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Abstract— Powder metallurgy (PM) is the branch of metal-
lurgy that deals with the design/production of near-net-shaped
sintered workpieces with different shapes and characteristics.
The produced sintered workpieces are used in the automotive,
aviation, and aerospace industries, just to name a few. The quality
of the produced sintered workpieces largely depends on powder
compaction techniques and the accurate adjustments of process
parameters. Currently, adjustments of these process parameters
are done manually and thus resulting in laborious and time-
intensive effort. To this end, this article explores the use of
machine learning (ML) in the compaction process and proposes
an accurate and lightweight ML-based pipeline to estimate the
quality characteristics (QCs) of the produced workpieces in
the PM domain. More specifically, it presents a pipeline for
workpiece’s mass and lengths estimation by exploiting some
novel hand-crafted features and comparing well-selected ML
prediction models, namely, random forest (RF), AdaBoost (ADA),
and gradient boosting (GB). The chosen models are trained on
a combination of features extracted from environmental and
sensory raw data to estimate the mass and lengths of the next
produced workpiece. We have implemented and evaluated our
scheme on a dataset collected in a real production environment
and we have found that GB is the most consistent and accurate
one with the lowest root-mean-squared error (≈0.0886%). The
results of extensive experimentation have proven the relevance
of the selected features and the accuracy of GB.

Index Terms— Compaction process, machine learning (ML),
powder metallurgy (PM), quality characteristic (QC) estimation,
sintering.

I. INTRODUCTION

POWDER metallurgy (PM) deals with the production
of workpieces from metal powder and involves various

manufacturing processes for this purpose. The production of
sintered workpieces accounts for the largest share by volume
among all the PM manufacturing processes, e.g., metal 3-D
printing, etc. This process deals with the necessary tech-
niques and methods that help to produce solid metal-based
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products from metal powders. This whole production process
typically involves specific powder production, its onward treat-
ment and conditioning, consolidation steps involving pressure
(compaction) and high temperatures (sintering), and some
secondary treatments [1], [2]. The production of sintered work-
pieces is characterized by a near-net-shape production with
varying shapes and little waste. Companies working in this
domain often deal with narrow tolerance fields and acceptable
cut-off values for these workpieces in the range of few 10 µm
for the workpiece dimensions and few 100 µg for its mass.
However, due to the variability of various factors, such as
environmental (air pressure, ambient temperature, humidity,
etc.) and operational (powder type, applied pressure during
the compaction process, etc.), workpieces may be produced
out of the predefined cut-off values. Needless to say, this
out-of-tolerance production results in a waste of resources
and consequently financial losses. Hence a dire need for
quality characteristics (QCs) estimation and automatic process
parameter adjustment is in order.

Machine learning (ML) is the branch of artificial intelli-
gence that studies how computers can learn to solve a task
without being explicitly programed [3]. ML models exploit
real-world data as input, to develop autonomous decision-
making abilities over time, such as learning to play a game
or to recognize an object in an image. When these models
are exposed to new (unseen) input data, they are required to
generalize well: pretrained models (learned on previous com-
putations on the input data) are expected to provide reliable
and repeatable decisions on unseen data. Automating decision-
making by using ML has already gained significant attention
in recent years and use cases in banking (classification of the
benign and fraudulent transaction [5]), healthcare (accurately
monitoring the health of the patient [6]), and travel and
transportation (hotel/visit recommender systems [21]) domains
have been developed, just to name a few.

In sintered components production, a powder press machine
is used to compact a loose mix of powder together into
a so-called green part. The necessary compaction pres-
sure for different-shaped workpieces is hereby applied by
several independent punch levels following predefined tra-
jectories. To guarantee the same quality of produced com-
ponents/workpieces over a longer period, regular quality
checks and manual trajectory adjustments are required—to
cope with changing operating conditions due to environmental
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and operational settings such as varying temperature, stroke
rate, and powder quality [4], [7]. These adjustments are not
only labor-intensive but also costly, hence often jeopardizing
effective production.

Few research papers have demonstrated the suitability of
ML models in the quality assessment of sintered compo-
nents. These models have been employed for the estimation
of mechanical and fatigue properties [22], [24], or density
estimation of sintered bronze [23]. Here, we focus on the
prediction of different QCs, i.e., mass and lengths, for more
complex, i.e., multilevel, workpieces. More importantly, while
in [22], [24], and [23] the input features used by the ML
models are mainly limited to the composition of the alloy
components and the static summary of the production process,
here we design and utilize features that fully characterize the
dynamics of the production process of sintered workpieces,
regardless of the components’ properties, to predict their
QCs. Moreover, while previous works employ ML models
based on artificial neural networks (ANNs), which require
long training times and expensive optimization procedures to
tune their hyper-parameters, here we show that QCs can be
effectively predicted by harnessing simpler and more quickly
trainable ML models, with lower computational time complex-
ity. Hence, this article proposes a lightweight and accurate
ML-based pipeline for estimating the aforementioned QCs
of the workpieces. Our pipeline, first, extracts novel hand-
crafted features from environmental and sensory data readings
collected directly from sensors installed on the machine. More
specifically, our approach leverages the fusion of environmen-
tal variables, e.g., room humidity, room temperature, pressure,
etc., and the sensory readings captured directly from sensors
installed on the press. Then, it exploits lightweight ML models
since they are quick in training and estimating the QCs. More-
over, the used ML models are less resource and data-hungry,
compared to other ML techniques, such as recurrent neural
networks (RNNs). The chosen predictive models are trained
and evaluated on the collected dataset. We have compared the
performance of alternative models, and we have found that
gradient boosting (GB) yields the lowest root-mean-squared
error (RMSE) (≈0.0886%) and consumes few microseconds
(≈300) to predict the required QCs. Our obtained results show
the efficacy and the effectiveness of the proposed approach,
based on ML prediction and feature selection. In fact, this
article is the first one to analyze the impact of a vast
number of features on the final estimation and to compare
different ML algorithms in this special application domain.
In summary, the main contributions of this article are as
follows.

1) The proposal of an accurate and lightweight ML-based
pipeline for mass and lengths estimation of the produced
workpieces in the PM domain.

2) The proposal of a novel hand-crafted feature extraction
process from low-level data signals, which are collected
directly from the sensors installed on the press machine,
and are generated during each stroke of the press.
Furthermore, the identification of important features,
with respect to their impact on the prediction of the
QCs.

3) The experimental validation methodology used to assess
the feasibility of the proposed lightweight method in
producing accurate estimations of a workpiece’s mass
and lengths.

The rest of the article is structured as follows. Section II
presents the general life cycle of a typical PM process
and surveys the state-of-the-art in this domain. Section III
summarizes our approach to the QCs estimation problem.
Section IV presents the steps carried out to validate the
approach. Section V summarizes the obtained results, fol-
lowed by a discussion in Section VI. The article ends with
Section VII presenting the summary of the article’s contribu-
tion and possible future research directions.

II. BACKGROUND AND RELATED WORK

A. PM Process

PM is a relatively small sector compared to other manufac-
turing industries, however, it has shown constant growth and
increased importance in recent years. It involves multiple tech-
nologies to process metal powder and produce cost-efficient
components of various types, shapes, and sizes. Alternate
approaches, such as machining and casting, are costly and
material/energy intensive for high-volume production.

The life cycle of a conventional PM process for struc-
tural press and sintered components consists of the follow-
ing phases: powder production (mixing of powders with
alloying elements), compaction (pressing powders to form
a component), sintering (thermal treatment of the produced
component), and final checks on the quality of the produced
components. In Sections II-A1–II-A4, we explain the phases of
the PM process for structural press and sintered components.

1) Metal Powder Production: Generally, all iron powders
for parts production are manufactured by using iron-based
powders with press additives. These iron-based particles are
characterized by an irregular shape which is necessary for
good compaction. To increase the compressibility, lubricants
are added to the powder. By adding different metal powders
and carbon, the final material properties can be adjusted. The
different components of the powder mix are then mixed to
make the powder ready for production [7], [8], [10].

2) Compaction: Compaction has the greatest technical
importance in the production of sintered components. The so-
called rigid die pressing is the most common way of pressing
metal powder under high-pressure loads. The compaction press
machine comprises a die, several upper and lower punch levels,
and core rods. The process of compaction involves pressing the
powder at room temperature (or elevated temperature below
200 °C) with the help of several punch levels. The required
hardware is dependent on the geometry of the to-be-produced
workpieces, e.g., to produce complex workpieces, several
lower levels, core rods, upper levels, and a die are needed.
Modern powder press machines have up to ten individual
levels and are either hydraulically, mechanically, or electrically
activated. Depending on the geometrical complexity, different
press types are used.

At the beginning of each pressing cycle, the press cavity
gets filled with metal powder, before it gets compacted under
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high-pressure loads to a so-called green part with almost half
the initial powder’s height. The green part gets removed in the
last compaction phase and the press cycle begins again.

These highly precise compaction tools are normally made
out of hardened and wear-resistant steel with a high-quality
surface. The punches are inserted into each other.

3) Sintering: The output of the compaction process has
sufficient strength to be moved to the next production step
called sintering. Sintering is a thermal treatment with temper-
atures around 85% of the melting point of the main powder
component under a controlled atmosphere. Surface diffusion
is the driving force for individual particles to combine and
form a solid body. The increased temperature leads to surface
diffusion, which causes the individual particles to bond with
each other increasing the workpiece strength. The sintering
process takes place in three stages, during which the porosity
and volume of the green compact are significantly reduced.
In the first stage, only densification of the green compact
takes place, whereas, in the second stage, the open porosity
is significantly reduced. The final strength or hardness of the
sintered components depends upon the sinter necks formed in
the third stage, which are created by surface diffusion between
the powder particles.

4) Quality Measurements: The produced workpieces need
to satisfy the required QCs specifications after each production
step. To pass the final quality check, they must be within the
predefined specifications. The QCs including mass and lengths
could be measured with a scale and micrometer, however,
these continuous monitoring and iterative adjustments aimed
to obtain the set of parameters to ensure the required quality
are experience-dependent and manual. Hence, there is a dire
need for an accurate method to estimate the QCs for further
adjustments of process parameters.

B. Workpiece Mass and Lengths Estimation

In the determination of selected QCs, the literature focuses
primarily on density determination. Analytical methods or FE-
based methods can be used for this purpose. The former
describes the so-called compaction curve using empirical equa-
tions as a function of the applied force. The average density of
the component determined in this way can be calculated very
quickly and with little effort. However, no similar equations
have been presented in the literature to determine QCs such
as dimensions or mass [25], [26]. The compaction process
can also be simulated using the finite element method (FEM),
which uses a material law to calculate the stress–strain relation.
Most of these papers use the material density during the
compaction as an internal variable. In contrast to the analyt-
ical equations, local stresses or densities can be determined,
coming with the cost of high computational effort and cost.
Finite element-based simulation software has been shown to
be highly accurate [14], [16], [27], however, being off-line and
computationally expensive, they are not considered for on-line
(in real-time industrial settings) estimations.

This article proposes a lightweight and accurate ML-based
pipeline for estimating the QCs of the produced workpieces.
First, it proposes a novel hand-crafted feature extraction pro-
cess for machine signals, collected directly from the press

TABLE I
CONTROL AND TOLERANCE LIMITS FOR THE QCS

machine. Then, it exploits lightweight and quick ML models
to estimate with high precision the QCs of the produced
workpieces. Furthermore, this work is the first one comparing
different ML models and looking more systematically at the
feature construction and selection, which are steps that play
an important role in quality estimation.

III. ML-BASED QCS ESTIMATION

A. Specification of Test Workpiece

We aim to identify the process parameters having a dom-
inant influence on the QCs of the produced workpieces (see
Fig. 1) and to generate a reliable prediction of the desired QCs,
that is, the workpiece’s mass and lengths. We are interested in
estimating the QCs of the complex workpiece shown in Fig. 1.
As we have mentioned before, this is a preliminary step to be
able to automate the process parameter adjustments as part of
future work.

Table I shows the tolerance limits for the mass and the
lengths of the target workpiece. We need to ensure that the
estimated mass and the other four QCs, namely, Lengths 1–4
[see Fig. 1(b)], also remain within the limits specified in
Table I. In fact, the produced workpiece is considered of
good quality if its estimated mass and lengths stay within the
specified limits, possibly as close as possible to the set value
(the ideal value of the QCs of the part).

B. Quality Estimation Approach

The production of sintered components depends upon sev-
eral production, material, and environmental parameters. For
example, changes in the press stroke rate lead to changes in the
tool temperature and dynamics of the different punch levels
and feeding shoes. For this reason, we performed experiments
with changing stroke rates (27, 31, and 35 strokes/min) on
different experimental days. Furthermore, during the entire
data collection phase, we ensured that the process starts
and remains within the tolerance limits. This experimental
design was chosen in agreement with process experts from
the production site in our partner company in order to be
able to map the effect of different machine dynamics with the
associated tool temperature changes as well as the influence
of environmental parameters, while not changing any machine
settings.

We would like to highlight that temperature changes in our
experiment are also due to the manipulation of the order in
which the stroke rate varies during production (e.g., going
from a stroke rate of 35–31 and then 27). At stroke rate
35, we observed the highest tool temperature, whereas at
stroke rate 27 the lowest. That said, in the experiment tool
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Fig. 1. (a) Desired workpiece in top view and (b) its dimensions in AA section. The four different QCs for the length (in mm) are highlighted in blue.

temperature changes in relation to the machine dynamics. The
decision for different production days was taken to cover a
wider range of environmental changes, hence resulting in a
richer dataset.

The collected data is divided into press-curve-dependent
and environmental data sets. We note that they have different
timestamps. Press-curve-dependent data are acquired by sen-
sors that measure properties (e.g., position) of the press tools,
while environmental data are sampled by sensors measur-
ing environment characteristics (e.g., temperature). Therefore,
we dedicate the first step of our approach to data alignment.
In the next step, we automatically extract statistical features
from the aligned raw data. The full dataset is partitioned into
three sets, i.e., training, validation, and testing. We exploited
training and validation datasets for empirical comparison of
the chosen ML models and to choose the most accurate to
test on the unseen data. Fig. 2 illustrates our approach as a
block diagram.

IV. EXPERIMENTAL EVALUATION

A. Data Sources

Our dataset includes temporally dependent recorded values
from various sources, i.e., press levels on the machine, the
environmental sensor recordings, the physical characteristics
of the produced workpiece, and the powder type used during
the compaction process. In this analysis, we use press-curve
data (representing signals recorded at regular intervals from
the compaction press during the manufacturing process) and
environment data, i.e., temperature and humidity (acquired
with a fixed sample rate independent of the production cycle).
The used compaction press machine is equipped with built-in
low-level closed-loop controllers using a sample rate of 2 kHz.
For this purpose, the manufacturer added dedicated sensors,
e.g., for position and force, for every single level. These sen-
sors provide the required resolution in terms of amplitude and
sampling rate so that workpieces can be produced with high
relative accuracy. However, due to compaction tool mounting
offsets, different powder behavior, and changing environmen-
tal conditions, the absolute accuracy of the produced parts
may change over time and needs to be estimated with the
introduced ML models.

Furthermore, the company added sensors for measuring air
pressure, relative humidity, absolute humidity, and ambient
temperature to acquire environmental data. Since the envi-
ronmental conditions change with a much lower frequency
(compared, for instance, to the position of the punch levels
during production), a sampling rate of 1 Hz is used.

We extract a fixed number of recordings for each punch level
during the production of each produced workpiece (more on
this is detailed later) along with the type of material (powder
type) and the frequency of press in terms of number of pro-
duced workpieces per minute (stroke rate). These recordings
define the press cycle completion process of a workpiece.
We take the recordings at different percentages of the full
cycle of production of a single workpiece; capturing data at
various stages from the initiation to the completion of the press
cycle, hence we operate in the press cycle range between 0%
and 100%.

Finally, we have the ground truth in terms of “quality data”
(masses and lengths of produced workpieces). These ground
truth measurements are made by a sophisticated measurement
device—a laser triangulation system is used to scan the
produced pieces to extract geometrical information (lengths),
and a scale to extract the mass of the produced workpieces.
The laser triangulation system has a linearity of ±0.006%
and a repeatability of 0.4 µm, while the scale has a resolution
of 1 mg and repeatability of 2 mg.

QCs data is also acquired for every workpiece and it is
used to train the considered ML models for the prediction
of QCs and to verify the predicted QCs. Please, note that
verification (test) data are not used during the model training
and the parameter optimization processes.

It is worth noting that our dataset also contains information
about the quantity of powder used in the experiment which
remained constant throughout this experimental setting, and
hence is not used for analysis. In addition, our processing
data pipeline assesses the variability of the recorded values
based on the variations in the machine’s stroke rate. Moreover,
the number of produced pieces, whose data are collected,
is not high: there are around 200 pieces per experimental
condition, hence there is not much variability in the filling
level value of the container during the experiments. The filling
level information might be useful with long-term experiments
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Fig. 2. Block diagram of our approach.

where tens of thousands of workpieces are produced. In this
case, changes in the filling level could become more evident.

B. Data Processing

Data processing is the process of synchronizing the col-
lected data from different sources and converting them into
an organized form. It is specifically needed when the data is
collected from multiple sources. This processed data needs
to be arranged in a way that could be beneficial to serve
the purpose of data analysis. In fact, the chosen model is
expected to work better on the processed data as compared
to the raw data, hence, resulting in better decisions, higher

accuracy, and increased reliability. Overall, this step eases data
storage, analysis, and presentation.

In this section, we explain the steps implemented to process
the raw data, collected from different data sources.

1) Considered Variables: We recall that due to the complex
shape of the desired workpiece, there is a diverse combination
of tools: top-ram (TR), upper level 2 (UL2), lower levels
(LL1–LL3), die, and filler. Tools attached to the press, are
installed at different hydraulic cylinders, which we refer them
as levels, and are following predefined trajectories to produce
a workpiece, as, for instance, that depicted in Fig. 1(b).

By plotting the position of a level for a fixed stroke rate over
a press cycle (in the range 0%–100%), we obtain its trajectory,
which encompasses the different phases of the press cycle
(blue line in Fig. 3). A trajectory describes a stroke, which
produces a workpiece. Fillers in the PM domain, are used
to fill the powder products into different cavities of different
forms. These powders are then compressed with extra pressure
from different dimensions to create the desired shape.

For our analysis, we considered the following variables,
which by means of the above-mentioned sensors, record
specific properties of the tools attached to the press levels.

1) Actual and desired positions of TR, LL1, LL2, LL3,
UL2, and Filler.

2) Actual forces of TR, LL1, LL2, LL3, and UL2.
3) Hydraulic pressure.
Hydraulic oil is used to drive the hydraulic cylinders and the

punches mounted on them. When several punches need to be
moved at the same time, pressure drops, and recovery can be
observed which changes with the experimental settings. Thus,
we record also the hydraulic pressure. Besides the recorded
data listed above, the absolute humidity and work of each
punch level are calculated. We compute the work of a punch
level using the standard formula, as follows:

W = F 1x (1)

where W is work, F is the force in newton (N), and 1x change
in position (meters). Work W is measured in joules (J).

We performed a first preliminary analysis of the envi-
ronment and press-curve variables to check if the recorded
data was reliable. Environment data was collected from ded-
icated sensors, i.e., thermometers, and barometers, installed
on, or close, to the press machine. To obtain reliable read-
ings, temperature sensors are glued on the tools close to
the compaction zone. As a result of this analysis, we have
removed unsuitable variables that were found to be either
constant or noninformative. For instance, we found constant
environmental data, e.g., the temperature of TR, when the wire
of the temperature sensor was found to be broken.

In short, we exploit the following environmental variables
for our analysis.

1) Air pressure environment.
2) Relative humidity environment.
3) Temperature environment.
4) Temperature UL, LL, and die.
Moreover, for some strokes, we identified missing values in

the collected press-curve dataset. In this case, we computed
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TABLE II
VARIABLES USED IN THIS ANALYSIS

Fig. 3. Partition limits (red lines) on the variable “TR position actual.” In
blue is described the value of this variable during the production cycle of one
workpiece.

the mean of all the previously collected data samples and
added them in the missing value columns. This is a common
approach in ML and has been widely used when dealing with
missing values in sensor-augmented settings (e.g., smart cities
and smart factories) [18].

In Table II, we list the press-curve and environmental vari-
ables (environmental data and tool temperatures) considered in
the study, the variables characterizing the experimental setting
(experimental setting), and the target variables (quality data).

2) Feature Extraction: Here, we discuss the methodology
we have applied to extract features from press-curve vari-
ables. For each recorded stroke we divide each sequence of
temporally dependent press-curve variable data into different
partitions, and then for each partition, we compute features,
by aggregating data readings in each partition. Partitions are
identified by their limits: the start and the end of the partition.
Each partition contains sensor data corresponding to different
operations, i.e., filling, compaction, ejection, and removal per-
formed by the tools during the press cycle. In Fig. 3, we show
with vertical red lines the partition limits for the variable “TR
position actual.” In Fig. 4, we show the partitions defined for
the position variable of each press level and the corresponding
press cycle phase. It is important to note that environmental
variables are not processed into features because they do not
depend on partitions.

Starting from the considered press-curve variables, we could
generate the following features. By considering the six
tools/levels (TR, UL2, LL1, LL2, LL3, and F), in total
68 partitions are created (see Fig. 4). Then, for each partition,
four press-curve readings (actual and desired position, actual
force, and hydraulic pressure) are considered. Finally, for all
these 68 × 4 combinations, we create features by using five

TABLE III
NUMBER OF CONSIDERED STROKES/WORKPIECES AND FEATURES AFTER

THE CLEANING AND PROCESSING OPERATIONS

aggregation operations on the time-dependent values of the
variable in a partition: mean, standard deviation, maximum,
minimum, and power spectrum deformation. Hence, by con-
sidering the press-curve variables, the total number of features
that could be generated for representing a workpiece is 1360.
Some of the features (precisely 321), computed on ill-formed
raw data (e.g., duplicate, incorrect, and/or constant), were
removed, hence the final feature vector created from press-
curve data is 1039-features long. Furthermore, we add the
seven considered environmental features to construct the final
feature vector of 1046 features.

We also note that in our experiment, by varying the powder
type and the stroke rate, we have produced 5667 workpieces
(one for each stroke) and for each of them we have applied the
aforementioned feature extraction procedure. The number of
produced workpieces and features after cleaning, processing,
and feature extraction of the datasets are shown in Table III.

Since, for each of the produced workpieces, we have a 1-
D real-valued vector of size 1046, whose values correspond
to the specific features, the resulting dataset consists of over
5.9 million data points. Without applying the cleaning stage
in the feature extraction process, the dataset would have been
24% larger, i.e., containing 7.7 million data points. Each
vector representation of a workpiece is then used to predict
mass and lengths. We would like to highlight that for the
prediction we use five distinct instances of the same ML model
type: one to predict the mass and the other four to predict
the four characteristic lengths of the workpiece (see Fig. 1).
To conduct the prediction task, we further reduce the dataset
size by selecting the most appropriate features for each model
(see Section IV-D). In Fig. 5, we illustrate the input of the
prediction (feature vector), the output of the prediction task,
and its evaluation.

C. Serial Correlation Effect Analysis

We have analyzed the masses of the produced pieces to
investigate whether a serial correlation exists, i.e., if the
mass of a workpiece is correlated with the masses of the
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Fig. 4. Partitions of the position variable for each level and press cycle phases.

Fig. 5. (A) Feature vectors and target quality data to predict. (B) Feature selection process and resulting feature vector for quality data prediction. (C) Input
of the prediction, ML models, and prediction output. (D) Prediction evaluation and inputs.

previously produced pieces. We have used the Ljung–Box
test to perform this check since it is a widely used method
for testing serial correlations. The test hypotheses are defined
as follows: H0: the data point are independently distributed
(i.e., the correlations in the population from which the sample
is taken are 0, so that any observed correlations in the data
result from the randomness of the sampling process). Ha: the
data points are not independently distributed; they show serial
correlation.

We then checked the serial correlation by using the pro-
duction batches. We found that over 90% of the batches
show a test statistic (p-value) lower than 0.05. Hence we
conclude that serial correlation exists and must be considered
in evaluating the predictive models. Therefore, we can not ran-
domly partition strokes into training and testing sets, as with
this approach one would overestimate the performance of the
model. Conversely, we used the time-based data split strategy
presented in Section IV-E.
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TABLE IV
INTERPRETATION OF THE CORRELATION VALUES

D. Features Selection and QCs Correlation

To select a reduced amount of relevant features (from the
original 1046) to represent each workpiece, and be used as
input of the ML models to predict QCs, we perform a
correlation analysis between the features and the QCs. In this
way, we identify the set of features having the largest impact
on the quality of the produced workpieces. We use the Pearson
correlation coefficient [20] which is the most common way
of measuring the correlation between variables. As shown in
Fig. 5 (step B), from the initial feature vector of size 1046 fea-
tures we select the top-ten most correlated. Hence, we generate
five feature vectors of size 10. The first vector consists of the
top-ten features correlated with the target mass and is used as
input of the ML model to predict the mass [see Fig. 5 (step
C)]. The remaining four vectors have as elements the top-ten
features correlated with the four lengths, respectively. Each
vector is used as input for the corresponding ML model, e.g.,
the feature vector containing the most correlated features with
Length 1 is used with the ML model to predict Length 1.

In Table IV, we describe the interpretation of the correlation
values that we utilize. While in Table V, we show the top-three
features, in the two groups of press curve and environment
features, according to their correlation to the considered QCs.

In summary, the top press-curve features correlated with the
mass QCs are related to the removal of the workpiece from
the press, i.e., features computed for the lower levels LL2 and
LL3 in the partitions p10 and p12 (see Fig. 4), and the position
of the UL2 at partition p9, which was found to be the feature
most correlated with the final mass of the workpiece. Please
note that removing a workpiece from the press is executed in
parallel to the filling phase of the subsequent component to
be produced. This implies that features related to the removal
of the current workpiece are correlated with the filling of the
next workpiece.

By looking instead at the correlations between press curve
features and the workpiece’s lengths we note that features
related to force during the ejection and workpiece removal
phases are the most correlated ones. Higher ejection forces
are an indicator for increased axial and radial relaxation, also
known as the spring-back factor, due to high compaction
pressure.

If we now look at the correlation between the environment
features and the QCs (see Table V), we see that environmental
variables have a low positive correlation with Length 1 and a
low negative correlation with mass, Length 2, and Length 4.
A moderate negative correlation exists between environmental
variables and Length 3. We explain the negative correlation by
referring to the powder composition. A powder is a mix of iron

TABLE V
TOP-THREE FEATURES, IN THE GROUPS OF PRESS CURVE AND ENVIRON-

MENT, CORRELATED TO THE QCS. IN PARENTHESIS, WE INDICATE THE
DEGREE OF CORRELATION, BASED ON THE INTERPRETATION OF

ACTUAL VALUES FROM TABLE IV

and press-additives such as lubricant particles; hence the only
component of the powder that is highly variable according
to the environmental conditions is the lubricant. When the
humidity increases, the lubricant particles attract humidity and
increase the cohesion work density leading finally to changing
compressibility.

E. ML-Based Analysis Methodology

We now summarize the methodology that we have followed
to identify the best-performing ML model for each QC.
We have first divided the data into 15 batches. Each batch
corresponds to a separate experiment based on powder and
stroke rate settings. Since there are three powder types and
five ordered stroke rates (35, 31, 27, 31, and 35 strokes/min),
we ended up creating a total of 15 batches. Each batch,
on average, contains data for 200 strokes/workpieces. Then,
we divide each batch into three subsets: training, validation,
and test. By using that data split, we then have run an
optimization procedure using various models and various
hyperparameters. Hyperparameter optimization refers to the
selection of optimal hyperparameters for a learning algorithm.
A hyperparameter is simply a parameter whose value is
used to control the learning process. Hyperparameters are
extremely important because they directly control the behavior
of the training algorithm and have a significant impact on
the performance of the model being trained. Hence, choosing
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Fig. 6. Strategy used to split the dataset in the training, validation, and test
sets.

appropriate hyperparameters plays a crucial role in the gener-
alization capability of the trained model.

Fig. 6 shows the diagram of the data splitting procedure: we
split each batch by taking the first 70% of the examples for
training, the next 15% for validation, and the remaining 15%
for testing. Afterward, we combine all the training, validation,
and testing samples (extracted from each individual batch) to
create the final training, validation, and testing sets for onward
model training. We consider this approach of combining
samples from individual batches more realistic than dividing
the 15 batches in three splits, e.g., initial ten for training,
two for validation, and the last three for testing, because this
approach guarantees: 1) more model generalization capability
and 2) better replicates the real-world production scenario.

We chose to use random forest (RF) [28], AdaBoost
(ADA) [29], and GB trees [30] for several reasons. First,
these algorithms are widely recognized and extensively used
in ML for classification and regression tasks. They have been
shown to have robust performance and to be effective in
various domains. Second, these algorithms possess unique
characteristics that make them suitable for specific problems,
for example, RF is known for its ability to handle both low
and high-dimensional datasets, handle irrelevant features, and
provide good generalization. ADA, on the other hand, excels
in boosting weak learners and reducing bias. GB is particu-
larly useful in capturing complex interactions and producing
accurate predictions. All in all, these models are extremely
robust to overfitting, are generally accurate, and are reported
to be among the top-ten algorithms [31] ML specialists should
know.

We have analyzed the performance of our chosen ML
models by varying the hyperparameters’ values as follows.

1) RF.
a) Number of Trees: From 50 to 800 at steps of 50.
b) Max Depth: From 10 to 100 at steps of 10 plus

“unlimited.”
2) ADA.

a) Base Estimator: Decision Tree three levels deep,
decision Tree only one level deep.

b) Number of Trees: From two to 400 at steps of 25.
c) Learning Rate: 20 equally spaced values on a log

scale from 10−4 to 100.5.
3) GB trees.

a) Number of Trees: From 50 to 800 at steps of 50.

b) Learning Rate: 20 equally spaced values on a log
scale from 10−4 to 100.5.

c) Maximum Depth of Each Tree: From 1 to 20 at
steps of 3.

We have trained these models by using the top-ten features
that showed a high correlation with the target QC. Hence,
there are five feature vectors, one for each QC, that are used
as input to a specific ML model (as detailed in Section IV-D).

We use the RMSE as the validation metric, to decide which
hyperparameters (for each model) have the best performance
on the 15% validation set (see Fig. 6). In Section V, we show
the models’ performance on the unseen test set, which is
obtained by retraining the models on the union of the training
and validation set. The used implementation of the ML models
used in this article comes from the Python library scikit-
learn [19].

V. RESULTS

We report the results of the compared ML models by
using standard metrics: RMSE, R2, RMSE (%), and Pearson
correlation (Corr).

RMSE is a commonly used metric to measure the average
magnitude of the differences between predicted and actual
values in a regression task. RMSE provides a measure of the
overall accuracy of a regression model

RMSE =

√
6n

i=1(xi − x̄i )

n
(2)

where x1, x2, . . . , xn is the array of values for the quality
parameter we are predicting, while x̄1, x̄2, . . . , x̄n are the
corresponding predictions.

R2 or R-squared measures the proportion of the variance in
the dependent variable (mass or lengths) that can be explained
by the independent variables (features) in the regression
model. It provides an indication of the goodness-of-fit (in the
range of 0–1 with a higher value indicating a better fit.) of the
model to the observed data.

RMSE (%) offers a standard approach to quantify the error
of a model so that comparisons of different prediction tasks
can be performed. It is defined as follows:

RMSE(%) = 100 ·

√√√√6n
i=1

(
xi −x̄ i

xi

)
n

(3)

where x1, x2, . . . , xn is the array of values for the quality
parameter we are predicting, while x̄1, x̄2, . . . , x̄n are the
corresponding predictions.

Pearson correlation (Corr) measures the linear relation-
ship between the predicted and true value of a QC (mass or
lengths).

In addition, we report the training time (the average time
taken to train the model across multiple experiments) and the
prediction time (the computational time needed to predict a
single QC).

We have performed our experiments on a server computer
equipped with an Intel1 Xeon1 X5550 CPU (for a total of

1Trademarked.
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TABLE VI
PERFORMANCE ON THE TEST SET OF THE ML MODELS IN PREDICTING

THE WORKPIECE MASS, BY USING PRESS CURVE AND ENVIRONMEN-
TAL DATA. THE BEST MODEL IS IN BOLD FACE

TABLE VII
FEATURE IMPORTANCE IN GB MODEL (BEST MODEL)

TABLE VIII
TRAINING AND PREDICTION TIMES IN SECONDS FOR THE THREE MODELS

CONFIGURED WITH THE BEST PARAMETERS FOR MASS QC ON COM-
BINED PRESS CURVE AND ENVIRONMENT FEATURES

16 cores) and 40 GB of random access memory (RAM).
Training and prediction tasks are performed by using a single
core of the server CPU and by limiting the RAM usage to
8 GB. In this way, we can better compare the obtained model
performance with that obtainable on an industrial PC (IPC).

A. ML-Based Prediction of Mass

As a result of the cross-validation parameter selection pro-
cedure, we have found that GB is the best-performing model
(as depicted in Table VI); with hyperparameters configuration:
learning rate of 0.02335, maximum depth of 4, and 750 esti-
mators.

In Table VI, we show the performance of all the considered
models in terms of our chosen metrics, when they are using
their best hyperparameters’ values, and are evaluated on the
unseen test set. Moreover, in Table VII, we show the ranking
of the ten predictive features describing a workpiece, based
on their importance in predicting the mass QC in the best-
performing ML model, that is, GB. While in Fig. 7, we show
the comparison of true and predicted mass values, for each
workpiece in the test set, for the best-performing model, i.e.,
GB.

Finally, Table VIII shows the training and prediction times
of the considered models. All the models took less than a tenth
of a second to predict the mass, and among them, GB is the
quickest (≈300–400 µs).

Fig. 7. Comparison between the predicted and true mass values of each
workpiece in the test set: gradient boosted model and combined environment
and press curve features.

TABLE IX
PERFORMANCE ON THE TEST SET OF THE PREDICTION OF THE LENGTH

QCS, BY USING THE PRESS CURVE AND THE ENVIRONMENTAL

FEATURES. THE BEST MODEL IS MARKED IN BOLD LETTERS

B. ML-Based Prediction of the Lengths

In Table IX, we show the performance of the considered ML
models for length estimations, when their best hyperparame-
ters’ values are used, and they are evaluated on the test set.
The best configuration of the considered models to predict the
lengths QCs, determined via cross-validation and evaluation of
the model performance on the validation set, are as follows.
Length 1 RF with maximum depth 10 and 100 estimators.
Length 2 RF with maximum depth 10 and 150 estimators.
Length 3 GB with a maximum depth of 4 and 400 estimators

and a learning rate of 0.0403.
Length 4 GB with a maximum depth of 7 and 700 estimators,

and a learning rate of 0.0136.
If we look at the model’s errors, in terms of RMSE (%),

as shown in Table IX, we can note that the models perform
similarly when predicting the three lengths, namely, Lengths 1,
3, and 4, and worse for Length 2.

Finally, Table X shows the execution time of the models to
predict the lengths QCs. The worst case requires less than a
tenth of a second to predict all the QCs. For ADA and RF the
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Fig. 8. Comparison between true and predicted lengths for each piece in the test set, using the best model and the best combination of press curve and
environmental features. (a) Length 1. (b) Length 2. (c) Length 3. (d) Length 4.

worst average prediction time is 0.0169 (Lengths 2 and 3) and
0.0306 s (Length 3), respectively. Hence, in this case, as for
the mass, the considered models can be used in a real-time
scenario. In fact, taking into consideration the time taken to
produce a workpiece, which for the highest stroke rate (i.e.,
35) is ≈1.7 s, this time is much longer than the time required
by the proposed models to estimate the QCs.

VI. DISCUSSION

We now summarize the main results of the analysis per-
formed in this article. We start by highlighting the main
findings and discussing some of the identified issues. We first
summarize the results of the correlation analysis (see Table V).
The press curve features mostly correlated with the mass QCs
are related to the removal of the workpiece. This happens
because the ejection of the produced workpiece and the filling
phase for the subsequent workpiece production are occurring
in parallel. Therefore, every produced workpiece correlates
with its preceding one. Besides, the correlations between press
curve features and the lengths are high for force and work
during the ejection and workpiece removal phases. This is
expected since higher compaction forces lead to higher elastic
relaxations, which is also known as the spring-back factor. The
spring-back factor leads to an axial and radial elastic relaxation
meaning that the workpiece expands already within the cavity
leading to higher ejection force.

Conversely, by analyzing the correlation of the environment
features and the QCs we have found that the environment
variables are not correlated with the mass and Length 1.
However, there is a low and moderate correlation between

TABLE X
TRAINING AND PREDICTION TIMES IN SECONDS FOR THE EXECUTION OF

THE THREE MODELS WHEN THEY ARE CONFIGURED WITH THE BEST
HYPERPARAMETERS SETTINGS: LENGTHS QCS PREDICTION AND

BY USING BOTH THE PRESS CURVE AND THE ENVIRONMENTAL
FEATURES

these variables and Lengths 2–4. This is due to the nature of
the powder: it is a mixture of iron particles, press additives, and
lubricant. Lubricant is susceptible to environmental conditions,
e.g., with humidity the iron density in the powder mixture is
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TABLE XI
SUMMARY OF THE GB MODEL PERFORMANCE: RMSE (%)

TABLE XII
PREDICTION TIME (AVERAGE) IN SECONDS FOR GB

low (lubricant particles are larger). This affects the workpiece
length after compaction.

Regarding the ML models, we observe that RF and GB
have similar performance when predicting the various QCs,
even if they use different combinations of features. Hence, for
the sake of clarity, we here summarize our ML-based analysis
findings by referring to the GB model only.

Table XI shows the performance of the GB model in terms
of RMSE (%), for all the QCs. We have obtained acceptable
RMSE (%) for all the considered characteristics, with the
lowest RMSE (%) of 0.0886 for the Length 4 characteristic.
The measured prediction errors are acceptable because they
still ensure properly detect if the QCs of a produced workpiece
fall between the upper and lower tolerance limits described in
Table I.

Table XII shows the prediction times for the GB model
to forecast the five considered QCs. These short times make
the proposed approach usable at run time. We note that
the reported execution times do not take into account the
processing time required to collect the data from the sensors
(e.g., raw press curves data), which is, however, very small.
Our proposed QCs estimation method is extremely quick
since the time needed to compute the target estimations for
a workpiece is small compared to the cycle time, which is
≈1.7 s, for the highest stroke rate, i.e., 35 pieces/min.

VII. CONCLUSION AND FUTURE WORK

In the powder compaction process, it is extremely important
to carry out regular quality checks and manual adjustments
of levels’ trajectories. This activity is necessary to meet the
challenges posed by the continuous variations of the operating
conditions (varying temperature, stroke rate, powder quality,
etc.) and ensure adequate consistency in the quality of the
produced workpieces over a longer period.

In this article, we have proposed an accurate and lightweight
ML-based pipeline to assess the quality (mass and lengths) of
sintered workpieces in the compaction process. Our pipeline
exploits ML models, and three of them have been compared:
RF, ADA, and GB. The models have been trained on a
combination of workpiece features, describing the press curve
operation and the environment state (humidity, pressure, and
temperature), to estimate the mass and lengths of the produced
workpieces. On our dataset, we have estimated the RMSE (%),
of the compared models, and by using the best ML model,
namely GB, this error ranges from a minimum of 0.0886 to

a maximum of 0.2134 (see Table XI). Our quality estimation
scheme is lightweight as it takes few microseconds (≈300) to
estimate the QCs of a produced workpiece. We first note that
the measured prediction errors ensure that the estimated QCs
can be assessed with enough precision to keep them between
the upper and lower tolerance limits. Second, we observe that
the estimation is made quickly enough so that it takes less time
to compute it than the time required to produce a workpiece
at the fastest stroke rate of 35 strokes/min, namely ≈1.7 s.

The analysis presented in this article was performed offline,
as it was not possible to interfere with industrial production.
Now that we have shown promising results from our offline
analysis, we plan to develop an automatic digital control
system capable to ensure the desired quality of the produced
workpieces, in real-time. Furthermore, we plan to conduct
more rigorous experiments to: 1) perform a long-term assess-
ment of the proposed approach; 2) check the generalization
capability of the selected model (reuse the model with other
types of workpieces); and 3) use even more advanced ML
algorithms, such as incremental induction trees, to be able to
continuously update the predictive model without retraining
it on the full historical dataset. We leave this experimenta-
tion in the real-time settings, along with dealing with the
computational constraints related to memory usage and power
consumption, for future work.
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