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Abstract— In the context of energy digitization, Load Profiling
can be a useful tool for making decisions about the use and the
health of an electrical load and could be adopted for strate-
gic services related to the energy efficiency, characterization,
prediction, optimization, and diagnosis of monitored systems.
To accomplish this task, it is important a spread of a new
generation of smart meters. In this scenario, useful information
for the developers of services based on Load Profiling could be
the minimum metrological characteristics of smart meters, that
is, the monitoring quality (MQ), and the electrical parameters
to extract from the electrical signature to have a reliable Load
Profiling process, that is, the electrical signature quality (ESQ).
This article tries to answer these questions by investigating the
impact of the MQ and the ESQ on the performance of Load
Profiling. The main results of the article are: 1) generally the
Load Profiling process requires metrological characteristics lower
than those required for energy billing reducing submetering
infrastructure costs; 2) the increasing number of energy features
adopted in the Load Profiling not always improves reliability and
accuracy; this happens when many of the features considered do
not have great sensitivity with respect to changes in the energy
states for the considered case study; 3) the use of functions that
measure the sensitivity of a feature to the Load Profiling process,
such as the considered kernel density estimation (KDE), and a
suitable threshold process can delete the parameters with poor
sensitivity and can greatly improve the Load Profiling reliability;
and 4) the method considered in the article could help to analyze
Load Profiling problems related to other physical quantities (i.e.,
thermal energy profiling or even multiphysical systems), allowing
to the definition of a target MQ and selecting a minimum number
of useful features to be adopted.

Index Terms— Digitalization, electrical signature analysis,
energy management systems, feature selection, load profil-
ing, measurement quality, power system, smart energy, smart
monitoring.

I. INTRODUCTION

IN THE last years, the International Energy Agency
(IEA) [1] is recommending policies and new services that
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improve energy reliability, affordability, and sustainability.
In this scenario, the energy sector is living through a constant
transformation in terms of digitization and the development
of new energy services based on the smart use of energy
information (i.e., Smart Energy).

In accordance also with national and international policies
(e.g., COP26, Directive EU 2018/2002–2012/27–etc. [2], [3],
[4], [5]), a new paradigm for energy management needs to
be introduced to maximize energy efficiency and optimize
energy systems. To this end, a proper process of Smart
Monitoring and Load Profiling can help identify the end
user’s consumption pattern, make consumption forecasts, and
define the operating conditions of individual devices. In this
way, electricity management can be improved and made
more efficient. A Load Profiling process relies on the use
of algorithms, typically classification and clustering, so it is
crucial to consider a clear concept: if the input data collected
do not correctly describe the phenomenon that one wants to
analyze, the output of the process will be far from the desired
result.

Therefore, in such a process, two parameters play a strategic
role: the monitoring quality (MQ) and the electrical signature
quality (ESQ) [6]. As regards “MQ,” it refers to the minimum
accuracy that smart meters have to warrant to accomplish
the given task. This parameter is very important since it
influences both the energy consumption and energy signature
measurements and the overall smart meter network cost [7],
[8], [9]. About “ESQ,” it refers to the number of parameters
extracted from the electrical signature of the device. This
is essential because each electrical device has its unique
“electrical signature” that distinguishes it from other devices.
According to [6], by electrical signature, we mean not the
“classical” electrical quantities (P , N , S, Irms, etc.) but the
entire harmonic spectrum of voltage and current absorbed
by the electrical load, which for the sake of synthesis, can
be summarized through the implementation of appropriate
computational metrics [10], [11]. Using all or part of these
extrapolated parameters makes it possible to bring out “spon-
taneously” the desired characteristics of the analyzed system,
that is, the operating states in the case of Load Profiling. In par-
ticular, it is pointed out in [6] that in difficult Load Profiling
scenarios, information from the electrical power parameters P,
N, and S is not sufficient to identify the operational state of an
electrical load, whereas the addition of a few useful parameters
selected from the electrical signature can significantly improve
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this process. Similar considerations are made in [12] and [13]
with regard to fault diagnosis on electric motors.

With regard to these two points, “MQ” and “ESQ,” the
purpose of this work is to highlight the importance of the
MQ and ESQ in a Load Profiling process and to analyze how
the variation of these parameters impacts the Load Profiling
performance. Specifically, the analyses reported in this article
were conducted for three levels of MQ and three levels of
ESQ, respectively, derived from the standard that regulates
the commercialization of smart meters and power definitions
and measurements. Furthermore, since the performance of the
Load Profiling process may also depend on the type and
manner of implementation of the profiling algorithms, the
analyses just mentioned were repeated three times using three
different types of algorithms. This choice was made to have a
broader and more general view of the problem and to return a
result valid for different architectures and types of algorithms.
The analyses reported in this work were first conducted on
a simulated scenario considering a public energy dataset;
subsequently, to obtain more robust and reliable results, a
real scenario with experimentally acquired electrical loads was
considered. In addition, the article proposes a first unsuper-
vised methodology, based on the kernel density estimation
(KDE), to select useful features from those related to the
electrical signature to improve the Load Profiling process
allowing to consider only those features that show good
sensitivity to the operative states of a load.

The article is divided into six sections, the structure of
which is as follows: the basic concepts of Load Profiling,
the most commonly used applications, and techniques are
given in Section II. Section III presents the implemented
Load Profiling process, types of tests performed, methods, and
characteristics in terms of MQ and ESQ. Section IV describes
the peculiarities of the used public energy dataset “eLAMI”
and the measurement setup for the acquisition of the analyzed
real electrical loads. The results of the conducted analysis
are reported in Section V. In particular, the performance
obtained for three levels of measurement uncertainty and three
different combinations of electrical parameters considered are
compared. Finally, in Section VI, final considerations are
given.

II. LOAD PROFILING: A BRIEF INTRODUCTION

This section briefly introduces Load Profiling, provides an
overview of possible applications in various areas of intelligent
energy, and describes its potential benefits. In addition, the
structure of a Load Profiling process is presented and some of
the most commonly used techniques are briefly described.

A. Some Notes About Load Profile

The digitization of the energy sector is part of the modern-
ization and evolution process aimed at tackling current energy
and environmental problems, including: using energy smartly
and consciously, reducing energy consumption, and developing
advanced techniques to maximize energy efficiency. These
concepts underpin the energy and ecological transition taking
place worldwide [14]. To this aim, a Load Profiling process

can be useful to identify consumption patterns, generate fore-
casts, develop optimal management strategies, and identify
each device’s operating conditions and nature [15]. Knowledge
of the specific consumption of individual devices implies
empowering customers with respect to the issues highlighted,
making them aware of their impact, their habits, and how much
these have contributed to their total energy consumption [16],
so that they can adopt energy-saving behaviors. Demand
response, load forecasting, and nontechnical loss detection,
among other uses, are just some of the many applications of
the Load Profiling process [17], [18]. Analyzing data streams
collected by smart meters can provide detailed information
on demand characteristics that can be used to improve grid
operation and planning [19]. Demand–response, a very active
area of research around the world, is an efficient strategy to
encourage the use of renewable energy sources and minimize
the gap between electrical load peaks and valleys [20], [21].
Time-series-based statistical and forecasting studies are fre-
quently used in smart energy.

By monitoring and profiling single loads using smart meters,
energy savings can be achieved, as it allows action to be
taken on the timing of individual loads and to eliminate
unnecessary activities [22], [23]. For example, it is possible to
define consumption trends, and performance indices or make
evaluations on the operating cycle of the monitored machine
(a very interesting application for industries, applicable to
industrial production processes) as previously reported [24].
Moreover, downstream of the Load Profiling process, it is
possible to construct past and future seasonal trends and define
energy efficiency and optimization plans for the monitored
system. It should be emphasized that having the “history” of
the electrical signature, or a summary thereof, of the monitored
load and the corresponding identified operational state has a
considerable advantage: the concept of predictive load diag-
nostics is realized [25]. In particular, by analyzing the trends
of the various calculated quantities, it is possible to identify the
occurrence of any anomalous trends for each operating state
which deviate from the behavior of the same under normal
operating conditions [26]. Based on this comparison, alerts
can be activated if significant deviations occur.

B. Load Profiling Process

The purpose of this section is to describe the structure
of a Load Profiling process. Of course, before starting the
process, it is necessary to collect data from the system you
wish to analyze or have a dataset already acquired. Then,
depending on where the process is stopped, several application
alternatives can be implemented: 1) the collected data can be
processed at regular intervals (dimensional, daily, hourly, etc.)
for asynchronous Load Profiling with the monitored system;
2) the data can be stored in a database to be used later
for training Load Profiling real-time algorithms; and 3) if
already trained algorithms are available, the data acquired from
each device can be processed immediately for real-time Load
Profiling. The process, illustrated in Fig. 1 and described in
detail below, consists of three steps: 1) PRELIMINARY STEP;
2) OPERATING STEP; and 3) REAL-TIME STEP.
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Fig. 1. Block Diagram of the Load Profiling Process composed of three
sections: “PRELIMINARY STEP,” “OPERATING STEP,” and “REAL TIME
STEP.” The labels “a,” “b,” and “c” represent the three possible instants of
process interruption depending on the desired objective.

1) “PRELIMINARY STEP”—Consists of a preliminary
analysis to understand the nature of the data and iden-
tify the methods best suited to the scenario analyzed,
in terms of Load Profiling and relation to the computa-
tional specifications. Thus, the first section consists of.

a) In “DATA OPERATION,” data exploration and
data cleaning operations are performed to assess
and identify the characteristics of the monitored
physical system, relationships and internal distribu-
tions, patterns and points of interest, and anomalies
or missing data.

b) In “IDENTIFICATION OF METHODS,” different
types of techniques for Load Profiling are identified
and tested, for example, clustering and classifica-
tion, possibly combined with feature selection tech-
niques (supervised and unsupervised), as reported
in Section II-C.

c) In “EVALUATION OF METHODS,” the iden-
tified methods and techniques are evaluated for
robustness in relation to the analyzed system. The
evaluation can be done by resorting to appropriate
metrics, operator experience, knowledge of the
analyzed problem, or if available, by resorting to
ground truth.

Once the first step has been executed (iterating if nec-
essary), the next step is executed.

2) “OPERATING STEP”—In this section, starting from
an unlabeled dataset faithful to the scenario studied in
Step 1, it is possible to realize the two alternatives
“a” and “b,” described earlier or otherwise train the
algorithm for alternative “c.”

a) In “DATA ADJUSTMENT,” the validity of the
input data is checked, and, if necessary, corrections
are made before proceeding with the subsequent
analysis.

b) In “IDENTIFICATION OF CLASSES,” a class
search is carried out based on the methods chosen
in Step 1, for example, by clustering. In this way,
the labeling of the considered dataset is obtained.
Alternative “a” aimed at an asynchronous Load
Profiling process with respect to monitoring ends
at this point.

c) In “TRAINING ALGORITHM,” the result of the
implemented method for class identification is used
to train the profiling algorithm, for example, a clas-
sifier, which must subsequently work in real time
on the monitored system. This is followed by a
verification phase of the training on a test data set.
At this point, alternative “b” ends, aimed solely at
training the algorithm for real-time Load Profiling.

After completing Step 2, the Load Profiling tool is ready
to be applied to a continuous data stream.

3) “REAL TIME STEP”—If a real-time process is desired,
the last operation is the implementation of the algorithm
on board the smart meter and the system is ready to run
as follows.

a) In “DATA ACQUISITION,” during its operation,
the absorption profile of the electrical device being
monitored is acquired and processed in real time.
Then its electrical signature is extracted, with
an accuracy given by the measurement system,
and provided as input to the previously trained
algorithm.

b) In “Load Profiling,” based on the considerations
made in 1)-c) and 2)-c), the operating state of
the monitored system is discriminated and the
information returned. In this way, the alternative
“c” is concluded.

The process is thus completed. It must be considered that
such a process also applies to other systems of a different
physical nature, not only electrical. Of course, the calculated
electrical signature, in addition to being processed for Load
Profiling purposes, can be used for further analysis, from
which information and indices can be extrapolated to be asso-
ciated with the identified operational state of the monitored
load, as reported in Section II-A. In particular, the “REAL
TIME STEP” can be extremely useful in predictive diagnos-
tics. Furthermore, for alternatives “b” and “c,” the electrical
signature can be stored and reused occasionally to iterate the
Step 2 again to refine and/or update the capabilities of the
profiling algorithm. Such an operation is very advantageous in
that performance drops in the process are avoided by refining
the training over time, especially in the presence of a natural
degradation of the monitored system, which would alter the
absorbed electrical signature.

C. Typical Load Profiling Techniques

Different types of processing techniques and methods can
be implemented to carry out Load Profiling. The scientific
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literature is particularly active in this field, in fact, on Load
Profiling, articles, and several review studies have been pub-
lished [27], [28]. In general, the most widely used techniques
are: 1) clustering and 2) classification algorithms. Clustering
is an unsupervised learning technique, unlike classification,
which requires a supervised approach. In both cases, both
supervised and unsupervised feature selection techniques can
be implemented to improve analysis performance. As regards
1) and 2), the basic concepts of each of these techniques are
summarized below to provide the reader with a better under-
standing of the considerations made in Sections II-B and V.

Regarding 1), in [29] and [30], reviews on clustering
methods and algorithms are proposed. In [31], three clustering
techniques applied to data from meters at different frequencies
are analyzed, while in [32], two-stage clustering is proposed.
In [33], a review is made of clustering (and classification)
methods applied to residential and industrial electricity scenar-
ios, while Chicco et al. [34] report a comparison of clustering
techniques for customer identification in the electricity sector.
In general, the most widely used clustering algorithms are
the k-means, the generalized Gaussian model (GMM), and
the agglomerative clustering. The k-means algorithm is a
partition method that groups data by separating samples into
n groups (partitions) of equal variance, minimizing a criterion
known as inertia or sum of squares within the cluster. The
method GMM looks for a set of multidimensional Gaussian
probability distributions that can represent the data under
consideration. This quantifies the probability with which a
data item belongs to a given cluster. Moreover, each cluster
is no longer associated with a sphere in space but with a
Gaussian pattern; this represents a significant advantage over
k-means. Agglomerative clustering is a hierarchical algorithm
strategy that works “bottom-up.” In practice, the algorithm
starts by considering each sample as a single cluster and,
at each subsequent iteration, recursively combines the two
most similar clusters until all samples belong to one large
cluster. In general, regardless of the type of algorithm imple-
mented, various evaluation criteria and metrics can be used
after clustering [35] to define performance and the appropriate
number of clusters. For example, silhouette coefficient takes
into account both separation and cohesion, can vary in the
range [−1, 1] where silhouette values close to 1 are preferred
while negative values indicate that the cluster observations
“fit” better with other clusters instead of their own, that is, that
the final clustering is not correct; Rand index is a statistical
parameter defined as a measure of the similarity between
two data clusters (it is assimilated to accuracy); inertia index
can be recognized as a measure of the internal coherence
of clusters; Davies–Bouldin score is defined as the average
similarity measure of each cluster with its most similar cluster;
elbow method; index of separation of a pair of clusters; and
so on.

With regard 2), for example, through a previously trained
classification algorithm, a system for real-time load iden-
tification can be realized. This is done by identifying the
relationships between the different features of the system and
the label associated with them using, for example, regression
criteria (for continuous data) or classification models (for

discrete data) [36]. Reviews on classification methods and
algorithms are given in [37].

Along with clustering and classification techniques, feature
selection algorithms are often implemented. In general, fea-
ture selection has three main objectives: improve the model
accuracy, reduce the computational cost, and produce a more
interpretable model. Malhi and Gao [38] and Hopf et al. [39]
present general reviews on feature selection methods, while
Beckel et al. [40] review specialized feature selection tech-
niques for clustering and classification. In [41], the features
of greatest interest for identifying load profiles are selected.
Often, feature selection techniques are of the supervised
type, thus implying prior knowledge of the ground truth of
the analyzed system. However, there are also nonsupervised
approaches that do not require knowledge of this parame-
ter [42]. In this case, the selection is based on critical data
analysis in terms of variability, statistical distribution, trends,
and internal correlations, aimed at identifying and selecting
those features that potentially have higher information content.
Of interest among these is the KDE method [43], which is a
nonparametric statistical method useful for identifying patterns
through the estimation of metric spaces, that is, the probability
density function. In general, the KDE makes it possible to
derive the continuous probability distribution function of a
discrete quantitative variable.

III. METHODOLOGICAL APPROACH

This section presents the tests, choices, and methodologies
followed during the analysis of the implemented Load Profil-
ing process. The characteristics of the influence parameters
considered, that is, MQ and electrical signature, are first
illustrated. Subsequently, the tests conducted and the methods
used are described.

A. Monitoring and Electric Signature Characteristics

With regard to MQ, in particular, for the definition of the
uncertainty levels analyzed, reference was made to a number
of regulations and directives related to energy measuring
instruments, including: “Directive 2014/32/EU” of the Euro-
pean Parliament and of the Council on the Harmonization of
the laws of the Member States relating to the making available
on the market of measuring instruments [44], and EN50470-1
standard of the “European Committee for Electrotechnical
Standardization” (CENELEC) on “Electricity metering equip-
ment (a.c.)” [45]. The latter refers to newly manufactured
energy meters intended for residential, commercial, and light
industrial use and specifies general requirements, tests, and
test conditions for the metering apparatus. Specifically, this
standard, according to the metrological quality of the appara-
tus, discriminates meters into three different accuracy classes:
A, B, and C (A indicates the “worst” class). In this article, for
both scenarios analyzed, the metrological conditions of classes
A, B, and C were replicated, defining three different levels of
MQ, denoted by the acronyms “MQ1,” “MQ2,” and “MQ3,”
respectively. For example, “MQ1” indicates an MQ condi-
tion of level 1, that is, “worst” typical of lesser-performing
commercial meters, while “MQ3” represents the condition
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TABLE I
QUALITATIVE CHARACTERISTICS OF THE ELECTRICAL SIGNATURE

CONSIDERED IN THE THREE LEVELS: “ESQ1,” “ESQ2,” AND
“ESQ3.” REPORT: THE CATEGORIES OF ELECTRICAL PARAMETERS

CONSIDERED (TYPE OF PARAMETERS); THE NUMBER OF
ELECTRICAL PARAMETERS CALCULATED

(NUMBER OF PARAMETERS)

with lower uncertainty assimilated to meters with high-level
performance. Refer to Section IV for further details on data
acquisition methods and techniques.

Regarding the quality of the electrical signature, that is,
the number of electrical parameters calculated by the meter,
three levels of ESQ were considered, respectively, denoted by
the acronyms “ESQ1,” “ESQ2,” and “ESQ3.” The number of
parameters considered for each level was chosen to replicate
three types of commercial meters with different calculation
capabilities. Table I summarizes the electrical parameters
considered for the three levels of ESQ described below.

1) “ESQ1” refers to meters with basic calculation
capability—only the electrical parameters of the load
relating to the measurements of active power (P), appar-
ent power (S), and nonactive power (N) are considered.
These turn out to be the main electrical parame-
ters extracted from “classical” metering systems. Their
measurement does not necessarily require particularly
complex and high-performance hardware, so they can
be extracted with simplicity and reduced costs.

2) “ESQ2” refers to meters with basic calculation capa-
bility but equipped with filters or evolved meters—in
addition to the parameters P , S, and N , the remain-
ing parameters introduced by the standard IEEE-1459
are also considered. These electrical quantities are of
particular interest as they do not necessarily require
a hardware enhancement of the meters compared to
the “ESQ1” case to be extracted during measurement.
In fact, although they can be obtained more quickly via
fast Fourier transform (FFT), they can also be obtained
by applying filters.

3) “ESQ3” refers to a smart meter with high calculation
capabilities—parameters related to IEC 61000-4-7:2009
are considered in addition to the parameters of “ESQ2.”
The latter is more complex to extract and necessarily
requires a frequency analysis by means of FFT, conse-
quently an upgrade at the hardware and firmware level
of the meter is necessary, with an inevitable increase in
costs.

The metrics and calculation methods implemented in the
two case studies, simulated and real, are the same and allow
a large number of electrical parameters to be extrapolated
from the monitored system at each measurement interval,
including the ground truth of the operational state. All of
these parameters provide an electrical signature with a high
degree of detail. Table I summarizes these for the three
“ESQ” levels considered. These refer only to device-dependent

Fig. 2. Tests performed with: three different levels of MQ, three levels
of ESQ, and three different Load Profiling algorithms (k-means, GMM, and
agglomerative clustering.

electrical quantities, that is, related to the absorbed current
spectrum; voltage-dependent parameters alone are neglected
as this is imposed in electrical systems. In practice, the
power definitions of IEEE-1459 are implemented, particu-
larly in the single-phase nonsinusoidal case [46], [47]. The
electrical parameters calculated according to IEEE1459, for
voltage and current, refer to total root mean square (rms),
rms of fundamental component, rms of the remaining har-
monic content, and dc component. For the power compo-
nents, they refer to active, apparent, nonactive, and distorted
power; power factor and total harmonic distortion parameters.
Harmonic behavior of the considered electrical loads has
been assessed according to IEC61000-4-30:2015 “Testing And
Measurement Techniques—Power Quality Measurement Meth-
ods” [48] and IEC61000-4-7:2009 “Assessment of harmonic
emissions” [49]. In detail, in all the harmonic measurements,
rms and phase of harmonic groups of voltage and current up
to the 50th harmonic order and rms and phase of the harmonic
subgroup have been considered, considering a time window of
200 ms (with a frequency resolution of 5 Hz).

B. Test Setup

With reference to the structure of the Load Profiling process
illustrated in Fig. 1, this work refers to the case “a” described
in detail in Section II-B. In practice, an asynchronous Load
Profiling process has been implemented with respect to mon-
itoring, that is, the operational state of the considered device
is identified at the end of the device acquisition process.

The tests for simulated and real cases were conducted
for three levels of monitoring and ESQ. Furthermore, since
the performance of the Load Profiling process may also
depend on the type and complexity of the profiling algorithms
implemented, the analyses just mentioned were repeated three
times using three different types of Load Profiling algo-
rithms: “k-means,” Gaussian mixture modeling (GMM), and
“agglomerative clustering.” This provided a broader and more
general view of the problem. The input data to the cluster-
ing algorithms were first appropriately normalized using the
z-score method [50], that is, mean 0 and standard deviation 1.
Fig. 2 summarizes the tests conducted.

For example, considering the two extreme cases, the “worst”
and the “best,” we have: “MQ1-ESQ1” low quality of
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Fig. 3. Application of the KDE method to the “Desk Lamp” load (four
operational states). In (a), an example of an unselected feature with a unimodal
distribution is shown. In (b), an example of a selected feature is given, the
distribution being multimodal and therefore potentially useful for identifying
the operational states. (a) Nonactive power (N ). (b) Active power (P).

monitoring (high measurement uncertainty) and low quality of
electrical signature (few parameters calculated by the meter);
“MQ3-ESQ3” high quality (low measurement uncertainty)
and high quality of electrical signature (many parameters
calculated by the meter). While the opposite extreme cases
refer to meters: with high metrological performance but low
calculation capabilities (“MQ3-ESQ1”); with low metrological
performance but high calculation capabilities (“MQ1-ESQ3”).
In between are the remaining intermediate cases. In terms of
the methods used, algorithms of different natures and opera-
tions were chosen, to highlight the potential and advantages
obtained in a Load Profiling process by acting on the different
impacting factors.

In addition, as a feature selection method, the KDE
described in Section II-C. Being an unsupervised technique,
KDE does not require knowledge of the ground truth in the
selection phase. The only consideration made is that only
multistate loads are considered in this work. Therefore, from
the set of starting characteristics defined by the level of “ESQ”
considered for each load, features with unimodal distribution
were discarded through the KDE method. Fig. 3 shows an
application of the KDE methods to the load “Desk lamp”
considering two different features associated with two different
probability distributions: 1) unimodal and 2) multimodal.
Using KDE applied to a subset of the starting samples, only
features with a number of peaks in their probability distribu-
tion greater than one are selected. The peaks in the distribution
represent potential areas of point densities attributable to oper-
ational states of operation. A characteristic with a unimodal
distribution, therefore, represents a nonsignificant parameter
for a multistate load, being almost constant as the operating
state changes. It should be considered that the number of
peaks shown by a feature is not necessarily exactly the actual
number of operating states. For example, Fig. 3 shows a case
of unselected and selected features for a load used in this work
(“Desk Lamp”) which actually has four operational states.

The silhouette coefficient was considered to assess the
goodness of clustering [35], which is extremely useful for
simultaneously assessing the cohesion and separation of the
clusters obtained. The number of identified operational states,
hence classes of the system, according to this metric, is the
one at the highest silhouette coefficient. The characteristics of

TABLE II
SIMULATED LOADS SPECIFICATIONS. IT SHOWS THE IDENTIFIER

(DEVICE), THE TYPE OF THE DEVICE (TYPE), THE NUMBER
OF OPERATING STATES (NS ), AND THE NOMINAL

ACTIVE POWER (PNom)

the metrics and algorithms are described in Section II-C. All
processing operations were performed in the MATLAB1 and
Python1 environments [51].

IV. ANALYZED SCENARIOS

All the analyses were carried out in simulated and real
scenarios. As for the simulated scenario, a public dataset has
been considered and, in Section IV-A, its main characteristics
and how it was used are presented. As for the real scenario,
in Section IV-B, the characteristics of the chosen devices, the
measurement setup, and the process to confirm the acquired
data are described.

A. Simulated Scenario

As for the simulated case, the dataset used in this work is
“eLAMI” whose characteristics are given in [6]. The dataset
is publicly accessible at IEEE-Dataport [52]. It represents
a residential energy dataset with innovative characteristics
compared to rivals in the literature today [53]. In particular,
it is simulated from experimentally acquired data and with
consumption patterns that are true to reality, thanks to an ad
hoc stochastic model. The main feature of “eLAMI” is the
large number of electrical parameters (433) provided for each
operational state of each device, with a measurement time of
5 s, as described in [6]. In addition to the calculated quantities,
the operational state (ground truth) of each electrical load is
also provided. In general, the metrics and calculation methods
implemented for the extraction of electrical parameters are
based on the implementation of the IEEE-1459 and IEC61000-
4-7:2009 standards, in accordance with the ESQ levels defined
in Section III-A.

Analyses were conducted on the loads present in “eLAMI,”
for the sake of synthesis, Section V shows the results for
three electrical loads in the dataset that were considered most
interesting. In particular, the devices shown are: “D1: Fan
Heater,” “D2: Desk Lamp,” and “D3: Smartphone charger.”
This choice was made, in addition to synthesis, because these
were the most interesting devices to be analyzed in a Load
Profiling process: D1 and D2 present the largest number of
operational states among the loads available in “eLAMI,” in
D2 and D3 the “off” state corresponds to standby and therefore
nonzero absorption that is confused with the state immediately
following, and D1 is interesting from the point of view of
load type, being comparable to an electrical machine. Table II
summarizes the information on the loads just mentioned,
extracted from [6].

1Trademarked.
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Fig. 4. Simulated electrical load “Desk Lamp.” Comparison of two MQ levels and three different sets of features belonging to the three ESQ levels considered.
The labels in the legend, from “State-1” to “State-4,” refer to the operating states of the electrical load considered, to which the nominal active power (P)
levels correspond, respectively: 0.8, 2.5, 6.5, and 8 W. Each operating state is highlighted in a different color.

For the sake of clarity and to provide a better understanding
of the problem, the example in Fig. 4 shows the evolution of
certain electrical parameters for different operating states of
the “Desk Lamp” load at different levels of MQ and electrical
signature. In particular, the quality levels “MQ1” and “MQ3”
and three sets of features belonging, respectively, to the levels:
1) “ESQ1,” 2) “ESQ2,” and 3) “ESQ3” are compared. In detail,
for the simulated device considered: MQ1-a) and MQ3-a)
show the absorption profiles in terms of active power (P) with
respect to the operational state; MQ1-b) and MQ3-b) show
the voltage distortion power (DV ) as a function of the power
factor at the fundamental (P50); MQ1-c) and MQ3-c) show the
phase trend of the ninth harmonic current group (GphiI9) as a
function of the amplitude of the first harmonic current group
(GI1). From the figure, it is possible to appreciate the behavior
of the device under the different test conditions considered and
the criticalities in Load Profiling. It is evident how the quality
of the monitoring system and the natural variability of the
device leads in some cases to an overlap between the operating
states. At the same time, it is possible to appreciate the
“separation” of operating states when more significant features
are considered and the quality of monitoring is increased. The
other loads considered show conceptually more or less similar
behavior, so for reasons of synthesis, the same representation
is omitted.

Regarding the analysis interval, to deal with a sufficient
number of data, tests were conducted for each load on
a number of measurements per operational state equal to
5000 samples. In practice, a balanced subdataset was extracted
from “eLAMI” with a small size and an equal number of points
per operational state for the different loads. Regarding the
quality of monitoring for the simulated scenario, as reported

by the authors, “eLAMI” in its basic version corresponds to an
“MQ2” level defined in this article. As for the other two MQ
levels, using the “eLAMI” dataset and with the same methods
and techniques implemented in [6], two more datasets were
generated, with greater and lesser variability than the basic
version, corresponding to “MQ1” and “MQ3.”

B. Real Scenario

With regard to the real electrical loads used for the anal-
ysis, a bank of dimmer lamps (“Lamp”) controlled by a
silicon-controlled rectifier (SCR) was considered as a sample
of the residential case and a single-phase asynchronous motor
powered by an inverter (Mot + Inv) as a sample of the light
industry case. Thanks to the control offered by the inverter
and the dimmer, it was possible to realize an arbitrary number
of operating states for both devices. In fact, seven operational
states were tested for the “Lamp” case, and eight operational
states for the “Mot + Inv” case. All the tests were carried out
in the Laboratory of Industrial Measurements (LAMI) of the
University of Cassino and Southern Lazio.

Concerning the three MQ levels, “MQ1,” “MQ2,” and
“MQ3,” according to Section III-A, three different metrolog-
ical acquisition conditions were implemented for both real
loads treated. Considering a simple measurement chain model
of a smart meter, the main hardware elements are represented
by the voltage and current transducers and by the data acquisi-
tion systems. Their metrological performance defines the per-
formance of all measurement chains. Considering this model,
to implement the three “MQ” uncertainty levels, three different
voltage and current probes and three different resolutions of
the acquisition system were considered. In particular, as for
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TABLE III
METROLOGICAL SPECIFICATIONS OF THE SETUP USED TO ACQUIRE THE

ACTUAL LOADS FOR THE THREE MQ LEVELS. REPORTS INFORMATION
IN TERMS OF THE TYPE OF MEASURED QUANTITY (TYPE), PROBE

SCALING FACTOR (Kprobe), PROBE FULL SCALE (FSprobe),
PROBE ACCURACY (ACCprobe), AND FULL-SCALE

ACQUISITION SYSTEM (FSAcq)

the voltage transducer, a differential probe “Fluke DP120,” a
differential probe “Tektronix P5200” and a differential probe
“LeCroy HVD3106A-6M” (with a “LeCroy TPA10” probe
adapters) were, respectively, adopted for “MQ1,” “MQ2,” and
“MQ3.” As for the current transducer, a “Siglent CP4050”
current probe, a “Tektronix TCP202A” current probe (powered
by a “Tektronix-1103” power supply), and a “Teledyne LeCroy
CP030A” current probe (with a probe adapter) were, respec-
tively, used for “MQ1,” “MQ2” and “MQ3.” Acquisitions were
carried out using a six-channel data acquisition system to make
simultaneous acquisitions from all the aforementioned voltage
and current probes. A synchronized data acquisition system
based on a “TiePie HS6” and a “TiePie HS5,” and a suitable
acquisition software developed in the MATLAB environment
were adopted for all the experiments. To change the resolution
of the data acquisition system, the number of bits (nbit) used
was chosen equal to 12, while the full scale of each acquisition
channel was set to different values under the three “MQ”
conditions. The sampling frequency was equal to 5 kS/s with
a measurement observation time of 1 s. As the sampling rate
is the same under the three measurement operating conditions,
there are no changes in the phase resolution of the measured
quantities between “MQ1,” “MQ2,” and “MQ3.” With regard
to the acquisition interval, one hour of monitoring was carried
out for each tested operating state of the loads considered, for
a total of 3600 measurements per tested operating state. All
the measurements in the frequency domain were carried out
with a frequency resolution of 5 Hz corresponding to a time
window of 200 ms to be compliant with the IEC 61000-4-
7:2009 standard.

Table III details all the sampling specifications used, while
the block diagram of the experimental setup for data acquisi-
tion is shown in Fig. 5.

For the sake of completeness, a summary and general
analysis in terms of uncertainty propagation is given below,
valid for the voltage and current quantities acquired under the
different metrological “MQ” conditions realized. In terms of
uncertainty assessment, the traditional Guide to the Expression
of Uncertainty in Measurement (GUM) approaches or the
Monte-Carlo method can be adopted. In detail, from a theoret-
ical point of view, in relation to (1), the measured value and
its uncertainty depend on all the elements of the measurement

Fig. 5. Block diagram of the data acquisition setup and validation of the
acquisition process.

chain involved: the measurand (Xm), the probe (Xprobe), the
conditioning (Xcond), the analog-to-digital converter (XADC),
the environment (Xenv), and so on [54]. Considering that the
environmental conditions are controlled, since all experiments
were performed in a reference and notified laboratory, and
considering that there is no conditioning system, the uncer-
tainty contributions are reduced to those arising from the probe
and the data acquisition system. This reduces the complexity
of (1), to a simple case (i.e., a voltage or current probe and
a DAQ system). This case has been analyzed by the articles
referenced in [55] and [56]. Both articles lead to the conclusion
that even if the Monte Carlo approach is generally to be
preferred, in this case, the two approaches lead to the same
results. For this reason, for the sake of simplicity, in the article,
we have preferred to use the traditional GUM approach. Given
(1) in explicit form, applying the uncertainty propagation law
given in (2), we then derive the two uncertainty contributions
that characterize the measurement chain and have the greatest
impact on the measurement, namely those related to the probe
used (uprobe) and the contribution introduced by the data
acquisition system (uADC). Equations (3) and (4) give the
definition of the latter. By substituting these expressions with
the nameplate data given in Table III, it is possible to obtain the
uncertainty values for the voltage and current quantities, which
define the metrological quality of the measurement system
implemented in the three cases considered. The reported
analysis, although trivial and well known in the scientific
literature, highlights the effect of the influence parameters
considered to be preponderant in the “MQ” and consequently
in the analysis process

Xmeas = f
(
Xm, Xprobe, Xcond, XADC, Xenv, . . .

)
(1)

u Xmeas =

√√√√∑
i

(
δ f

δxuxi

)2

· u2
xi

(2)

uprobe =
Accprobe

√
3

(3)

uADC =
FSADC

2nbit ·
√

12
. (4)



TARI et al.: LOAD PROFILE ANALYSIS IN ELECTRICAL SYSTEMS 1503213

TABLE IV
COMPARISON BETWEEN WT3000 AND IMPLEMENTED ACQUISITION
SYSTEM FOR ELECTRICAL LOAD “LAMP.” THE THREE-MQ-LEVEL

COMPARISON IN TERMS OF MEAN VALUE AND STANDARD
DEVIATION OF ACTIVE POWER (P)

To validate and calibrate the considered measurement chain,
namely the voltage and current probes, the data acquisi-
tion system, and the implemented measurement algorithm,
quantities measured on the two considered loads were com-
pared with a reference power meter. In particular, a traceable
“Yokogawa Precision Power Analyzer WT3000” reference
wattmeter equipped with the harmonic analysis toolbox was
adopted, as shown in Fig. 5. The specifications adopted for
the WT3000, in relation to the options made available by the
manufacturer [57], are as follows: sampling frequency—Clock
B 189.394 kS/s; data update rate—1 s for the P , S, and
N power measurements and 200 ms for the harmonic mea-
surements that correspond to a frequency resolution of 5 Hz;
wiring system—1P2W; measurement functions—Type2; mea-
surement range—auto. The different quantities calculated by
the WT3000 were exported from the instrument via an IEEE-
488 bus and a measurement software implemented in the
Labview1 environment. To summarize, Table IV shows the
comparison in terms of mean value and standard deviation of
the active power (P) extracted from the WT3000 and those
processed by the implemented system for the three levels of
MQ for each operating state of the monitored load “Lamp.”
The comparison shows both the compatibility with the ref-
erence and the increasing of the measurement uncertainty
decreasing the “MQ” level.

Similar to the previous case, also for the real scenario,
the metrics and calculation methods implemented for the
extraction of the electrical parameters, considered in the Load
Profiling process, are based on the implementation of the
standards IEEE-1459, IEC61000-4-30:2015, and IEC61000-4-
7:2009, in accordance with the quality levels of the electrical
signatures defined in Section III-A. Furthermore, in analogy
to the considerations made in the previous case, for the sake
of completeness, Fig. 6 shows the evolution of the absorption

Fig. 6. Active power profile (P) measured at monitoring quality level “MQ2,”
for both real electrical loads considered. For (a), the labels in the legend,
from “State-1” to “State-7,” refer to the tested operating states to which the
nominal active power levels correspond, respectively: 0, 115, 115.5, 102, 140,
190, and 60 W. Similarly, for (b), from State-1” to “State-8” correspond to the
nominal active power levels, respectively: 43, 595, 1075, 1070, 1580, 1595,
1590, and 590 W. Each operating state is highlighted in a different color.

profiles of the real electrical loads considered “Lamp” and
“Inv + Mot.” In this case, given the large number of tested
operating states of the two devices, only the trend in active
power (P) relative to the intermediate monitoring quality level
“MQ2” is shown for each. In this way, it is still possible
to observe the behavior of the devices considered and the
criticality offered in terms of Load Profiling. Given the overlap
between the states, it is evident from the figure that it is
of fundamental interest to search for further significant and
representative parameters of the electrical signature for iden-
tification in each of the tested operating states.

V. RESULTS

This section reports the results obtained from the tests con-
ducted in terms of Load Profiling, varying the three influencing
parameters: MQ, ESQ, and type of profiling algorithm. In sum-
mary, the loads considered refer to a simulated and a real
scenario. As for the simulated scenario, the selected devices
were a “Fan Heater,” a “Desk Lamp,” and a “Smartphone
Charger.” They have 4, 4, and 2 operating states, respectively.
In the real scenario, a bank of dimmer lamps (“Lamp”) and
a single-phase asynchronous motor powered by an inverter
(“Mot + Inv”), with 7 and 8 operating states, respectively,
were considered. The tests were conducted for three MQ levels
(“MQ1,” “MQ2,” and “MQ3”), three ESQ levels (“ESQ1,”
“ESQ2,” and “ESQ3”) and three types of Load Profiling algo-
rithms (“k-means,” GMM, and “Agglomerative Clustering”),
as shown in Fig. 2. All explanations and descriptions of the
choices made are given in Sections III and IV.
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For the sake of clarity, the results are reported in tabular
form. In analogy to what was done in the previous chapters,
they are broken down by the type of scenario analyzed. For
each table reported, the “Scoresh” value (evaluation metrics
used), that is, the maximum silhouette coefficient obtained for
that test, and the “Err statesh” value, that is, the percentage
error committed in terms of the operational states identified
through the silhouette coefficient with respect to ground truth,
are reported within each cell. For the sake of completeness,
(5) gives the definition used for the calculation of “Err statesh,”
where “Nsh state” represents the number of states identified by
clustering at the maximum silhouette coefficient, and GTstate
represents the number of ground-truth operational states of the
analyzed load. In this way, it is possible to tell immediately
whether the algorithm overestimates, underestimates, or cor-
rectly identifies the states of the system. The best condition is
obtained when “Scoresh” is close to one and “Err statesh” is
equal to zero. In addition, the cells are colored according to
the error committed, so that the behavior obtained from the
analysis is immediately apparent

Err statesh =
Nsh states − GTstates

GTstates
× 100. (5)

A. Tests Results: “Simulated Scenario”

Starting with the electrical load “Fan Heater,” it can be seen
from Fig. 7 that at the quality level “ESQ1,” the process always
tends to underestimate the number of operating states detecting
three states instead of four with an error of −25%. Looking
at the nominal power of the considered four states [6], it can
be highlighted as the power states have nominal values of 0,
15, 925, and 1900 W, respectively. In this case, as shown in
the previous chapter, the error is related to incorrect cluster
separation of the first and second states even in the presence
of low uncertainty levels (i.e., “MQ1”). As the “ESQ” level
increases, adding new features to the clustering algorithms,
a considerable improvement is highlighted. In addition to
correctly identifying the number of states, the silhouette coeffi-
cient always assumes a fairly high value for both “ESQ2” and
“ESQ3.” It follows that for this load, it is more convenient to
optimize the quality of the electrical signature than the quality
of the monitoring. Therefore, a meter that is less performing
from a metrological point of view but slightly advanced from
a processing point of view, is sufficient to correctly identify
the number of operating states for this analyzed load. In any
case, the progressive improvement of the analysis as the “MQ”
parameter also increases is evident. Since the same behavior
was also obtained for the remaining simulated and real loads
when varying the algorithm, only the results of the GMM
algorithm, that is, the intermediate case in Fig. 2, are shown
below.

Concerning the electrical load “Desk Lamp,” from Fig. 8,
it can be highlighted the following.

1) For the “MQ1” value, whatever the “ESQ” levels,
it is impossible to correctly profile the operating states.
In detail, an error equal to −50% is obtained meaning
that only two states are recognized. Looking at Fig. 4
(“MQ1-a)”), this can be explained considering that

Fig. 7. Results obtained for the “Fan Heater” load with the clustering
algorithms: (a) k-means, (b) Gaussian mixture model, and (c) agglomerative.

states 1 and 2 are very close and the same happens for
states 3 and 4.

2) For the “MQ2” value, a correct Load Profiling is
obtained only for the “ESQ3” signature level but a
low silhouette score is performed. This means that a
high number of features partially compensated for the
variability due to the uncertainty measurement.

3) For “MQ3” whatever the “ESQ” level, a correct Load
Profiling is achieved. When “ESQ3” is experienced the
silhouette score reaches a good value that highlights the
good shape of the cluster and the reliability of the Load
Profiling algorithm. Looking at Fig. 4 (“MQ3-c)”), it is
possible to appreciate the good shape of the four power
states clusters. That is, there is a tendency to obtain
clusters characterized by increasingly better cohesion
and separation. From these considerations, it follows
that for this type of load, in a profiling process, it is
not so important to optimize the processing, and thus
the computational capabilities of the meter, but it is
more advantageous first to improve the quality of the
measurement system.

Finally, for the simulated scenario, Fig. 9 shows the results
obtained for the “Smartphone Charger” load. Given the “sim-
plicity,” in terms of the number of states of the analyzed
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Fig. 8. Results obtained for load “Desk Lamp” by Gaussian mixture model
clustering algorithm.

Fig. 9. Results obtained for load “Smartphone Charger” by Gaussian mixture
model clustering algorithm.

Fig. 10. Results obtained for load “Lamp” by Gaussian mixture model
clustering algorithm.

load, the profiling process always returns the correct number
of operational states. Moreover, in this case, the effect of
the improved quality parameters of monitoring and electrical
signature is much more evident than in previous loads. In fact,
we go from a silhouette coefficient value of less than 0.8 in
the worst case to a value extremely close to 1 in the best case.

B. Tests Results: “Real Scenario”

With regard to the “Lamp” load, that is, the dimmer lamp
bank, it is evident from Fig. 10 that the load profile results on
this electrical load are similar to those obtained on the “Fan
Heater” analyzed in the simulated scenario. In other words,
in condition “ESQ1,” the process never identifies the correct
number of operating states. At the “ESQ2” and “ESQ3”
levels, on the other hand, it is evident that the algorithm
always correctly identifies the number of clusters, and thus
the operational load states. Furthermore, as explained in the
previous subsection, the output obtained at levels “ESQ2” and

Fig. 11. Results obtained for load “Mot + Inv” by Gaussian mixture model
clustering algorithm.

“ESQ3” is characterized by a high value of the silhouette
coefficient, which indicates a correct separation and cohesion
of the clusters.

Lastly, the results obtained for the electrical load “Mot +

Inv” are shown in Fig. 11. This load is characterized
by a high number of operating states (8), very close to
each other in terms of power as shown in Fig. 6(b) of
Section IV-B. It can be seen that at levels “ESQ1” and “ESQ2,”
as well as “MQ1,” it is never possible to correctly identify
the operating states of the system considered. In fact, for a
correct analysis in terms of Load Profiling, it is necessarily
only necessary to work at the “MQ2-ESQ3” and “MQ3-ESQ3”
levels. That is, it is necessary to have medium- to high-quality
monitoring and a representation of the electrical signature as
complete as possible. Consider the use of high-performance
smart meters. Under these conditions, the high number of
parameters considered and the medium and high level of
MQ lead to the optimal identification of operational states,
characterized by a high silhouette coefficient value.

VI. CONCLUSION

This article analyses the crucial role played by smart meters
in the Load Profiling task considering the influence of the MQ,
that is, the measurement uncertainty, and the ESQ, that is, the
number of electrical parameters derived from the electrical
signature. Some conclusions can be derived from the proposed
study.

1) Even if the increasing of the “MQ” improves the LP
process, not always an increase in the number of mea-
sured parameters (i.e., “ESQ”) brings benefits in the
Load Profiling process. This happens when many of
the features taken into consideration do not have great
sensitivity with respect to changes in the energy states.
In these cases, even if a large number of features is
calculated, the poor sensitivity could lead the Load
Profiling algorithms to wrong decisions leading to an
underestimation or an overestimation of the number of
actual states of the system under test. In these cases,
the high number of not-significant features returns worse
results with respect to the use of traditional P, N, and S
power indexes.

2) To face this problem, it could be useful to introduce
statistical unsupervised methods, such as the proposed
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KDE, which allows to eliminate the parameters with
poor sensitivity.

3) For the Load Profiling process, in many cases, uncer-
tainties lower than those required by the energy billing
(referred to as “MQ3” in the manuscript) are sufficient
to correctly assess the task allowing to reduce metering
infrastructure costs. In this sense, this work could be
useful to the developer since it suggests a method to
define the target “MQ” level and the useful features
required for the given Load Profiling task.

4) “MQ” and “ESQ” values influence the Load Profiling
process in the same way whatever the three clustering
algorithms considered in the manuscript.

5) The methodological approach considered in the article
could be useful to analyze also Load Profiling problems
related to other physical quantities (i.e., thermal energy
profiling) or multiphysical systems, allowing to user to
define a target “MQ” and a minimum number of useful
features to be adopted.
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