
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023 3532812

A Novel Methodology for Unsupervised Anomaly
Detection in Industrial Electrical Systems

Marco Carratù , Member, IEEE, Vincenzo Gallo , Member, IEEE,
Salvatore Dello Iacono , Member, IEEE, Paolo Sommella , Member, IEEE,
Alessandro Bartolini , Member, IEEE, Francesco Grasso , Member, IEEE,

Lorenzo Ciani , Senior Member, IEEE, and Gabriele Patrizi , Member, IEEE

Abstract— The recent development of highly automated
machinery and intelligent industrial plants has increasingly
enabled the continuous monitoring of their efficiency and con-
dition, with the aim of maintaining high production efficiency
and minimal malfunctions. Typical condition monitoring and
fault detection applications are often achieved using acoustic
and vibrational techniques, but the availability of distributed
electrical measurements opens new opportunities for industrial
fault detection with minimal impact on electrical systems. Even if
artificial intelligence (AI)-based approaches can be used to model
industrial equipment by means of measures made on electrical
systems to which they are connected, machine learning algorithms
have been demonstrated to be particularly adequate for this pur-
pose due to the huge amount of data produced by interconnected
sensors and devices. In this context, the aim of this work is to
propose a new unsupervised analysis methodology for detecting
anomalies in industrial machinery using electrical current values
and other parameters measured on the power grid. The proposed
framework is aimed at incorporating the advantages of machine
learning algorithms and those of traditional analysis, optimizing
their operation to improve performance and execution time;
this also incorporates a methodology for analyzing the temporal
dynamics of the anomaly based on short-time Fourier transform
(STFT) to strengthen the performance of the detection. The
results obtained showed excellent performance, both compared to
the evaluations of a technical expert and to other methodologies
used in the literature, with zero false positives (FPs) detected in
all datasets tested and a negligible number of undetected outlier
events, less than 4% of the total in the datasets.

Index Terms— Anomaly detection, fault detection, industrial
power systems, machine learning, predictive maintenance (PdM).

I. INTRODUCTION

THE increasing use of sensors in the world of industry,
particularly according to the Industry 4.0 and indus-

trial Internet of Things (I-IoT) paradigms, which includes
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perspectives for raising the productivity and efficiency of
manufacturing systems [1] by the pervasive promotion and
inclusion of measurement and decision-taking devices in facili-
ties and plants [2], [3], is leading to extremely connected smart
factories.

Due to the advances in measurements and real-time data
collection, the monitoring of different industrial equipment,
such as milling and turning machinery, air compressors,
power transformers, and electrical distribution systems [4], has
become a more common and easy task to realize.

Artificial intelligence (AI) has become an essential tool
for the efficient exploitation of the increasing amount of
data produced by these enhanced technologies. In particular,
neural networks allow for extremely efficient nonlinear feature
extraction [5], [6], [7] from this vastity of data. The family of
machine learning algorithms also allows for a great deal of
control over the visualization and processing of data, so as to
facilitate the extraction and identification of important features
for the phenomenon under investigation [8], [9], [10]. Artificial
neural networks are thus the most useful mathematical and
algorithmic tool in machine learning. In particular, deep neural
networks, such as convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and deep autoencoders, are
part of deep learning, a subset of machine learning focused
not only on classification and prediction tasks but also on
automatic feature extraction, without the support of additional
algorithms and tools [11].

Moreover, in the context of Industry 4.0 and Smart Industry,
the automation procedure of monitoring and production pro-
cesses is becoming an essential requirement. While Industry
4.0 and sensors enabled manufacturing equipment are strategic
and essential for equipment data collection, predictive mainte-
nance (PdM) [12] consists in the data mining process and the
machine learning models able to predict the equipment state
of health [13] and remaining useful lifetime (RUL).

Predictive maintenance has become a promising approach to
cost savings, increasing the life span of equipment, and con-
venient and sustainable machinery operational management.
The applicability is vast and goes from industrial equipment,
bearing [14], and engines [15], to batteries [16] and so on.

The benefits of artificial neural networks in the field
of predictive maintenance have already been discussed by
many authors. A review of developments in the field fault
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machine diagnostic based on AI techniques can be found
in [17]. Recent trends move toward the reduction of training
data and simplification of neural network structures with the
introduction of physics-informed neural networks [18]. They
demonstrated to be effective and faster than other conventional
methods in the description of power system dynamics [19] and
for predictive maintenance for semiconductor applications [20]
simplifying multiphysics finite element simulations.

A. Research Area

The research area investigated in this article relates to
the predictive maintenance of industrial equipment. More in
detail, the work deals with the research and development of
techniques to predict failures of machinery and functional parts
of a production line.

The monitoring of industrial components, such as motors,
turbines, oil flow in pipelines, and other mechanical com-
ponents for fault detection, can be obtained with anomaly
detection techniques [21]. Recently, artificial neural networks
have come in to help with anomaly detection to detect
complex anomalies with dynamic and time-variant systems
where common approaches based on static models struggle
[22]. Due to the not precisely defined boundary between
normal and anomalous behaviors and the increase in the
available data volume for anomaly detection, deep learning
anomaly detection techniques assess their effectiveness for
their automatic feature learning capability [23].

In this field, in fact, being able to know in advance what
machinery is about to break down, thus enabling timely repair,
can greatly reduce costs compared to managing downtime,
even for a few hours. Achieving this goal, therefore, requires
using advanced analytics and maximizing not only the amount
of data acquired but also the number of parameters mon-
itored. Parameters that can provide indications of possible
breakdowns can be captured with infrared thermography [24],
acoustic monitoring [25], vibration analysis [26], oil analysis
[27], and electrical analysis [28].

Among the various techniques used to achieve this goal
is anomaly detection. The concept of anomaly detection is
extremely general in that it refers to detecting patterns in
the data that do not conform to the definition of “normal
behavior.” This highly subjective definition causes this concept
to be interpreted extremely differently in the different fields in
which it is applied. It is, therefore, necessary to have a very
detailed knowledge of the phenomenon under consideration to
provide as comprehensive and objective a definition of “normal
behavior” as possible.

This research focuses on the analysis of electrical anomalies
for predictive maintenance on large ohmic-inductive loads.
The type of fault investigated occurs mostly as a rapid and
very short-lived change in nominal values on the three-phase
power grid to which faulty systems are connected, causing
problems for other healthy equipment as well. This type
of maintenance is very common in large industrial plants,
as rotary machines, including refrigeration compressors, can
give indications of malfunctions not only in terms of vibration
but also by introducing “abnormal” behaviors on the electrical
network.

This type of monitoring has the advantage over acoustic
or vibrational monitoring of not having to monitor each
machine individually, significantly reducing the complexity of
the apparatus and its costs.

B. Literature Review

The monitoring of large ohmic-inductive loads in the indus-
try is a topic that has been addressed many times in the
literature; this is because this type of load is representative
of an electric motor, which can also be used in compressors
for refrigeration machinery. For this reason, there are mostly
approaches based on vibration analysis in the literature [29],
[30], [31], [32], [33].

Moreover, this approach has also been automated through
the introduction of deep learning and deep clustering; in
particular, this has been realized in [34].

However, as described earlier, the approach of interest in
this article instead concerns the study of anomalies introduced
by the faulty item in the power grid. For example, Hashmi
et al. [35] monitored the medium-voltage (MV) overhead
distribution network to detect and locate faults in place.
Doing so makes it possible to signal the problem in advance,
according to the predictive maintenance paradigm.

Ardito et al. [36] designed interpretable spectrogram-based
CNN modeling for fault signal identification; in particular, the
authors used a weighted class activation mapping to visualize
the regions of the input spectrogram that are most relevant for
prediction. In this way, the authors tried to make the motivation
of the neural network’s predictions more explainable. An elec-
trical analysis was also carried out in [37], where the authors
analyzed the imbalance in voltage between the three phases of
an induction motor. A type of analysis closer to the approach
of interest in this article is presented in [38]; this has been
carried out with RNNs, Bi-long short-term memory (LSTM),
and ensemble learning approaches; the authors’ goal has been
to characterize partial discharge by analyzing power signals,
manually extracting features of interest and providing them to
a machine learning-based classifier for the final decision.

Another analysis carried out numerous times in the litera-
ture, particularly close to the topic of interest of this article,
concerns the detection of anomalies in the power consumption
of a power line. The approaches are numerous and are based
on time series analysis. Malki et al. [39] used data produced
by a series of IoT sensors to analyze and predict anomalies in
household consumption using time series forecasting.

In contrast, in [40], the authors use an unsupervised
approach, providing a series of unlabeled data instances as
input to an isolation forest algorithm. This overcomes the
problem of having to label a large amount of data by hand,
reducing work and training time and allowing the algorithm
to continue learning during the field deployment phase.

The concept of unsupervised training of machine learn-
ing algorithms is also discussed extensively in [41], where
the authors dissert a review on the frameworks, methods,
applications, and challenges of anomaly detection for energy
consumption. In particular, the importance of these methods,
such as clustering, for the application, consisting of a large
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amount of data but an unbalanced dataset, which is composed
of few anomalies compared to a large amount of nominal data,
is highlighted. However, there has been no research on the
combined use of these clustering techniques and algorithms
for analyzing features in the frequency domain.

Recently, the unsupervised approach has also been practiced
with deep learning, which has the great advantage of not
requiring a preliminary manual analysis of the features to
be extracted; in particular, Kardi et al. [42] applied this
methodology to anomaly detection in electrical consumption,
using, in this case, a deep autoencoder. These tools have the
merit of being robust and adaptable to all types of scenarios,
needing only a few portions of the time series to self-train
before actual deployment. However, autoencoder decisions are
not explainable, as they follow a black-box approach [43];
therefore, in the case of incorrect detection, the cause of the
error cannot be easily found.

C. Main Contribution

The study of state-of-the-art has shown that the analysis
and detection of anomalies necessarily requires an in-depth
study of the physical and electrical characteristics of the
fault under investigation, thus making a classical approach
necessarily tailor-made, increasing development time and cost.
Deep learning algorithms have also been used in the literature,
which, in contrast, are extremely robust and adapt automati-
cally to a wide range of faults. The disadvantage is the total
absence of analytical explanations of the decisions of these
algorithms due to the black-box approach.

The type of learning most suitable for the problem under
consideration is the unsupervised type, in order to minimize
human intervention and ensure greater continuity of analysis
even at night. The goal of the work was therefore to build
from scratch an anomaly detection methodology that would
also be aware of the types of anomalies that affect these types
of electrical systems. The proposed methodology relies on a
chosen set of time- and frequency-domain features, in contrast
with the deep learning black-box automatic features extraction
approach. In fact, the use of time-domain data clustering alone
is not sufficient to robustly identify the type of anomalies
under investigation, not only related to instantaneous values
(detectable with clustering such as K-means) but also to tem-
poral dynamics (detectable with frequency-domain analysis).

To summarize, the novelty is the proposal of a new
algorithm for detecting anomalies in time series based on two
variables; the algorithm is based on both time and frequency
study of time series. Moreover, the focal points of the work
are given as follows.

1) Identification of anomaly points using unsupervised data
clustering for the machine learning field.

2) Optimization of the unsupervised clustering algorithm to
lighten the computational load and make the choice of
optimal data partitioning for the specific type of anomaly
under exam and centroid initialization more efficient.

3) Fusion with short-time Fourier transform (STFT)
algorithm for a frequency-domain validation of the
anomaly identified by clustering.

Fig. 1. Clustering process.

D. Manuscript Structure

This article will then be structured as follows. In Section II,
theoretical concepts regarding anomaly detection and machine
learning techniques with unsupervised training, particularly
clustering, will be presented; the operation of the proposed
methodology will also be described. Section III will describe
the data acquisition system and the actual application context
of the work. Section IV will describe the deployment of
the proposed algorithm, the results, and comparisons with
the benchmark method, adaptive thresholding, and the other
most widely used methodology in the literature, the deep
autoencoder. Conclusions will be presented in Section V.

II. PROPOSED METHODOLOGY

As described in Section I, the objective of this work is to
propose a methodology for the automatic detection of malfunc-
tions in industrial electrical systems; specifically, the aim is to
detect the malfunction of ohmic-inductive loads, which are
typical of rotary machines, including refrigeration compres-
sors, installed in large industrial plants. Therefore, to automate
the decision and make the training process unsupervised, it was
decided to employ a clustering algorithm, K-means, and an
analysis of temporal features with a spectrogram.

A. Data Clustering

Clustering is one of the most widely used approaches
for descriptive modeling of big data and it allows a dataset
to be analyzed and explored to group objects into clusters,
which means the groups that have common characteristics,
as shown in Fig. 1. Given a dataset of N time series,
D = {F1, F2, . . . , FN } is referred to as time series clustering,
the process of unsupervised classification of D into C =
{C1, C2, . . . , CN } to form homogeneous groups of time series
based on a certain measure of similarity.

Clustering algorithms are divided into hierarchical cluster-
ing and partitioning clustering. The former can be agglomera-
tive and divisive, depending on whether the data are grouped
into a cluster or divided into subclusters. On the other hand, the
choice of clustering type for the problem under consideration
was partitioning clustering, which is divided into center-based,
density-based, and spectral-based. In particular, it was decided
to use K-means, an unsupervised algorithm that divides the
dataset into k clusters and is based on the concept of a centroid,
a point belonging to the feature space that averages the dis-
tances between all the data belonging to the cluster associated
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with it. The choice of K-means as the main algorithm for
processing anomalous and normal points was motivated by
its remarkable power, result explainability, and adaptability
in data mining [44]. In addition, to address its shortcomings,
mainly due to centroid initialization, some choices were made
for its optimization.

The difficulty of the task is related to the fact that the type
of anomaly to be detected is contextual, i.e., referring to a
multiplicity of points and not point type, where a single point
represents the entire anomaly.

The algorithm operates as follows. First, the number of
k clusters is indicated, centroids belonging to the space are
chosen randomly with the only condition that they are not
coincident, and then, the distance of each point in the dataset
with respect to each centroid is calculated. Next, it proceeds
by associating each point in the dataset with the cluster
connected to the nearest centroid, recalculates the position of
each centroid by averaging the positions of all the points in
the associated cluster, and finally iterates this process until
there is no more input that changes clusters. This methodology
makes it possible to fully automate the detection of outliers
by avoiding a supervised training process, which can be
time-consuming and costly because of the dataset labeling
operation.

B. Time Series Clustering

The clustering operation can also be carried out on time
series, as required by the problem at hand: in fact, the type
of anomaly intended to be detected can be seen only on the
time trend of some variables of the three-phase power system
in the factory.

Although it is possible to use only one time variable,
i.e., a feature, for clustering, this operation is not formally
correct. In fact, in some works, including [45], it is pointed
out that clustering a single temporal sequence by using sub-
sequences leads to systematically wrong results, comparable
to using totally random sequences. This is because any time
series must follow certain patterns that mislead the clustering
algorithm.

For these reasons, it was decided to use two features
measured in the three-phase electrical system: the rms value
of the current on one of the three phases of the system and
the total harmonic distortion (THD) parameter. Although this
choice was made as a good fit for the specific application
scenario, the methodology proposed in this article can be
employed with any pair of time series chosen appropriately
to describe the type of anomaly to be detected.

C. Spectrogram Analysis

Spectral analysis with STFT was used to make the method-
ology more robust, identifying the features suitable for the
temporal dynamics of the anomalies to be reported. Specif-
ically, these features were found in the context of spectral
power density. The design choices mainly concern the width
of the observation window to be used to ensure good temporal
resolution. It is not necessary to ensure excellent frequency

Fig. 2. Flowchart of the proposed methodology.

resolution since the type of anomaly of interest has a high
energy content across the spectrum.

The spectrogram analysis, based on the local thresholding
of the spectral power density, acts as a verification step for the
clustering algorithm and for the identification of the individual
anomalous points. In fact, using STFT alone does not allow
the detection of individual anomalous points because of the
tradeoff in design between temporal and frequency resolutions.
In addition, STFT alone is not able to detect time series
with no anomalies because, at least one window, the one
at maximum power spectral density, is flagged as anomalous
by the algorithm. For this reason, K-means was employed to
enhance the methodology based on spectrogram analysis.

D. Operating Principle

The working principle of the proposed methodology is
summarized in the flowchart in Fig. 2. As can be seen from
the flowchart, the proposed methodology is based on the use
of K-means clustering, which is used to provide an initial
estimate on outlier samples by identifying timestamps of the
samples and providing them to the final decider. Instead,
the spectrogram is used to identify points in the time series
with anomalous power spectral density compared to the rest
of the time series, detecting the temporal features of the
anomaly.

In this way, it is possible to identify the samples containing
the anomaly with only the limitation of the STFT’s temporal
resolution, determined at the design stage.

The final fusion is done by comparing the points reported
by the K-means and the windows reported by the spectrogram,
finally reporting the anomaly if the two indications agree.
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The simplified operation scheme includes within it the
optimization procedure of both spectral analysis and K-means,
where a modification and improvement work of the algorithm
itself was carried out both for the definition of the number of
clusters k and for the initialization of centroids at the beginning
of the training, with the aim of reducing the convergence
time and computational load by adapting the algorithm to the
problem under consideration.

III. ALGORITHM DEPLOYMENT

The algorithm was therefore developed in such a way as to
operate on two features affected by the type of anomaly to be
addressed: the root mean square (rms) of the current of one of
the three phases of the electrical system and the current THD,
calculated according to the following equation:

THDI =

√∑∞

h=2 I 2
h

I1
(1)

where I1 is the fundamental harmonic and Ih is the generic
hth harmonic of the rms current.

The first stage of the algorithm involved clustering the two
features. In particular, in order to reduce the computational
load of the algorithm, it was decided to employ only the
peaks of the time series. These peaks were identified from
the crossing for zero of the first derivative of the time series.
The detection of the peaks was not subjected to any threshold
or decision by the user to maintain full automation and
unsupervised operation of the procedure. Preprocessing also
included the timestep alignment operation of IRMS and THD
time sequences.

A. Data Clustering

After preprocessing, the peak values of the two time series
were placed in a vector representation plane, where THD and
Irms were plotted on the two axes. Using only the peak values
of the time series reduced processing time by more than 90%
compared with using the entire time sequence. After plotting
the dataset on the above feature plane, the K-means algorithm
was then applied.

The first issue associated with the deployment of this
algorithm is that of choosing the number of k or the number
of clusters targeted by the clustering algorithm. This problem
has been addressed many times in the literature, such as given
in [46]. Two major methodologies are used: the Elbow method
and the Silhouette method.

The Elbow method is more computationally onerous, as it
performs multiple runs of the K-means algorithm, and for
each of them, the within-cluster sum of squares (WSS), which
is the sum of all distances between each point and the
rest of the cluster, is represented. From the resulting curve,
one can choose the number of k that is the best tradeoff
between clustering error and the number of clusters, hence
the computational load.

On the other hand, the Silhouette method is more reliable
because it combines both the concept of aggregation and the
separation of individual points in clustering. The principle of

operation is described in Algorithm 1. This algorithm is part
of the K-means clustering block of the flowchart in Fig. 2.

Algorithm 1 Silhouette Method
Input: i, points projected on the feature space

Input: Ci , Cluster of the i-th point

Input: C, Generic Cluster. C ̸= Ci

Output: si , Silhouette Coefficient for the i-th point

1 ai ← average distance of the i-th point from the
other

points of Ci

2 bi ← average distance of the i-th point from the
other

points of C

3 si =
(bi − ai )

max(ai , bi )

4 end

The Silhouette coefficient resulting from the algorithm
described has a value between [−1, 1]. A value closer to
−1 indicates that the point probably does not belong to
the indicated cluster, while a value closer to +1 indicates
a higher probability of belonging. To optimize computation
time, it was decided to employ a Silhouette Method in the
proposed methodology, limiting the search for k between
1 and 4. For convergence time reduction, on the other hand,
it was also decided to place the starting centroids, which are
those with which the algorithm is initialized, at the maximum
and minimum values of Irms present in the feature plane in
order to adapt the algorithm to the type of anomaly under
consideration.

After performing the clustering operation, the algorithm
stores in memory the anomalous Irms threshold, which is equal
to the value of the point with the least Irms in the anomalous
cluster, plus a tolerance band of 1%.

B. Spectrogram Analysis

Spectrogram analysis requires initial tuning in relation to
the portion of the time series to be analyzed. For the type of
anomaly under consideration, it was decided to use as input the
detrended time series. The parameters of the STFT included a
rectangular window, with the number of fast Fourier transform
(FFT) points not exceeding 5% of the length of the analyzed
series. No overlap was employed. The sampling rate, and thus
the bandwidth of the STFT, is not determined by the bandwidth
of the acquisition system but by the sampling time chosen for
data acquisition in the measurement system.

The algorithm detects the maximum values of power spec-
tral density averaged over the entire band under consideration,
after which it sets an alert threshold equal to 85% of the
maximum power. All windows exceeding the given threshold
are flagged as possible anomalies and sent to the detection
algorithm.



3532812 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

C. Anomaly Identification

The actual identification of the anomaly occurs in the last
step of the proposed algorithm, where the alert threshold cal-
culated by the K-means and the timestamps of the anomalous
windows reported by the STFT converge. The decision-maker
performs a check for exceeding the alert threshold only
for the anomalous windows identified by the STFT. This
methodology, although highly restrictive, allows for increased
confidence in anomaly reporting by reducing the number of
false positives (FP).

Algorithms 2 and 3 detail the different portions of the pro-
posed methodology. It is noticeable from these algorithms that
the optimizations proposed in this article regard the choice of
k, the placement of the initial point of the K-means centroids,
and the fusion of the clustering and STFT algorithms.

Algorithm 2 Clustering
Input: Irms peak time series

Input: THD peak time series

Output: Irms anomalous threshold

C(n): n-th cluster centroid where n ∈ N

1 Feature plane creation ← Irms and THD Time
series

2 K parameter choice ← Silhouette method, k ∈ [1,
4]

3 Initialize: starting centroids max [Irms] and min
[Irms]

4 C (N) ← K-Means algorithm output

5 C (anomaly) ← C(n) such that

Irms of C(n)=max[C(N)]

6 Anomalous cluster ← C(anomaly)

7 Irms anomalous threshold =
= (min [Irms] of Anomalous Cluster)-1%

end8

Algorithm 3 STFT
Input: Irms detrended time series
Output: Anomalous time windows
W(n): n-th time window where n ∈ N
Th: Alert threshold
|S(IRMS)| : mean of Power Spectral Density on entire

signal band for each window
1 Spectrogram ← STFT on Irms time series

2 Initialize: Th = 0.85 × max [|S(IRM S)|]

3 Find: W(n) such that |S(IRM S)| ≥ Th

W(anomaly) ← W (n)
end4

IV. EXPERIMENTAL DEPLOYMENT

This section will first present the acquisition system used,
its technical characteristics, and the acquisition of the dataset.

Fig. 3. Pictures of the installation in the industrial plant. (a) Current probes
connected to the transformer. (b) Voltage probes.

Next, the results obtained for the application of the proposed
methodology on a real case will be presented. In particular, the
results of processing for different observation windows will be
presented in order to understand the optimal combination of
operations. Finally, the results will be validated by comparison
with a traditional adaptive thresholding method and a deep
autoencoder.

A. Data Acquisition System

The electrical system under consideration is that of an
industrial plant. The type of power grid is a three-phase one
with a nominal voltage of 380 V and a root-mean-square
current ranging from a minimum of a few hundred amperes to
a maximum of more than 1 kA. The acquisition system used
is a self-made power quality meter composed of a passive
attenuated voltage probe, while the current probes are active
sensors manufactured by Rogowski, which are characterized
by a bandwidth of 20 kHz, a maximum measurable current of
6 kArms, and a resolution of 1% of full scale. The signal was
then converted from analog to digital with an ADS131M08
from Texas Instrument: a 24-bit Delta-Sigma ADC with a
maximum data rate of 32 kS. The sampling rate of the acqui-
sition system was 16 kHz. Data have been acquired and stored
at a rate of four samples every 10 s. In particular, the following
were acquired: rms current and voltage, active, reactive, and
apparent power values. Acquired data also included several
harmonics multiple of 50 Hz. The dataset was acquired on
three different three-phase transformers over a period of one
month for a total of 1 047 080 samples. A picture of the
installation of the probes on the transformer of the industrial
plant is shown in Fig. 3.

It is important to point out that operating conditions (specif-
ically temperature) could significantly affect the performance
of the electronic hardware used to acquire the current and
voltage signals. However, specific experiments have already
been carried out and the results emphasized a good stability
and only a minor temperature sensitivity of the PQ meter
used in this work [47]. As a consequence, the harsh operating
conditions of the industrial application could be ignored in
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TABLE I
k-SEARCH COMPUTATION TIME

this work since minor effects on the meter characteristics
are negligible from the algorithm point of view in case of
anomalies of hundreds of Amps.

B. Setup Configuration

In terms of the setup of the proposed methodology, it was
necessary to analyze the data acquired with the system
described in Section IV.

As for the STFT, the ratio of the number of points on which
the STFT performs the FFT to the total number of points
observed for the spectrogram (time resolution) has been set
to be no more than 5% of the entire window of observations.
More in detail, all tests in Sections IV-C and IV-D employed an
STFT time resolution of 1 min. On the other hand, the overlap
between windows for STFT was set to zero for all tests. The
window used for signal analysis was the rectangular window.

For the K-means clustering part of the proposed methodol-
ogy, several tests were conducted for automatic k-search using
Silhouette methodology to determine the tradeoff between
the range of k to be searched and the processing time. The
comparison, shown in Table I, k-search computation time, was
performed on the entire dataset after peak detect processing
for a total of 155 000 samples. The results confirm, as widely
expected that expanding the k search results in significantly
longer computation times; however, it is possible to limit the
search to k between 1 and 3 because of the nature of the
anomaly under analysis, reducing the search time under 3 min.
The algorithm was then run on a dataset with different lengths
and different time locations in order to evaluate the ideal
deployment timing.

C. Deployment Results

The algorithm was run on the data acquired in the industrial
plant, as outlined in Section III. Expert assessments were used
to evaluate the results in order to report all anomaly events
detected in the different time series. Examples of K-means
clustering and STFT results are shown in Figs. 4 and 5.

The automatic k-search made it possible to distinguish cases
where no anomalies were present, while the initialization of
centroids to the maximum and minimum values of the Irms
made it possible to speed up and accurately identify clusters
even in the case of an unbalanced dataset, as shown in Fig. 6.

The deployment results were then compared with the
anomalies identified by the experts. The obtained results
have been reported in Section IV-D, along with a thorough
comparison with the state-of-the-art.

Fig. 4. K-means clustering example.

Fig. 5. STFT analysis example.

Fig. 6. Unbalanced class numerosity analysis.

The proposed methodology is more prone to errors for anal-
yses over very long time windows, i.e., longer than 24 h. Many
false negatives (FN) occurred, while FPs affected significantly
less and only for windows longer than 48 h. The proposal also
performed well in analyzing time series with anomalies that
were difficult to detect: these involved cases where a simple
threshold, even adjusted for the window under consideration,
could not have provided a correct result. Two examples of the
above are shown in Figs. 7 and 8. In this case, two cases of
anomaly reporting error using a threshold equal to the average
of the observation window values are shown in these two
figures: in Fig. 7, the anomaly is not detected at all, while in
Figs. 7 and 8, there are numerous FPs. Increasing the threshold
may decrease the FPs, but the anomaly in Fig. 7 cannot be
identified without committing more errors.
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Fig. 7. Example of anomaly detection with adaptive threshold, resulting in
an FN and different FPs.

Fig. 8. Example of anomaly detection with adaptive threshold, resulting in
different FPs.

More in detail, in Fig. 7, a case of detecting an anomaly just
before a sharp, perfectly normal increase in the baseload of
current absorption: using classical techniques, this anomaly
could not have been detected. In contrast, Fig. 8 shows a
rough but perfectly normal Irms pattern, with no anomalies
spotted by the experts; again, a thresholding or simple peak
detection would not have provided the same performance
as the proposed methodology. Good performance for short
observation periods also goes well with the need to provide
an assessment of the presence of possible anomalies in the
industrial plant with relative celerity, allowing near real-time
analysis and detection of possible failures.

Section IV-D will then report the comparison of the results
obtained with three techniques: a classical one, adaptive
thresholding, and one from the deep learning field, the deep
autoencoder.

D. Results Comparison

To evaluate the performance of the proposed methodology,
a performance comparison was then made between a classical
adaptive thresholding system, a deep autoencoder used mainly
in the deep learning field, and the proposed methodology.

The adaptive threshold was chosen to demonstrate the
inapplicability of very simple techniques to the type of prob-
lem under consideration, while the autoencoder was chosen
because it is the benchmark in the literature for anomaly
detection techniques based on unsupervised learning [48],
the primary goal of the study, despite the nonexplainability

TABLE II
DEEP AUTOENCODER ARCHITECTURE

Fig. 9. Example of multiple FP detected by the autoencoder (red dots). In
this example, true anomalies are the high current spikes.

of its results, a problem that affects all deep learning
techniques [49].

The deep autoencoder was structured with an architecture
shown in Table II, with seven layers, five of which convolu-
tional and one a dropout layer. These have been chosen to
optimize the performance with respect to the dataset under
consideration and were trained using the mean average error
loss on a dataset of 50 000 samples.

The number of features used for training the network was
equal to those used for the proposed methodology, which
are Irms and current THD, as described earlier. The training
has been performed on a dataset containing no anomalous
samples, using 70% of the data for the training and 30% for
the validation. The alert threshold for the deep autoencoder
was equal to the maximum mean average error obtained in
training. As for adaptive thresholding, this was chosen to be
twice the mean of Irms in the observation window.

The results of the comparison and the details of the perfor-
mances achieved by the proposed methodology are shown in
Table III. In particular, the comparison between the adaptive
threshold method, the deep autoencoder neural network, and
the proposed methodology is presented. The proposed method-
ology always performed better than the other two. More in
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TABLE III
RESULTS COMPARISON

Fig. 10. Summary of the results comparison between the adaptive threshold (blue bars), deep autoencoder (red bars), and proposed method (yellow bar).
The left plot refers to FPs, while FN is shown in the right plot.

detail, the deep autoencoder detections obtained unsatisfactory
results due to the behavior of the neural network in the
presence of significant anomalies characterized by high rms
current spikes. In this case study, as can be seen in Fig. 9,
for every single high current spike, the network reported
multiple anomalies instead of one, thus spoiling the false-
positive values.

As for the comparison of the three techniques, the three
methodologies have equal performance in identifying anoma-
lies, resulting in a low number of FN; however, the adaptive
threshold and the deep autoencoder perform significantly
worse with regard to FPs, especially for long analysis win-
dows. To better highlight the superiority of the proposed
approach, Fig. 10 summarizes the results achieved in terms
of FP (left plot) and FN (right plot). The different colors
of the bars represent the three different analyzed methods,
i.e., adaptive threshold (blue bars), deep autoencoder (red
bars), and proposed method (yellow bars). As it is clearly
visible in analyzing the figure, the proposed approach guar-
antees an almost perfect result with zero FPs for every dataset

under analysis, while only two datasets out of 11 include a
few FNs.

On the other hand, regarding the efficiency of the three
algorithms, compared from the point of view of computational
load and processing time, the best was the adaptive threshold.

This is because the operations to be performed to determine
the threshold for each signal observation window are few and
require simple mathematical operations.

On the other hand, in the case of deep autoencoder, its
computational load and, therefore, its execution time turned
out to be the worst. In fact, to obtain comparable results with
the proposed methodology, which was optimized to run in a
few seconds, it was necessary to deploy the network on a
PC equipped with a dedicated graphics card (NVIDIA RTX
8000). In contrast, the proposed methodology achieved the
same results on a low-end PC. This issue, peculiar to deep
learning techniques, is well known and widely discussed in
the literature [50].

To summarize, the adaptive threshold turned out to be the
worst of the three, both in terms of results and execution
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autonomy, as it requires human supervision in setting the
relative threshold. The deep autoencoder is completely unsu-
pervised; however, it turns out to be overly sensitive, which
can result in reporting several false alarms. The proposed
methodology requires setting only the temporal resolution of
the STFT based on the length of the window to be analyzed:
therefore, it was found to be the technique with the best results
and was practically unsupervised in training, achieving zero
FPs and less than 4% of FN with respect to the total number
of anomalies identified by experts.

V. CONCLUSION

This article presented a new technique for fault detection
of rotary machines characterized by ohmic-inductive electrical
load in large industrial plants.

The aim of the work has been to propose a novel unsu-
pervised methodology based on the fusion and optimization
of a machine learning technique, K-means clustering, and
a classical frequency analysis technique, STFT. Proposals
also included optimizing the choice of k and initialization of
centroids in the K-means clustering algorithm.

The proposal has then been tested on real data collected
in an industrial plant, using fault reports made by experienced
engineers as reference. In addition, the proposal was compared
with two techniques employed in the state-of-the-art: adaptive
thresholding and deep autoencoder, the former a classical
technique and the second a deep learning technique.

Although the proposal is not as unsupervised as the deep
autoencoder, requiring the choice of a temporal resolution
of the STFT proportionate with the time window to be
analyzed, it has obtained significantly better results than
the deep autoencoder. This was mainly due to the com-
bined use of unsupervised clustering and frequency analysis,
simultaneously detecting features relating to the individual
sample and others relating to the temporal dynamics of the
anomaly.

Future developments of the work will involve online imple-
mentation of the proposed methodology in industrial plants.
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