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Abstract— Miniature mobile robots in multirobotic systems
require reliable environmental perception for successful naviga-
tion, especially when operating in a real-world environment. One
of the sensors that have recently become accessible in micro-
robotics due to their size and cost-effectiveness is a multizone
time-of-flight (ToF) sensor. In this research, object classifica-
tion using a convolutional neural network (CNN) based on an
ultralow-resolution ToF sensor is implemented on a miniature
mobile robot to distinguish the robot from other objects. The
main contribution of this work is an accurate classification
system implemented on low-resolution, low-processing power, and
low-power consumption hardware. The developed system consists
of a VL53L5CX ToF sensor with an 8 × 8 depth image and
a low-power RP2040 microcontroller. The classification system
is based on a customized CNN architecture to determine the
presence of a miniature mobile robot within the observed terrain,
primarily characterized by sand and rocks. The developed system
trained on a custom dataset can detect a mobile robot with an
accuracy of 91.8% when deployed on a microcontroller. The
model implementation requires 7 kB of RAM, has an inference
time of 34 ms, and an energy consumption during inference of
3.685 mJ.

Index Terms— Binary classification, convolutional neural net-
work (CNN), low power, microcontroller, miniature robot,
time-of-flight (ToF), tiny machine learning (TinyML), ultralow
resolution.

I. INTRODUCTION

MICROROBOTICS is a rapidly evolving field where
object localization for navigation plays a signifi-

cant role. A recent increase in the computational power
of energy-efficient microcontrollers and the development of
advanced neural networks enables the implementation of
machine-learning-based navigation on low-power robotic sys-
tems. Individual implementations, however, need to be adapted
to a specific scenario. The combination of sensors, computa-
tional hardware, and neural network architecture determines
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with the Laboratory for Mechatronics, Production Systems, and Automation
(LAMPA), Faculty of Mechanical Engineering, University of Ljubljana,
1000 Ljubljana, Slovenia (e-mail: jan.pleterski@fs.uni-lj.si; gasper.skulj@fs.
uni-lj.si; jernej.puc@fs.uni-lj.si; rok.vrabic@fs.uni-lj.si; primoz.podrzaj@
fs.uni-lj.si).

Corentin Esnault was with the Faculty of Mechanical Engineering, Univer-
sity of Ljubljana, 1000 Ljubljana, Slovenia. He is now with the Brest National
School of Engineering, 292280 Plouzané, France (e-mail: c8esnaul@enib.fr).

Digital Object Identifier 10.1109/TIM.2023.3318710

the system’s performance in terms of energy consumption and
level of accuracy. This is especially important when transi-
tioning from a laboratory setting to a real-world environment
where microrobots need to act autonomously. Therefore, the
ideal microrobotic navigation system should have low energy
consumption, low memory footprint, short inference time, and
reliable level of accuracy in a real-world environment with
possible unforeseen situations.

Robotic systems for navigation most commonly use visual,
sound, and electromagnetic sensors. The most used tech-
nologies are 2-D and 3-D LiDAR [1], visible spectrum [2],
infrared spectrum [3], time-of-flight (ToF) cameras [4], and
ultrasonic sensors [5]. Low-cost miniature ToF sensors are
becoming increasingly popular in miniature mobile robotics
in combination with microcontrollers [6], [7], [8]. In recent
years, more advanced multizone ranging miniature ToF sensors
have been introduced that can capture a complete depth image
at once without requiring relative motion between the sensor
and the observed surface. This type of ToF sensor provides
information in the form of depth images that can be used for
image classification in miniature mobile robotics applications.
Importantly, depth images usually have lower resolution than
images from visual spectrum cameras and contain less infor-
mation useful for classification.

Image classification is a task in which images are associated
with specific labels. Traditional methods that can be used for
image classification (scale invariant feature transform (SIFT),
speeded-up robust feature (SURF), binary robust independent
elementary feature (BRIEF), etc.) heavily rely on manually
acquired feature descriptors to classify images [9]. To avoid
manual feature extraction, classical ML algorithms (support
vector machine (SVM), k-nearest neighbor (KNN), decision
tree (DT), etc.) can be used that only require a large labeled
image dataset, but rely on data separation. However, a more
modern approach to image classification is to use deep learning
that automatically detects important image features within
neural network hidden layers. Based on the literature, deep-
learning methods usually outperform classical ML methods
[10] and, therefore, a convolutional neural network (CNN)
was selected for image classification in this research. CNN
architecture is specific for each application and needs to be
determined based on the image dataset and used computational
hardware.

Image classification with deep learning usually requires
computationally very powerful hardware for the learning pro-
cess, such as graphics processing units and tensor processing
units. Implementation of deep-learning models can be done on
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devices with less computational power and memory; however,
implementation on microcontrollers, because of their con-
strained hardware, is only possible for smaller models. Major
obstacles when deploying deep-learning models on low-power
devices include low processing speed and small memory
resources resulting in low inference speed and accuracy [11],
[12]. To overcome these challenges and create a successful
implementation of deep-learning models, specialized frame-
works such as tensorflow lite micro (TFLM), STM Cube AI,
embedded learning library (ELL), and so on were developed
under the domain of tiny machine learning (TinyML) [13],
[14]. TinyML focuses on executing optimized ML models
on ultralow-power (<1 mW) MCUs with minimal power
consumption [15], [16].

The motivation for this research is the prospect of applying
the TinyML approach to ToF data on a microcontroller-based
system to improve environment perception for miniature
robots in terms of low processing power and energy con-
sumption. The novelty of the research is the application of
a deep-learning method on a unique robotic system that
combines a low-power RP2040 [17] microcontroller and a
VL53L5CX [18] ToF sensor. The problem of performing
object classification using CNNs on low-resolution depth
images to detect miniature robots on terrain, consisting mainly
of sand and rocks is addressed. Accurately classified depth
images from a low-resolution ToF sensor using CNNs are
demonstrated. The process of CNN architecture development
with a comparison of tested architectures and corresponding
energy consumption of models during inference is presented.
The datasets and the source code are released as open source.

II. RELATED WORK

In this research, ToF sensor input data is collected using
pulsed modulation, which involves sending short pulses and
measuring the time needed for the pulses to be received
[19]. ToF sensors have been used in miniature robotics on
constrained devices before the advent of deep learning, with
ultrasonic and optical sensors being the most popular.

Although it is a long-standing technology, ultrasonic sensors
remain an active area of research. Shen et al. [20] presented a
new ultrasonic method for positioning an autonomous mobile
robot, in which the developed system consists of three ultra-
sonic sensors instead of a single one to improve accuracy
without using additional temperature sensors. Compared to
optical sensors, ultrasonic sensors are more cost-efficient, have
lower energy consumption, and require less computing power,
which are important features in the field of miniature robotics
[21], [22]. However, ultrasonic sensors generally have lower
depth measurement accuracy than optical sensors, primarily
due to the influence of ambient temperature.

Several studies have been conducted using optical ToF
sensors in miniature robotics, mostly developed by ST Micro-
electronics. Laković et al. [23] used a ToF sensor ST
VL53L0X. The accuracy of the sensor is analyzed using
experiments with different types of materials and under dif-
ferent illumination conditions. The final result shows that the
accuracy of the ToF sensor largely depends on the reflectivity

of the surface, especially for darker, less reflective surfaces.
Another generation of an ST sensor was used in [24], where a
recent swarm robot platform mROBerTO2.0 is presented that
uses an ST VL6180X sensor to measure distance.

In addition to distance measurement, applications also use
ToF data in systems that use deep learning. This is significant
in applications that require the ToF sensing and inference
to be on the same device. Device-based inference enables
independent unit-level behavior without the need for external
connectivity [25]. Since the advent of deep learning, image
recognition, detection, and classification have been widely
used for machine vision applications using cloud computing,
but the announcement of TinyML has motivated researchers
to implement similar applications on constrained devices [26].

Callenberg et al. [27] have implemented an ST VL53L1X
ToF sensor on a P-NUCLEO-53L1A1 board. The system is
equipped with a 32-bit microcontroller, 84-MHz CPU, 512-kB
flash memory, and 96-kB SRAM. The system is used for depth
imaging, material classification, and object tracking, which
were previously limited to computationally more powerful
systems. In the case of material classification, the sensor light
passes through different materials, and part of this light is
reflected back depending on the structure of the material.
Based on the histograms obtained with temporal and spatial
dimensions, the materials are classified using CNNs.

Some recent research studies use the latest 8 × 8
VL53L5CX sensor, which can produce an 8 × 8 depth image
of the observed surface. This is a unique feature for a miniature
ToF sensor and has previously been implemented for the
purpose of indoor navigation [28] and obstacle avoidance [29]
to improve autonomous navigation, but no classification of
physical objects has been done based on a depth image of this
sensor.

However, some researches classify higher-resolution images
by implementing computationally more demanding ToF cam-
eras. Ruvalcaba-Cardenas et al. [30] used a low-resolution
64 × 64 pixel resolution ToF sensor to classify four different
objects using a VGG-16 CNN model. The dataset consists
of 1615 training images, 285 validation images, and 60 test-
ing images under different brightness conditions. Nash and
Devrelis [31] performed a similar classification where a CNN
classifier is developed for vehicle classification. The dataset
consists of 32 × 32-sized depth images of different car types.
The final model achieved an accuracy of 86.3% on an NVIDIA
Jetson TX2 embedded system.

This research is novel by deploying a CNN for object
classification on a resource-constrained system, integrating
a ToF sensor with significantly lower resolution than those
utilized in related publications. This makes the system more
challenging to train and deploy, but it also makes it more
affordable and accessible.

III. METHODS AND EXPERIMENTS

In this section, a detailed description of the microcontroller
and the ToF sensor as well as the experimental setup is given.
The acquisition of the dataset is described in the follow-
ing subsections, including data processing and augmentation.
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Fig. 1. Mobile robot with the main components used in the research.

Finally, the training and the evaluation of the models are
presented.

A. Hardware

The robot platform with an integrated microcontroller, a ToF
sensor, and a camera is shown in Fig. 1. The microcontroller
used to implement a deep-learning model is the RP2040
from the Raspberry Pi Foundation. The RP2040 is a 32-bit
microcontroller chip with 133-MHz dual-ARM Cortex-M0+

cores and 264-kB RAM with an additional 2 MB of flash
memory.

The depth image is acquired with the state-of-the-art ST
VL53L5CX ToF sensor, released in 2021. It can be used for
distance measurements up to 4 m at 60 Hz. It is capable of
capturing depth images with a resolution of up to 8 × 8 pixels
and a diagonal field of view of 63◦. The size of the sensor
module is 6.4 × 3.0 × 1.5 mm.

The data generated by the ToF sensor is an array of 64 8-bit
integers. This data is transmitted to the microcontroller via an
I2C bus. Since most of the features of the robot are lost after
50 cm, the functional range is reduced. Specifically, the 8-bit
value range (from 0 to 255) of each pixel represents a distance
between 0 and 50 cm.

B. Experimental Setup

The goal of the broader research is to apply the developed
classification system to a swarm of robots navigating a sand-
like terrain. The robot’s classification system was tested in
an enclosed environment with sand and rocks. The exper-
imental setup is shown in Fig. 2. The experimental setup
(75 × 35 × 25 cm) was filled with 10 kg of sand (grain
size: 0.7–1 mm), which enabled us to create various landscape
features (e.g., valleys, slopes, hills, etc.). The setup consisted
of mobile robots with a footprint of 5 × 5 cm2.

The rocks were selected on the basis of their similarity to the
robot to evaluate the system’s ability to distinguish the robot
from a rock of similar shape, size, and color. The comparison
between the two objects is shown in Fig. 3.

C. Collecting the Dataset

For mobile robots to successfully navigate through unknown
terrain in swarms without collisions, they must also be able to
detect various objects, including other mobile robots. Due to
the specific output of the sensor with a resolution of 8 × 8,

Fig. 2. Experimental setup with mobile robots, rocks, and sand-like
environment.

Fig. 3. Comparison between the robot and the rock.

no datasets or pretrained models were available for training.
Therefore, a custom dataset was created in the experimental
setup. The dataset consisted of 4150 unique ToF images with
and without the model of a mobile robot [32], which were
labeled for binary classification. Fig. 4 shows the field of view
(FOV) in combination with the associated Himax HM01B0
robot camera module. The maximum distance of the observed
robot from the sensor is 20 cm. The dataset is acquired under
different ambient lighting and various shapes of sand-like
terrain (e.g., slope, hill, valley, etc.). Separate images of the
robot, the rock, and the environment are taken at specific
positions of the ToF. The specific collection of the dataset
is as follows: First, modify the sand-like terrain, then deploy
the mobile robot and collect an image of the terrain, and third
deploy another mobile robot and collect an image of the robot
in different positions and repeat the same for the rocks. Finally,
repeat the process in a different formation of the sand-like
terrain.

The dataset is divided into two classes depending on
whether the robot is present or not. The dataset is evaluated
using five-fold cross-validation, where each dataset consisted
of 80% training images, of which 20% were retained for
validation, and 20% test images. The noise of the ToF sensor
was reduced with a temporal median filter and the training
images were augmented with image flipping and Gaussian
blur. Sections III-C1 and III-C2 describes the means used to
enhance the dataset.

1) Median Temporal Filter: The default ToF images were
initially noisy. The noise appeared in the form of inaccu-
rate distance measurements, which can noticeably affect the
learning process of the neural network. According to the
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Fig. 4. Comparison of FOV for a ToF sensor (solid) and camera (dashed).

Fig. 5. (a) Single ToF depth image of flat terrain without a robot that includes
inaccurate distance measurements that appear as noise. (b) Depth image after
median filter of nine sequential measurements is applied showing a reduction
in noise.

manufacturer, the noise is due to the sensor’s glare, which
can be partially removed by setting the manufacturer’s recom-
mended sharpener value. The remaining noise was removed
with a temporal median filter. In [30], both spatial and tempo-
ral median filters were used to remove the noise. However, the
ToF sensor in this study had a considerably lower resolution,
so the spatial filter was not a viable option. Several median
filters were tested on a series of consecutive depth images. The
evaluation of the preliminary tests showed that nine consecu-
tive images are the optimal filter size, based on the values of
the standard deviations. Therefore, the final temporal median
filter was calculated based on nine consecutive distance values
per pixel within an overlapping moving average window of a
ToF sensor, and a median for each pixel was determined for
each image. Considering a sorted list of values in ascending
order, the fifth value was used as the median in this case of
nine-pixel sequences.

In Fig. 5, an effect of the median filter for one specific
instance of a background without the robot can be observed.
Fig. 5(a) represents the ToF image before applying the filter,
while Fig. 5(b) represents the ToF image after applying the
median filter.

To evaluate the effect of median filtering, 20 depth images
were taken with and without the filter, and the standard devia-
tions of the measured distances were calculated. The scene of
the background remained the same, as shown in Fig. 5. The

Fig. 6. (a) Standard deviations of inaccurate distance measurements that
appear as noise. (b) Standard deviations after the median filter of nine
sequential measurements are applied showing a reduction in noise.

evaluation of the median filter is shown in Fig. 6. Note that the
median filter removed most of the falsely detected distances.

2) Data Augmentation: The initial dataset of 4150 images
was enlarged by offline data augmentation. The dataset was
artificially expanded by flipping the images horizontally and
adding per pixel Gaussian noise with a standard deviation of
five based on the discrete normalized Gaussian distribution:
N (0, σ 2).

By mirroring the images and adding Gaussian noise four
different datasets were obtained consisting of the initial dataset
with 4150 images, the flipped dataset, the dataset with Gaus-
sian noise, and the dataset with combined augmentations.

D. Training

A CNN with a custom architecture was chosen to train the
model. The architecture was chosen based on the research
in [10] where a comparison of various ML methods was
made on microcontroller-based systems, where they found that
neural networks bear better performance than traditional ML
methods.

The selection of the convolutional network architecture was
made based on preliminary results with different CNNs, as the
best results were obtained with convolutional layers. Less than
three convolutional layers resulted in overfitting and lower
accuracy, while more than three convolutional layers resulted
in larger model sizes and long inference times that were not
applicable to the microcontroller used. The performance of the
different models was evaluated using a preliminary dataset
of 1000 images, unrelated to the final user-defined dataset.
The preliminary results using different CNNs can be seen in
Table I and in Fig. 7 where the evaluation was performed
on five models with three convolutional layers. Each model
was evaluated on the criteria of test accuracy, model size,
inference time, and power consumption. All voltage regulators
were bypassed during the current consumption measurement.
The circuit diagram for the current measurement is shown in
Fig. 8.

Note in Fig. 7 that after the third model, the size of the
model increases rapidly while the increase in accuracy begins
to decrease. From the current measurements in Fig. 9, it can
be seen that the acquisition of the depth images accounts
for most of the energy consumption. The measurement was
carried out in the intermittent ToF mode. The classification
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Fig. 7. Preliminary test on five convolutional models regarding the accuracy,
RAM, and flash size.

Fig. 8. Electric circuit used for current measurement.

Fig. 9. Current measurements for the five tested CNNs. The colored circles
represent the end of each cycle, while the black arrows separate the ToF image
acquisition part and the classification part of the program. (a) Whole cycle.
(b) Inference part of the cycle.

was, therefore, performed between the ToF measurements so
that the current measurements for both operations could be
performed separately. ToF image acquisition is independent of
classification and consumes 67.06 mJ of energy. The energy
consumption for the inference part of the program can be
seen in Table I. During classification, each model peaks at
about 30 mA of current consumption, but the duration of

TABLE I
COMPARISON OF FIVE MODELS WITH THREE CONVOLUTIONAL

LAYERS REGARDING INFERENCE TIME AND
INFERENCE ENERGY CONSUMPTION

Fig. 10. Final CNN architecture that was selected: convolution channels
(16, 32, 64).

classification changes significantly from 7 to 435 ms, while
the energy consumption for inference increases from 0.993 to
42.10 mJ. Based on the preliminary results, neural network
model 3 was selected as the optimal model in terms of the
tradeoff between test accuracy, model size, inference time, and
energy consumption.

The models were trained using the EdgeImpulse [33] plat-
form. The platform is used to import data, create a new neural
network or use an existing one, train a model, and finally
deploy it on an embedded device. The architecture used is
shown in Fig. 10 with three convolutional layers, a kernel size
of 3, max pooling with a stride of 2, and a fully connected
final layer [34].

After training, the model was exported as a C library to be
used on the microcontroller. Additionally, 8-bit quantization
was performed as this is the most common method of model
reduction in constrained embedded systems. The model was
quantized by reducing the weights from 32-bit floating-point
numbers to 8-bit integers. After quantization, the reduction in
model memory was 4.9%, 13.7%, 22.5%, 30.4%, and 36.3%,
respectively.

E. Evaluation

The receiver-operating characteristic (ROC) analysis
together with the area under the curve (AUC) score was
chosen to evaluate the models obtained. The models were
evaluated for each version of the dataset. The trained models
were first evaluated with a fivefold cross-validation before
deployment, where the test images consisted of 20% of the
respective dataset without augmentations. Once the model
with the best performance was selected, it was deployed
on the mobile robot and evaluated again with an ROC
analysis. Postdeployment testing consisted of 1000 unique
images taken from different perspectives within the testing
enclosure with sand. The ROC analysis was performed with
the collection of classification data for thresholds with 10%
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Fig. 11. Program flowchart for the classification system.

TABLE II
COMPARISON OF HOW DIFFERENT MODELS AFFECT CLASSIFICATION

ACCURACY, RECALL, AND PRECISION WITH STANDARD DEVIATIONS

increments. If the probability value was above the threshold
after inference, the robot was considered detected. The ROC
analysis parameters for each threshold were calculated based
on (1) and (2), where TP, FP, TN, and FN represent true
positive, false positive, true negative, and false negative
results, respectively. The optimal threshold was calculated
based on the highest value of the geometric mean between
the true-positive and true-negative rates given in (3).

The flowchart of the program used for ToF data acquisition
and depth image classification is shown in Fig. 11. The
values for sharpener percent (20%), integration time (10 ms),
and ranging mode were set according to the manufacturer’s
recommendations. The source code of the program for the
microcontroller is publicly available at [35].

1) True-Positive Rate:

TPR =
TP

TP + FN
. (1)

2) False-Positive Rate:

FPR =
FP

FP + TN
. (2)

3) Geometric Mean:

G-Mean =

√
TPR · (1 − FPR). (3)

IV. RESULTS

The ROC comparisons were made to show that the clas-
sification system can distinguish a mobile robot from other
objects. The first ROC evaluation is shown in Fig. 12. The
models were evaluated using fivefold cross-validation with
the test datasets consisting of 830 images. The red line
represents the classification model trained on the default
unaugmented dataset. The best test accuracy of the model

Fig. 12. Predeployment ROC evaluation for every trained model.

Fig. 13. Comparison between best-performing model predeployment and the
model deployed to the microcontroller.

was 96.8%. The green line shows the effect of the horizontal
flip augmentation. The best test accuracy increased to 97.4%.
The Gaussian augmentation, which is presented with a black
line, increased the test accuracy to 98.4%. The model with
the largest dataset containing both augmentations achieved
a test accuracy of 97.8%. Note that the dataset with both
augmentations achieved lower accuracy than the dataset with
only the Gaussian augmentation, however, it achieved higher
precision. It is also worth noting that despite the model with
Gaussian augmentation having a lower AUC score than the
default model, it has a much higher accuracy and recall.

Based on the tradeoff of the ROC results, the model
with only the Gaussian augmentation was selected as the
best performing. The selected model was then used on the
mobile robot and evaluated in the experimental setup using
1000 new and unique ToF images. The comparison between
the best-performing model before deployment and the model
deployed on the mobile robot can be seen in Fig. 13. The
model evaluated after deployment achieved an accuracy of
91.8%. The model with the best performance had an inference
time of 34 ms with a memory size of 7 kB. The inference time
was calculated based on the time it takes the classifier to make
the prediction. Accuracy, recall, and precision with standard
deviations at optimal thresholds can be seen in Table II.
Examples of probability scores for four different specifically
selected scenarios of robot detection in the experimental setup
are presented in Fig. 14.
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Fig. 14. ToF depth image (left) and a corresponding camera image (right). The grayscale camera images are only added for illustration purposes and have
no role in classification. (a) Correctly classified robot. (b) Incorrectly classified robot partially obscured by terrain. (c) Correctly classified background without
a robot. (d) Correctly classified robot next to a rock.

V. DISCUSSION

The subject of this work is object classification on a very
constrained and low-power device using an ultralow resolution
ToF sensor. The presented model was applied to a mobile
robot classification system in a closed environment. The model
was trained using 4150 images of a particular mobile robot
in a sand-like terrain with rocks. The models were first
trained and evaluated with and without augmentations before
deployment. Based on the evaluation results after training, the
model with the best performance was selected. The model was
later reevaluated after deployment on the mobile robot. The
comparison of the probability scores in Fig. 14 obtained on the
mobile robot in the scenario with the robot and in the scenario
where only the surrounding objects were present, together with
the ROC evaluation indicates, that an accurate classification
system was developed by distinguishing the mobile robot from
a rock with comparable size, shape, and color.

The best accuracy was achieved with 98.4% before deploy-
ment. When the model was deployed on the mobile robot
and evaluated after deployment, the classification accuracy
dropped to 91.8%. The accuracy after deployment was 6.6%
points lower than that of the model before deployment, which
means that the model is slightly overfitting.

During the research, it was found that the ToF sensor does
not always detect the robots that are in the same position in
the same way. This property of the ToF sensor can be seen in
Fig. 14. The ideal robot detection can be seen in the detection
example in Fig. 14(a), where the robot is shown with approx.
nine depth image pixels, where two black pixels represent

black wheels. However, in Fig. 14(d), the robot is represented
with four depth image pixels. Robots that are in the same
position can, therefore, be represented by the ToF sensor in a
different way, with a different number of depth image pixels.
This ToF feature also hindered optimal classification. Note
that the black pixels in the background of the ToF image in
Fig. 14(d) are due to the testbed background being more than
50 cm away. By expanding the dataset, it can be seen that
although the shapes of the robot are not constant across all
depth images, the robot is still detected even in ToF images
where the human eye cannot distinguish the robot from the
environment.

The most difficult scene for the developed system to classify
was the mobile robot behind a sandy hill, as shown in
Fig. 14(b). The final classification revealed that the most
important features of the robot are the wheels, which are
mostly represented as black pixels on each side of the robot
body. In Fig. 14(a) and (d), the wheels can be identified by
the black pixels around the robot. This is because the IR rays
from the ToF transmitter reflect poorly off the black wheels
and therefore do not return back to the sensor, resulting in a
black pixel. The final trained model achieved an accuracy of
91.8% with a size of 7 kB after quantization and an inference
time of 34 ms.

VI. CONCLUSION

The focus of this research is the application of a
deep-learning classification system on a miniature mobile
robot. The main contributions are as follows.
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1) Feasibility: The demonstration of an accurate (>90%)
detection of a small mobile robot (5 × 5 cm2) on an
uneven terrain using low resolution (8 × 8) time-of-
flight sensor and CNNs implemented on a low-power
microcontroller (133-MHz CPU and 264-kB RAM).

2) Tradeoffs: The comparison of CNN architectures and
corresponding energy consumption shows that a small
increase in accuracy demands a high increase in energy
consumption. Therefore, a compromise is required on
low-power devices.

3) Improvement in Data Preprocessing: The comparison
of various augmentations shows that the model with
the Gauss augmentation results in the best accuracy.
The analysis shows that a depth image median filter
significantly reduces noise in in-depth measurements of
the background.

4) Open Dataset: The created dataset and source code were
released publicly under an open-source license.

The main bottleneck in running the models in this case is not
the model size but the processing power of the microcontroller.
It should be noted that the RP2040 microcontroller contains
two cores, while we only used one core. It was also shown that
inference for smaller models consumes a considerably smaller
amount of energy compared to depth image acquisition.

Future research will focus on improving the dataset and
further testing of architectures. We also plan to apply
the developed object classification system to a swarm of
autonomous mobile robots, where the developed system will
support the autonomous navigation of each robot.
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