work in a different way than the wideband stations
of locations 3 and 4. More in depth, each monitoring unit
is controlled by custom software running on an external unit,
which is connected to the monitoring unit through an Ethernet
connection, updating the measurement data on the cloud
storage through an Internet connection. We refer the interested
reader to [30] for the details of the measurement procedure,
while here we provide a concise summary. In brief, the
program synthesizes the measurement procedure as a sequence
of Standard Commands for Programmable Instruments (SCPI),
with the goal of sequentially monitoring a set of spectrum
portions that is provided as input. The following operations
are performed for each monitored band: 1) setting of spectrum
analyzer commands; 2) sensing of the signal intensity to tune
the reference level; 3) channel power (CP) recording; and
4) time-stamp association to each CP measurement and data
logging. In this work, the monitored bands include all the
spectrum portions in use by the main telecom operators in
Italy (TIM, Vodafone, W3, Iliad, Opnet, and Fastweb) up to
the N78 band.

A natural question here is: How much data was collected
by the monitoring units? Actually, in our scenarios, the overall
size of measured data is thin, that is, less than 2 MB per
month, mainly because the whole iteration over the set of
bandwidths requires 4–5 min to complete, yielding around
1–2 samples per band over each 6-min interval. Conse-
quently, the size of each trace does not exceed 5 MB.
The small size of the data should not be considered as
a potential cause for the reduced significance of the anal-
ysis. In fact, samples span over a number of days (see
Table I) that is large enough for the results to be statistically
significant.

As a postprocessing step, we need to extract the total 6-min
exposure from the CP-plus-timestamp measurement log of
locations 1 and 2. To meet such a goal, we perform the
following steps: 1) conversion from dBm to Watt of each CP
sample; 2) data cleaning (i.e., removal of NaN or out-of-scale
values); 3) data resampling with sampling rate set to 6 min
for each band (with data aggregation type set as mean value);
4) data filling in case a 6-min interval does not have a value,
in which case the filled data is expressed as the linear average
between the two consecutive available data in the considered
band; 5) data conversion from W to V/m to obtain the EMF
exposure in each band and each 6-min interval (by applying
the antenna effective area for the considered frequency band);
and 6) root sum square of the EMF exposure samples from all
monitored bands in a given 6-min interval in each band given
an interval, to obtain the total exposure in V/m. Finally, similar
to the postprocessing step applied to the wideband monitoring,
an average over 30-min intervals is computed, again following
the ICNIRP 2020 guidelines [1].
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Fig. 2. Exposure patterns. (a) Whole-period monitoring. (b) Weekly pattern.
(c) Daily pattern.

IV. EXPERIMENTAL RESULTS

A. Time Series

Fig. 2(a) shows the time series of the 6-min samples
throughout the monitoring period at the four locations listed
in Table I. A weekly [see Fig. 2(b)] pattern shows in all
time series [31], where weekdays usually reach higher peaks
than weekends, although the difference is more relevant in
some locations than in others: see, for example, the apparent
variations at location 1 (Rome, Department of Electronic
Engineering) as opposed to location 3 (Turin, Polytechnic of
Turin). Fig. 2(b) also shows the daily rms average (blue dashed

Fig. 3. Autocorrelation plots of time series.

line). The daily pattern in Fig. 2(c) confirms the expected
behavior with high values during the day and low values at
night, following the BS load. The figure also reveals that
some locations have more significant short-term variations
than others, like, for example, the University Hospital in Rome
(location 2) compared to the Train Station in Turin (location 4).

B. Autocorrelation

Time patterns have been explored through the autocorre-
lation [32] plots shown in Fig. 3. Concerning 6- and 30-min
averaging, all locations have peaks at multiples of 24 h, which
confirms the presence of a daily pattern. Peaks keep higher
than 0.5 for over ten days, which reveals a strong daily pattern.
Negative peaks at −0.5 at multiples of 12 h show that the
signal and its 12-h-delayed version are almost opposite in
phase—a behavior that can be grasped also by observing
Fig. 2(c).

Two peculiar situations occur. Autocorrelation of location
1 after one week reaches a higher peak (ρ = 0.75) than other
locations (ρ = 0.5), which means that the similarity between
two weeks is higher than that of other locations. This clearly
shows in the 24-h-averaging autocorrelation plot, where ρ of
location 1 at lag equal to 168 h (i.e., seven days) is the highest
of all (ρ = 0.75). As a second key point, we can note that
the periodicity of autocorrelation of location 2 is slightly less
than 1 day. This is possibly due to a flaw in the clock of the
measurement instrument used at that location, which caused a
measured interval of 1 h to represent a slightly longer interval.

C. Sample Distribution

Boxplots [33] of samples averaged over 6 min, 30 min, and
24 h are shown in Fig. 4. Minor differences characterize the
mean value of the three averaging times, while the variability
of the 24-h samples is smaller than that of the other aver-
aging intervals, as expected. A larger variance characterizes
location 4 (i.e., Train Station in Turin, Italy).

In the considered locations, the maximum exposure limit is
set to 6 V/m, which has to be compared against the average
exposure over 24 h. This information can be retrieved from
the blue boxplots of Fig. 4, which report the 24-h sample dis-
tributions. The maximum 24-h exposure is always lower than
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Fig. 4. 6-min, 30-min, and 24-h sample distribution throughout the moni-
toring period.

Fig. 5. 6-min, 30-min, and 24-h sample distribution for working days and
holidays.

1.3 V/m, corresponding to 21% of the maximum permissible
exposure.

To investigate further the weekly pattern observed in
Fig. 2(b), Fig. 5 presents a comparison of the distributions
of exposure samples for working days and holidays, where
the latter includes both weekends and national holidays, given
the similar behavior of the population during those days. The
figure confirms that there is a decrease in the values of the
distribution during holidays, at all locations.

To study the statistical significance of the observed differ-
ences we run an analysis of variance (ANOVA) test, whose
results are shown in Table II. The reader is referred to [33]
for a detailed explanation of all terms used in the table
and all other statistical quantities appearing in the article.
The test indicates that variations at different locations (ID
term) are indeed significant (p < 10−6) for all averaging
times, confirming the intuition from the figure. ANOVA also
highlights that whether a day is a holiday or a working
day (Holiday term) changes the mean exposure significantly
(p < 10−6) and that there is a strong interaction (p < 10−6)
between ID and Holiday, which means that the entity of
variations due to the different type of day depends on the
specific location. The significance of the interaction is slightly
smaller for the 24-h averaging time (p = 10−2).

D. Relative Variation Over 24 h

The Italian law about the exposure of the general public
to RF EMFs [10] sets the exposure limit at 6 V/m at all

TABLE II
ANOVA OF EXPOSURE FOR 6-min, 30-min, AND 24-h AVERAGING TIME

places where people could stay longer than 4 h and requires
that the rms value over 24 h is checked against that limit
[11]. Consequently, the monitoring must be run for 24 h
at each location to be checked for compliance, which is a
time-consuming task. To speed up this evaluation, shorter
measurements, typically performed over 6- or 30-min [1]
intervals, can be done. Therefore, it is meaningful to compare
short-term 6- or 30-min samples to the daily (24 h) average
exposure. More formally, we introduce 1Eavg, defined as

1Eavg =
Eavg − E24 h

E24 h
(1)

where “avg” can be equal to 6 or 30 min.
Fig. 6(a) shows boxplots of 1E6 min by the hour of the day

and by location, grouped by working days and holidays. Some
interesting patterns can be observed.

1) Despite a significant data dispersion and many outliers
for each time series, there is a clear day/night trend in the
distribution of 1E6 min. This trend confirms that during
peak hours (10 A.M. to 3 P.M.) of working days, the
6-min average tends to overestimate the 24-h average.
The overestimation indeed persists from about 9 A.M.
to 5 P.M. which is the period during which the first
quartile of the distribution remains over zero. During
holidays, overestimation tends to shift in time to later
hours, being present from noon to about 10 P.M., which
is consistent with the increased mobile traffic at night
hours.

2) The four time series show a different distribution of
1E6 min values during evening and night hours. In con-
trast, boxplots are more comparable during the day (and,
in particular, during peak hours). Since the chosen time
series have been measured in different urban scenarios
of very different cities, this behavior seems to denote
that the exposure levels during day hours tend to over-
estimate 24-h average exposure quite independently of
the propagation scenario, the type of mobile service,
and the parameters connected to traffic load of the BSs
in the measurement area.
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Fig. 6. Distribution of 1E6 min and 1E30 min by the hour of day. (a) 6-min
averaging time. (b) 30-min averaging time.

Boxplots of 1E30 min shown in Fig. 6(b) show similar behavior,
although the overall spanned interval of values is tighter.

V. EXTRAPOLATION FACTOR

Given the similar behavior over different locations, 1E can
be profitably used to determine an appropriate extrapolation
factor F which may serve to extrapolate 24-h measurements
from 6-min samples. Such extrapolation factor F is, therefore,
unique and it does not depend on the specific location.

Fig. 7 shows the sample distribution of 1E6 min and 1E30 min
at 11 A.M. for both working days and holidays, obtained by
grouping all available values of 1E without distinction among
locations. In the same figure, the distribution mean, median,
and mode [33] are shown. By extracting these values for every
hour of the day under different averaging times and types of
day, we obtain the curves shown in Fig. 8, which define F
based on an experimental approach. For example, if we make
a 6-min measurement at a specific time of the day, we can
extrapolate the 24-h value from that measurement by picking
the value of Fmo (i.e., the value of F calculated through the
mode of 1E6 min) corresponding to that hour and using the
inverse formula of (1)

E24 h =
E6 min

1 + Fmo
. (2)

Fig. 7. Distribution of 6- and 30-min samples of 1E at 11 A.M. for working
and nonworking days.

Fig. 8. Extrapolation factor for 6- and 30-min measurements on working
and nonworking days.

A. Validation of F

To validate the use of the extrapolation factor, we applied
F to one week of 6-min measurements extracted from the
long-term time series in Fig. 2(a). The results of the extrapola-
tion are reported in Fig. 9, where the solid red line is the actual
24-h average, while the dashed lines show the extrapolated
value E p from each 6-min measurement according to the
mean, median, and mode of F .

Then, we defined the extrapolation error ϵ

ϵ = E p − E24 h (3)

and the relative extrapolation error ϵr

ϵr =
E p − E24 h

E24 h
(4)

where E p is the exposure extrapolated from the 6-min measure
by application of (2) and E24 h is the actual 24-h average
exposure. The boxplots for both quantities measured in the
time interval between 10 A.M. and 3 P.M. of working days
(the time interval when 6-min measurements are usually made)
are presented in Fig. 10. Focusing on the range between the
first and third quartiles, besides location 1 that overestimates
between 0% and +10%, boxplots show that ϵr is on average
equal to zero and spans at most the range from −10% to
+10% (location 2).

By comparing ϵr in Fig. 10(b) with 1E6 min for working
days shown in Fig. 6(a) (which spans from +5% to +30%),
we can observe that E p is a better estimate of E24 h than E6 min.
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Fig. 9. Validation of extrapolation factor F .

Fig. 10. Extrapolation error and relative error. (a) Error. (b) Relative error.

B. Independent Validation of F

To validate the use of the extrapolation factor to estimate
the E24 h average in a context similar to the operational
ones, we applied the factor F [mean value, due to its better
performance in the validation as shown in Fig. 10(b)] to three
recent independent series of 6-min measurements in the city
of Turin, Italy. The location and context features of the three
series are similar to those used in the statistical analysis.
The first series (A) covers seven days in September 2022,
on an open terrace on the top of a seven-floor building in
the city center, characterized by E24 h average of 4.45 V/m
over the whole period. The second monitoring (B), carried
out in early 2022, refers to a similar location but in an
area devoted to commercial activities and registered a E24 h
average of 3.28 V/m. The last one (C) covers six days in
March 2023; the monitoring unit was located on the roof of
an eight-floor building in the city center overlooking a quite
wide square and registered a E24 h average of 2.57 V/m. All
locations are characterized by a comparable exposure time

trend over daily hours, although they are characterized by the
E24 h average higher than that of the time series used for the
estimation of the extrapolation factor estimation. We calculated
the extrapolation error ϵ and the relative extrapolation error
ϵr defined by (3) and (4). The distribution ϵr , considering
the time interval between 10 A.M. and 3 P.M. of working
days, is reported in Fig. 11. In this context, ϵr shows aver-
age values (8.5%, 1.7%, and 2.5%, respectively) that are
larger than the reference values in Fig. 10, with extreme
values spanning from −17% to 24%. Focusing on the range
between the first and third quartiles, values span at most
the range from −4.75% to 8% (location B). These results
show a general overestimation of the E24 h average, with the
positive mean value distribution. Even if the lower quartile is
negative for locations B and C, ϵr is mostly toward positive
values.

The behavior of the relative extrapolation error seems to be
related to the E24 h average over the whole period: where the
value is higher (location A), the relative error is also higher
with all positive distribution values.
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Fig. 11. Relative error distribution for locations A, B, and C.

The independent validation carries out a reliable range of
variability of the E24 h estimation, confirming that it can be
applied to get the E24 h preliminary estimation from single
6-min measurements.

VI. DISCUSSION

Operators typically perform EMF measurements to measure
the baseline exposure during the planning of new sites. These
measurements are typically run over critical points in the
neighborhood of the location that is selected to install the new
antennas, which commonly already hosts radiating antennas
from other operators and different technologies. In many
authorization procedures, the baseline exposure level measured
over the critical points is then added (in quadrature) to the
estimated exposure level derived from simulations of the
antennas to be installed. The total resulting exposure level
is the value that is compared against the maximum exposure
limit defined by law. Our work provides a new tool in this
direction, although we point out that the EMF levels observed
in this work are always largely lower than the maximum
EMF imposed by law. Intuitively, an operator may perform
a measurement over a short time scale and then refine such
measurement by adopting our methodology to rescale the
measured EMF over the time interval used for comparison
against the limit. This step allows a better estimation of the
baseline exposure and hence a more correct evaluation of the
total exposure resulting from the measured and the simulated
components.

VII. CONCLUSION AND FUTURE WORK

In this article, we have focused on the problem of eval-
uating the average exposure over long intervals (e.g., 24 h)
by measuring the EMF over shorter time scales (e.g., 6 and
30 min). To this aim, we have followed an experimental-based
approach, starting from the analysis of EMF measurement
campaigns in the frequency range from 100 kHz to 7 GHz.
Exposure levels were sampled at various locations in two
different cities in Italy over medium-to-long-term intervals
spanning from a few weeks to two months. The four loca-
tions show similar statistics for 6-min and 24-h averages,
with slightly larger variance in one case. Mean values differ
significantly with the location and the type of the day (i.e.,
working day or holiday), with a strong interaction between the
two terms. The comparison between 6-min and 24-h averages

shows that the shorter time average typically overestimates the
daily average in a wider interval than the usual peak-hours
interval. This behavior is typical to all four locations sampled
and is used to propose a correction factor to extrapolate daily
averages from shorter-term measurements. The validation of
the extrapolation factor performed on different time series
confirms its suitability for the E24 h preliminary estimation.

In future work, we plan to extend our analysis to multiple
domains. First, a further validation process, based on a higher
number of independent measures, will be performed, to assess
the validity of the estimation method in the operational mea-
surement routine. Second, being a large number of shorter
time series available, a statistical analysis will be carried
on, to understand the influence of location metrics (e.g.,
geographical, urbanization level, distance from the BSs, etc.)
on the extrapolation factor. Third, long-term monitoring in
rural areas will be carried out, to analyze the different behavior
and define a specific extrapolation factor. Fourth, a further in-
depth analysis considering only the 5G monitored bands will
be taken into account. This step can, for example, include the
parameters that are connected to the BS traffic load in the
measurement area.
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