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Abstract— Automatic guided vehicles (AGVs) are indispensable
elements for the advancement of Industry 4.0 and the digital
transformation of factories. These industrial vehicles use embed-
ded intelligence to orient themselves and plan their routes in the
short term with the aim of achieving a collaborative, safe, and
efficient environment, increasing the competitiveness of industrial
plants. However, AGVs still present some challenges that do not
allow the full deployment of these vehicles for precision industrial
tasks. For this reason, in this article, we propose a localization
system to enhance the position determination of AGVs in the
industrial plant. This system is based on a wireless ad hoc
network that modulates the localization signal through ultra-
wideband (UWB) technology to take advantage of the very short
duration of the emitted pulses granting robustness against the
multipath and non-line-of-sight (NLOS) negative effects typical
of industrial environments. In addition, we optimize the location
of the architecture sensors through a metaheuristic algorithm
(MA-VND-Chains) that requires the definition of the system
localization uncertainties given a particular sensor arrangement.
For this purpose, we introduce in this article the most complete
characterization of the uncertainties of the time difference of
arrival (TDOA) localization architecture based on noise, clock,
and multipath effects. This allows us to finally obtain localization
errors up to six centimeters, thus attaining the required accuracy
for AGVs to address high-demanded accuracy applications within
the industrial plant.

Index Terms— Automatic guided vehicle (AGV), Cramér-Rao
bounds (CRBs), indoor localization, local positioning systems
(LPSs), metaheuristics, multipath, time difference of arrival
(TDOA), ultra wide-band (UWB).

I. INTRODUCTION

AUTOMATED guided vehicles (AGVs) are supposing a
revolution for the internal automated transportation of

goods within the digitized industry [1]. By means of embedded
intelligence and the connectivity currently incorporated into
them, AGVs achieve huge operability. These bases introduce
AGVs in a collaborative industrial environment where their
coordination with other AGVs and different industrial devices
enables the addressing of complex industrial tasks [2].

However, the irruption of AGVs in industry still presents
some remarkable challenges to fully deploy the advantages
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of these vehicles: the communication and coordination among
different AGVs in a fleet, the generation of efficient trajec-
tories in dynamic environments, their integration in industrial
internet platforms, or reaching the adequate accuracy in indoor
navigation for addressing precision applications [3].

Regarding their precision navigation, indoor AGVs local-
ization is addressed through inertial, visual, or ranging pro-
cedures [4]. One of the technologies achieving very accurate
results up to 5–10 cm of error bound in indoor spaces is the
ultra-wideband (UWB) technology.

UWB takes advantage of the very short duration of the
emitted pulses granting robustness against multipath interfer-
ence which is critical for industrial saturated environments [5].
UWB indoor localization technology can modulate the local-
ization signals of radioelectric local positioning systems
(LPSs) which are finally employed to determine the target
location in indoor spaces [6].

LPSs are deployments of wireless sensor networks (WSNs)
that particularly adapt to the characteristics of the scenario
of application [7]. This particular adaptation allows the
arrangement of accurate and reliable localization systems in
harsh environments (e.g., global navigation satellite systems
(GNSSs) denied spaces or scenarios with high obstacles
density).

The benefits of LPS are especially attracting the research
interest in indoor environments since traditional GNSS signals
significantly degrade when facing building walls [8]. In addi-
tion, other classical GNSS error sources (e.g., non-line-of-sight
(NLOS) links among the system devices [9] or multipath
appearance [10]) are severely mitigated in indoor spaces with
a significant number of obstacles such as people, furniture,
or industrial equipment.

LPS address these GNSS limitations through systems
classified depending on the physical property measured for
determining the target location: time, frequency, angle, phase,
power, or combinations of them [11].

Among them, time-based systems stand out for indoor
spaces since they present the best trade-off among robustness,
reliability, easy-to-implement hardware architectures, accu-
racy, and costs [12]. Three main time-based architectures are
considered in the literature: time of arrival (TOA), time differ-
ence of arrival (TDOA), and asynchronous TDOA (A-TDOA).
They generate spherical, hyperbolic, or elliptic localization
systems, respectively [13].

TDOA systems are especially suitable for indoor applica-
tions since these systems stand out in NLOS channel-dominant
conditions [14] or potential sensor failure situations [15].
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Fig. 1. Representation of the industrial plant of this article (left), and
its digital representation for the sensors’ location optimization addressed to
improve the AGVs localization system (right).

These are typical factory conditions where AGVs are
deployed.

Therefore, we propose in this article a UWB TDOA
localization system for allowing the precise localization of
AGVs in industrial indoor environments such as the industrial
plant composed of machines and industrial devices presented
in Fig. 1. This scenario, where AGVs are used for internal
transportation, represents typical factory conditions where
NLOS and multipath are critical factors in attaining robust
and accurate localization.

The performance of the proposed LPS is highly determined
by the location of the sensor nodes of the architecture. This
enables reducing the errors produced by NLOS propagation
links and multipath interference effects. To achieve this pur-
pose, an accurate modeling and measurement of the orography
is necessary, thus shaping the surface of the deployment
region for finding the optimal location for the sensor nodes.
In the literature, this is known as the node location problem
(NLP) [16].

A high number of potential locations for the sensors ana-
lyzed increases the computational complexity of the NLP,
which has been assigned as NP-Hard both in coverage and
accuracy in the localization field [17]. This implies that most
of the literature approaches for the NLP are tackled through
metaheuristic algorithms (e.g., genetic [18], memetic [19],
or bio-inspired algorithms [20], [21], [22]).

However, the efficiency of these methods depends on the
adjustment of these algorithms to tackle the specific problem
addressed. For this reason, we propose in this article the
employment of the MA-VND-Chains algorithm [23] that we
recently proposed to address the NLP optimization considering
the particular characteristics of this problem in LOS/NLOS
environments.

A fitness function to measure the quality of the sensor
distribution in space is required for the optimization. In the
localization field, it is common to employ the Cramér-Rao
bounds (CRBs) to compute the minimum achievable error of
a particular sensor arrangement regardless of the localization
algorithm used to determine the target location [24].

Traditional CRB characterizations have considered position-
ing signal path degradation in LOS environments [25], [26].
We recently added to this CRB characterization the consid-
eration of the signal path degradation in LOS/NLOS environ-
ments through the development of a ray-tracing algorithm [10]
that we completed with the analysis of the clock errors during
the time measurements in [27].

This error characterization was later proven in actual envi-
ronments, showing that our approach better described the error
bounds than traditional CRB characterizations in an actual
UWB TDOA localization system [28]. However, there is still
a difference between the actual localization errors and our
proposed CRB which may be due to multipath interference.

For this reason, in this article, we complete our CRB
model by adding the error effects of multipath interference to
the clock and signal path losses in an indoor UWB TDOA
positioning system. The main objective is to optimize the
deployment of sensors of the LPS within an industrial plant
using the proposed MA-VND-Chains optimization algorithm.
By employing the improved CRB model as the fitness func-
tion, the algorithm aims to minimize localization errors across
the entire coverage region necessary for AGVs navigation. The
proposed approach significantly reduces overall localization
errors, enabling AGVs to perform precise tasks with improved
accuracy and enhancing their navigation capabilities in indus-
trial environments.

Therefore, the main contributions of this article can be
summarized as follows.

1) The proposal of a combined UWB TDOA localization
system to enhance the signal quality and precision
navigation of AGVs in industrial plants.

2) The most complete characterization in the current lit-
erature of the error bounds of the TDOA architecture
in indoor environments considering noise, clock, and
multipath uncertainties.

3) The definition of a novel adaptive encoding and decod-
ing of the NLP through the development of the poly-
hedron formed by the building walls of the scenario
of application. This exclusively ensures the generation
of valid individuals for the location of the TDOA
architecture sensors.

4) The proposal of an optimal localization system through
the utilization of the MA-VND-Chains algorithm,
specifically tailored to address obstacles and indoor
conditions.

5) The minimization of the localization system error in
the entire navigation area of the AGVs in the industrial
plant.

The remainder of the article is organized as follows: we
revise the UWB technology with its benefits for indoor
localization in Section II; the novel CRB characterization con-
sidering signal path losses, clock uncertainties, and multipath
is proposed in Section III; Section IV presents the specifi-
cations of the industrial scenario of application of the UWB
TDOA system proposed together with the mathematical model
of the problem addressed; the MA-VND-Chains algorithm
used for the NLP optimization is shown in Section V while
Sections VI and VII present the results achieved and the
conclusions of the article, respectively.

II. RELATED WORKS OF UWB INDOOR LOCALIZATION

The digital transformation implied by Industry 4.0 makes
it possible to advance in the communication and coopera-
tion of collaborative agents such as AGVs and employees,
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achieving more advanced and optimized production systems.
However, as new services are added, industrial communication
networks have to increase their capacity to exchange data and
transmit them at low latency. Many of these services, such as
target localization, require of wireless technology, which has
led authors such as Kunst et al. [29] to develop techniques to
improve their communications. In addition, electromagnetic
interference (EMI) produced by electronic devices operating
nearby [30] such as industrial machines or phones, increases
electromagnetic fields, promoting the appearance of noise
incorporated into the communications channels. The EMI
effect is a serious problem of digital systems [31], which has
forced the selection of resistant technologies [32].

The transmissions of UWB are composed of energy pulses
modulated in the order of picoseconds where aspects such
as amplitude, polarization, or phase are varied to encode the
information. These signals separated by at least one pulsewidth
duration maintain their individuality without overlapping [33].
The short pulses and large bandwidth help reduce the effect
of severe multipath interference, as those unwanted paths
are exhausted making it easier to receive the signal at the
receiver [34].

Industrial scenarios are composed of objects, materials [35],
and architectural elements that, in addition to generating
multiple paths, attenuate the signals trying to pass through
them. The frequency used in the UWB signal coding allows for
attenuating the material penetration losses, favoring the signal
strength during communication [36]. The short pulses, together
with the radio energy dispersion techniques it applies, spread
their energy over a wide frequency range with a low-power
spectral density. This generates a high bandwidth that allows
high data throughput during communication and a longer
lifetime in portable systems. In addition, the existence of
external noise and devices does not significantly affect the
technology due to its high bandwidth and signal modulation.

In the literature, there are many studies that examine the
advantages of UWB technology. For example, Machaj et al.
[37] conduct a pedestrian localization study in indoor envi-
ronments (i.e., offices and gyms) and highlight the very
accurate localization of UWB concerning WiFi and Zigbee
technologies. However, the industrial scenarios are more
complex compared to the consumer indoor scenarios [35].
Therefore, as proposed by Schroeer [35], industrial UWB
solutions have to be more accurate and reliable since inac-
curate information can generate pernicious decisions. For
this reason Krishnan et al. [38] developed machine learning
(ML) algorithms to minimize the impact of NLOS conditions,
Barbieri et al. [39] implemented a Bayesian filtering method
to mitigate object motion dynamics and visibility conditions
and Yang [40] generated an NLOS mitigation model based on
the sparse pseudo-input Gaussian process (SPGP).

Most of the current techniques for mitigating adverse
conditions for a TDOA architecture with indoor UWB tech-
nology focus on acting on the signals when the architecture
is already deployed. This is the case of authors such as
Cheng and Zhou [41] who conduct a study to test which
methodology presents a lower error in localization by

TABLE I

BROADBAND CONFIGURATION MEASUREMENTS [45], [46]

deploying the sensors at the corners of the study scenario,
Liu et al. [42] which improve the signal conditions and reduce
the impact of NLOS conditions in real time through a target
tracking algorithm, and Bocquet et al. [43] which focused
on techniques on UWB technology that improve localization
results.

However, the analysis of the location of the nodes allows
to reduce to a great extent the NLOS conditions and thus
minimize the CRB. For instance, Pan et al. [44] developed a
node placement technique where decimeter-level target loca-
tion accuracy is attained. Nevertheless, the CRB used by these
authors is incomplete [28] as it only takes into account path
losses.

Thus, considering the literature analyzed, we perform in this
article a complete preliminary study on the deployment of an
ad hoc UWB localization system based on the orography of
the scenario, signal degradation (i.e., path loss and multipath
errors) and clock errors to determine an optimized WSN
deployment. The analysis proposed allows us to reduce the
NLOS degradation of the localization signal, the minimization
of the multipath errors, and ultimately reduce the localization
error in the entire navigation area of the AGVs.

For this purpose, we collect in Table I the values used by
UWB applications in WSN indoor localization obtained from
the analyzed literature which are later used during the NLP
optimization performed in this article for mitigating NLOS
and multipath effects in the localization signal.

These features constituting the UWB signal enable
centimeter-level accuracies in target localization [47]. This is a
critical task for AGVs as this reachable accuracy enables their
collaboration with other cyber-physical systems (CS) within
the Industry 4.0 paradigm [2]. To achieve this goal, it is
necessary to know the lower bound of the accuracy estimation
on the signal delay. This value known as CRB allows us
to know an estimation of the TDOA accuracy that can be
obtained in a particular location of the scenario as presented
in Section III.

III. CRB CHARACTERIZATION FOR A UWB TDOA
ARCHITECTURE CONSIDERING NOISE, CLOCK, AND

MULTIPATH ERRORS

Signal propagation and positioning signal treatment produce
uncertainties that degrade the localization system in terms
of accuracy and stability. These uncertainties, resulting in
inaccurate physical measurements, are introduced into the
localization algorithms generating errors in the position esti-
mation [41]. For this reason, different localization algorithms
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are proposed in the literature for reducing the position calcu-
lation uncertainties [41], [48], [49].

However, the error bounds of these algorithms are limited
by obtaining the best combination of the imperfect time
measurements received in the architecture sensor nodes. In this
sense, the minimum achievable error in a particular target
sensor (TS) location can be obtained through the CRBs [49].

The CRB is based on the inverse of the fisher information
matrix (FIM) and allows the finding the minimum variance
of an unbiased estimator of a deterministic unknown param-
eter [50]. When it is applied to the TS coordinates, the CRB
determines the minimum variance in the position calculation
given a determined sensor arrangement in space.

Generally, the CRB has been used to characterize localiza-
tion accuracy losses when the positioning signal is propagated
from the TS to the architecture sensor nodes. The generated
noise in the communications channel during transmission has
been traditionally modeled through a white Gaussian noise dis-
tribution [26] that can be included in the definition of a generic
matrix form of the FIM introduced by Kaune et al. [24]

FIMmn =

(
δh(TS)

δTSm

)T

R−1(TS)

(
δh(TS)

δTSn

)
+

1
2

tr
{

R−1(TS)

(
δR(TS)

δTSm

)
R−1(TS)

(
δR(TS)

δTSn

)}
(1)

where m and n are the TS coordinates analyzed for the FIM
element (FIMmn), h(TS) is the vector containing the spatial
propagation of the positioning signal in the architecture ana-
lyzed and R(TS) is the covariance matrix of the system.

Particularizing for the TDOA architecture used in this
article, the vector h(TS) can be obtained as follows:

hTDOAi = ∥TS− CSi∥ −
∥∥TS− CS j

∥∥,

i = 1, . . . , NCS; j = 1, . . . , NCS; i ̸= j (2)

where CS are the coordinator sensors in which time mea-
surements are collected for a particular TDOA architecture
hyperboloid of potential TS locations [51]; NCS is the number
of CS with effective coverage in a determined TS location and
i , j represent the two different sensors involved in the TDOA
time measurement analyzed.

The definition of the covariance matrix R(TS) allows a
complete characterization of the system uncertainties. Most of
the recent literature error models are based on the definition
of the propagation uncertainties in a heteroscedastic noise
consideration, since the signal travel from the TS to the CS
may differ considerably among sensors [52], [53].

For this reason, we introduced in [10] and [54], a characteri-
zation of the system uncertainties in LOS/NLOS environments
considering heteroscedastic noises. Since Sahinoglu et al. [55]
proved that the TDOA architecture time measurements are
correlated, the nondiagonal terms of the covariance matrix are
distinct to zero.

Therefore, considering these conditions, we introduced a
model for estimating the noise uncertainties in the covariance
matrix of the TDOA architecture through a log-normal path
loss model, especially indicated for modeling the decay of the

positioning signal in indoor environments, due to the noise
produced in the communications channel [56]

σ 2
TDOA(noise)i j

=
c2

B2
(

PT
PN

)PL(d0)

×

[(
diLOS

d0

)
CSi
+

(
diNLOS

d0

)nNLOS
nLOS

CSi

+

(
d jLOS

d0

)
CSj
+

(
d jNLOS

d0

)nNLOS
nLOS

CSj

]nLOS

(3)

diLOS = ∥TS− CSi∥LOS (4)
diNLOS = ∥TS− CSi∥NLOS (5)

d jLOS =
∥∥TS− CS j

∥∥
LOS (6)

d jNLOS =
∥∥TS− CS j

∥∥
NLOS (7)

where c is the speed of the radioelectric waves in m/s;
B is the signal bandwidth in Hz; PT is the transmission
power in W; Pn is the mean noise level calculated through
the Johnson–Nyquist equation, PL(d0) is the path-loss at the
reference distance (d0) which in indoor UWB environments
is usually fixed in 1 m [57]; diLOS , diNLOS , d jLOS , and d jNLOS are
the LOS/NLOS distances covered by the positioning signal
to the CSi and CS j , respectively, which are determined through
the ray-tracing algorithm introduced in [10], and nLOS and
nNLOS are the path-loss exponents in LOS/NLOS propagations
of the positioning signal in indoor environments for the
log-normal model considered.

Subsequently, we improved the error characterization of
TDOA architectures through the consideration of clock uncer-
tainties during the time measurements. Since the measurement
process is independent from the propagation of the positioning
signal, we proposed in [27] a combined noise and clock CRB
characterization considering the independence of the variances
generated by noise and clock uncertainties.

Specifically, our clock error model characterizes the uncer-
tainties considering the initial time-offset (U ) and the clock
drift (η) as in Zhou et al. [58], adding the truncation effec-
tuated due to the clock resolution (floorTR). In addition,
the stochastic nature of the time measurements cannot be
introduced into a fitness function of a metaheuristic tech-
nique. This would promote instabilities during the posterior
NLP optimization process. Thus, we perform a Monte Carlo
simulation in which we determine the expected value for the
clock uncertainties.

Therefore, the clock error characterization can be defined
as follows:

σ 2
TDOA(clock)i j

=
1
ns

ns∑
k=1

{
|Ti−floorTR(Ti+Ui−U0+T0(ηi−η0)+ Tiηi )|c2}

+
1
ns

ns∑
k=1

{∣∣T j − floorTR
(
T j +U j −U0

+T0
(
η j − η0

)
+ T jη j

)∣∣c2} (8)

where nS is the number of the Monte Carlo simulations
performed to determine the expected value of the variance of
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the clock uncertainties [27]; Ti and T j are the ideal times of
the positioning signals emitted from the TS and received in the
CSi and CS j , respectively; Ui , U j , and U0 are the initial-time
offsets of the CSi , CS j , and TS clocks involved in the TDOA
time measurement analyzed; T0 is the ideal time lapse between
the last synchronization of the architecture clocks and the
emission of the positioning signal by the TS; ηi , η j , and
η0 are the clock drifts of the CSi and CS j and the TS clocks,
respectively.

This characterization of the CRB considering clock and
noise uncertainties in TDOA architectures as proposed in [12]
was initially discussed in the literature considering these
two factors, being later on proven under an actual UWB
TDOA localization system [28], demonstrating their superior
performance to traditional literature approaches mostly based
exclusively on noise uncertainties.

However, actual experiments showed a difference between
the localization actual errors and the determined error bounds
of our previously proposed CRB characterization. Thus, other
error sources should be considered to try to further approx-
imate the localization uncertainties. Among other potential
uncertainties, multipath effects are especially relevant in indus-
trial indoor environments due to the presence of multiple
obstacles, machinery, and operators in the factory.

Consequently, we propose in this article to complete
our CRB model considering the multipath error source.
To include the multipath effects on the localization error,
we assume the independence of the multipath error with regard
to the noise uncertainties as presented in Wang et al. [59]
for an indoor UWB TDOA localization system. Thus, as our
previous assumption considered noise and clock uncertain-
ties as independent, we can consider that the three error
sources (i.e., noise, clock, and multipath) can be modeled
separately.

For the characterization of the multipath uncertainties,
we use the well-known statistical model for indoor multipath
propagation by Saleh and Valenzuela [60]. We use it to
characterize the multipath uncertainties in the two signal paths
involved to compute a TDOA measurement, thus defining the
multipath error variance as follows:

σ 2
TDOA(multipath)i j

= Ḡ i log(1+ di )+ Ḡ j log
(
1+ d j

)
(9)

Ḡ i = G(d0)

[(
diLOS

d0

)
+

(
diNLOS

d0

)nNLOS
nLOS

]−nLOS

(10)

Ḡ j = G(d0)

[(
d jLOS

d0

)
+

(
d jNLOS

d0

)nNLOS
nLOS

]−nLOS

(11)

G(d0) =

(
GT G Rλ2

0

16π2d2
0

)
(12)

where Ḡ t and Ḡ j represent the average multipath power gain
in the positioning signal paths i and j ; di and d j are the
total distances covered for the positioning signal in the two
trajectories; G(d0) is the multipath power gain at the reference
distance (i.e., 1 m in indoor environments [60]); GT and G R

are the gains of the transmitting (i.e., AGV onboard antenna)

Algorithm 1 Calculation of the CRB
(T S, Frequency, G0, GT , G R, nL O S, nN L O S, RM SEre f ,
KO A, KT L E , SN Rmin, ηclock, f loorT R)

1 for TS in KT L E do
2 for Sensor in Individual do
3 ϕlinksensor ← Ray-Tracing method (KO A, TS, Sensor);
4 Signal ← SNR calculation (SN Rmin , ϕlinksensor , nL O S ,

nN L O S);
5 Sensorsavb add (Sensor) when Signal > SN Rmin ;
6 end
7 Sensorsm , T imem , C S ← Calculation of effective

measurements (Sensorsavb , ϕlink )
8 for m in T imem do
9 for Sensor in Sensorsm do

10 σ 2
time(m)← Clock Errors (TS,
Sensor, ηclock , f loorT R);

11 σ 2
noise(m)← Noise Calculation (Sensor , ϕlink , T S,
nL O S , nN L O S, KO A);

12 σ 2
multipath(m)← Multipath Determination (Sensor ,
T S, Frequency, G0, GT , G R , nL O S , nN L O S, KO A);

13 end
14 R(T S)m ← Determination of covariances matrix(σ 2

time(m),
σ 2

noise(m), σ 2
multipath(m), TS);

15 for coord in (x, y, z) do
16 ιm(coord) =

δh(T S)
δT S(coord)

← Calculation of the
derivatives of the signal path (Sensorsm , T S, ϕlink ,
nL O S , nN L O S);

17 τm(coord) =
δR(T S)

δT S(coord)
← Calculation of the

derivatives of the R(T S) matrix (Sensorsm , T S,
ϕlink , nL O S , nN L O S , GT , G R , G0, ηclock , f loorT R);

18 end
19 end
20 F I M (TS) ← FIM (R(T S), ι, τ );
21 RM SE(TS)← Square root of the trace of the inverse of FIM;
22 end

and receiving antennas (i.e., architecture sensor antennas); and
λ0 is the wavelength of the localization UWB signal.

Once characterized the noise, clock, and multipath uncer-
tainties, the justified assumption of independence among
them allows the construction of the R(TS) through the
variances/covariances of the system as follows:

σ 2
TDOAi j

= σ 2
TDOA(noise)i j

+ σ 2
TDOA(clock)i j

+ σ 2
TDOA(multipath)i j

.

(13)

Finally, the construction of the whole FIM introduced in [24]
through the error characterization of this article allows the def-
inition of the root mean-squared error (RMSE) in the position
calculation in a particular TS location (i.e., AGV localization)
with the UWB TDOA architecture arrangement analyzed. This
value can be directly obtained through the inverse of the
FIM(J) with the following calculation [61], [62]:

RMSE(AGVi ) =
√

trace(J) (14)

where RMSE (AGVi ) represents the RMSE in a particular
AGV location i . The reduction of the RMSE in the whole area
of coverage (i.e., the space for AGVs navigation in the factory)
allows the attainment of competitive LPS sensor distributions
in space which permits the precision operation of AGVs in
the industrial plant.

To clarify the previously detailed equations and to indicate
the signal characteristics used at each point of the TLE for the
TDOA architecture, the CRB evaluation procedure is described
in the following pseudocode.
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The method starts by assessing the yield of each node of
the TDOA LPS at every potential location for the indoor
navigation of an AGV. The available sensors, Sensorsavb, are
determined based on their received SNR evaluated through
the ray-tracing algorithm introduced in [10] through the deter-
mination of the LOS/NLOS paths of the positioning signals
with all the scenario obstacles, KOA. The sensors are then
grouped in pairs, named Sensorsm , which perform the TDOA
time difference measurements, Timem .

Subsequently, for each time measurement of each individual
sensor, the algorithm calculates the time, noise, and multipath
uncertainties [i.e., σ 2

time(m), σ 2
noise(m), and σ 2

multipath(m)] for
all time measurements referred to the sensors with effective
coverage through (3)–(12). From these measured uncertainties,
the algorithm computes the covariances matrix R(TS) for the
measurement row m.

Moreover, an analysis of the derivatives for the three Carte-
sian coordinates is performed for the traversed signal paths,
and the attained covariances matrix, thus obtaining ιm(coord)

and τm(coord), respectively, for each measurement. All this
information is required to build the FIM through (1).

Finally, the execution of (14) allows the calculation of the
minimal error of the TDOA architecture in the analyzed TS
location. This process must be repeated in the entire coverage
region, KTLE, to calculate the fitness function of the NLP
optimization of this article through (30), which is addressed
in Section IV.

IV. SPECIFICATION OF THE PROPOSED SCENARIO

With the aim to calculate the RMSE obtained by the
sensors belonging to the TDOA architecture, it is necessary
to characterize a 3-D scenario that allows the reproduction
of the conditions of a real factory through a combination of
the target location environment (TLE), node location environ-
ment (NLE) and obstacle areas (Oas) regions. This strategy
has been previously used to represent rural [51] and urban
scenarios [12] with the same objective.

In the rural scenario, there are uneven ground slopes,
larger distances to be covered, and diverse topography for the
NLE and the TLE environments (e.g., natural landscape as
mountains). In contrast, the urban scenario features elevated
structures (e.g., signals, traffic lights, or buildings) as part
of the NLE, that can allow optimizing the signal reception
and minimizing interference. In addition, TLE tends to be
more constantly distributed. In this article, we present for the
first time the characterization of an indoor scenario with its
particularities.

TLE delimits every potential location where targets can be
placed within the industrial plant (i.e., the area of operation
of AGVs including transit, loading and unloading of materi-
als, and collaboration with other machinery or employees).
Therefore, the transit and operation areas for workers are
also enabled for AGVs to facilitate cooperation between both
collectives. The height of this region is bounded by a lower
and upper limit to be able to evaluate AGVs of different sizes,
thus, as shown in the results section, the same positioning
architecture allows positioning targets from 30 cm in height

Fig. 2. Representation of the TLE and OA regions that compose the scenario.

TABLE II
PARAMETERS THAT DEFINE THE REGIONS THAT

CONSTITUTE THE SCENARIO

up to 2 m with a variation of the localization accuracy of less
than 6%.

In Fig. 2, the set of obstacles that are part of the OA (e.g.,
working machines, storage areas, or static elements) and that
add placement constraints to the sensors due to the occurrence
of NLOS conditions are depicted.

In addition, a sensor placed on top of or in the immediate
vicinity of machinery (e.g., aisles) may block the use of or
access to it, so it is not permitted for sensors to be placed
outside the walls of the industrial plant. The NLE contains
all available positions for the possible placement of network
elements. For this purpose, the space is divided through a grid-
based method, in which the node location is restricted to grid
locations. The spatial resolution used allows for decreasing the
number of points analyzed and the time spent in the calculation
of the sensor locations without significantly impacting the
accuracy of the results [63].

In this sense, we define in Table II the spatial resolution
used in each of the regions described above.

Hence, the industrial plant is stocked with machines and
tools used to produce objects or services representing typical
industrial conditions. The LPS deployed should interfere as
little as possible in the course of a factory without alter-
ing his orography, it should avoid the placement of poles
or other elements that hinder the elaboration of tasks, and
should minimize the RMSE obtained at all locations. These
restrictions require that each sensor that forms the proposed
TDOA architecture must follow the following mathematical
model [64]:

max: Z = ff
(

ff CRB, ff pen
)

(15)
s.t.: xlim1 ≤ xi ≤ xlim2 ∀xi ∈ si ; si ∈ S; si /∈ U (16)

ylim1 ≤ yi ≤ ylim2 ∀yi ∈ si ; si ∈ S; si /∈ U (17)
zlim1 ≤ zi ≤ zlim2 ∀zi ∈ si ; si ∈ S; si /∈ U (18)
nk, n′k ≥ nminTDOA ∀k ∈ KTLE (19)

nk =

ns∑
i=1

covki (20)

covki =

{
1, if SNRki ≥ SNRthresholdi

0, otherwise
(21)
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where ff CRB is a fitness function using the CRB error char-
acterization of Section III; ff pen is a fitness function that
use the penalizations for not attaining the restrictions of the
optimization; xi , yi , and zi represent the spatial coordinates
of a sensor si of the TDOA architecture; xlim1 , ylim1 , and zlim1

are the lower bounds and xlim2 , ylim2 , and zlim2 are the upper
bounds that define the region available for sensor placement in
the space; S is the set containing every potential NLE location
for the architecture nodes having a subset U that defines
prohibited regions in space for LPS sensor placement (i.e.,
inside machinery or within walls); nk are the total number of
effective sensors under coverage in a particular target location
where a subset with a number of sensors n′k can be defined
to optimally calculating the target position as defined in [64];
nminTDOA is the minimum set of sensors of the LPS architecture
that allows the localization of the target placement (i.e., four
sensors for 3-D localization, as shown in [65]); KTLE is the set
of discretized points in the coverage area considered during
the NLP optimization process [63]; covki indicates whether
the sensor i is in the coverage range of the point k under
consideration; SNRki is a measure that evaluates the level of
the signal with the level of the noise on the link from point k
to sensor i and must be in the bounds of sensor sensitivity i
(SNRthresholdi ).

All these restrictions must be considered during the NLP
optimization addressed in this article. However, this optimiza-
tion must consider not only the general definition of the NLP
but also some particular constraints derived from the scenario
characteristics and the deployment of UWB localization sys-
tems in indoor spaces which recommends the disposition of
the architecture sensors in the building walls [44], [66], [67]

xi ≡ xlim1 ⇒ ylim1 ≤ yi ≤ ylim2 (22)
xi ≡ xlim2 ⇒ ylim1 ≤ yi ≤ ρ (23)
xi ≡ ς ⇒ ρ ≤ yi ≤ ylim2 (24)
yi ≡ ylim1 ⇒ xlim1 ≤ xi ≤ xlim2 (25)
yi ≡ ylim2 ⇒ xlim1 ≤ xi ≤ ς (26)
yi ≡ ρ ⇒ ς ≤ xi ≤ xlim2 (27)

L =
nW∑
j=1

1x j +1y j (28)

where ρ and ς represent intermediate limits within the area
available for sensor deployment, and L is the total perimeter
for a scenario with nW walls.

Fig. 3 shows the representation of the boundaries detailed in
the formulas (22)–(28) defining the NLE space and identifying
the walls that compose it.

The mathematical model presented above obtains an opti-
mized combination of sensors for the NLP using the ff CRB and
ff pen

ff = c1 · ff CRB − c2 · ff pen (29)

ff CRB =
1

KTLE

KTLE∑
k=1

(
RMSEref − RMSE

(
S′i (AGVk)

))
(RMSEref)

(30)

ff pen =

∑N
i=1 R
ns

(31)

Fig. 3. Representation of the NLE region that composes the scenario.

where c1 and c2 are parameters for the weighting of each
parameter; S′i is the subset of sensors obtaining the minimum
localization uncertainty when calculating the target location
over the available sensors at this point, as stated in [64]; R is a
penalty whose value is 0 for valid locations and 1 for forbidden
ones, and ns is the number of sensors of the architecture.

Due to the high number of possibilities to be analyzed, the
resolution of the problem (i.e., the points in NLE and TLE and
sensors that compose the architecture), and the total number
of possible valid combinations for the sensors in space, the
NLP optimization addressed in this article cannot be solved
in an adequate computational time if an exhaustive search were
conducted. Therefore, the NLP is classified as NP-Hard, being
usually solved through metaheuristic techniques [68].

V. MA-VND-CHAINS

Mas are optimization techniques that combine concepts
from two or more metaheuristics with the objective of over-
coming some of their individual deficiencies [69] (e.g., local
search (LS) and genetic algorithms (Gas) [70]). These types of
algorithms are mostly population-based, where their individ-
uals undergo individual learning through which they acquire
a “cultural evolution,” adding knowledge about the problem
under study and improving the results obtained [70].

In addition, variations of the MAs have been introduced in
the literature allowing a further adaptation to the characteristics
of the problems in which they are being used. For example,
the MA-SW-Chains employ the concept of LS chains so
that, in one stage, the LS can continue the optimization of
individuals where the previous invocation left off, using their
achieved final parameter configurations [71]. Nevertheless,
this algorithm is used to solve continuous problems, for this
reason, we introduce the MA-VND-Chains variant for discrete
problems such as the NLP addressed in this article [23].
The general performance of the applied technique is shown
in Fig. 4.

First, during the initialization of the algorithm, the specific
scenario of the industrial plant is encoded by incorporating the
unique characteristics outlined in Section IV.

Second, as shown in Fig. 4, a number of potential solutions
(i.e., the population) are randomly initialized and, subse-
quently subjected to evaluation (i.e., the fitness formulas
(29)–(31) detailed in Section IV) to identify the best-adapted
ones. When the LS criterion is not fulfilled, the convergence
of the algorithm is checked. This step allows the algorithm to
be executed as long as none of the stopping criteria, such as
convergence or the maximum number of allowed iterations,
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Fig. 4. Flowchart for MA-VND-Chains algorithm [23].

is met. Below, the individuals undergo modifications through
selection, crossover, and mutation operators. This allows for
generating new solutions with the objective of exploring the
search space and for retaining the individuals that obtain the
best results (i.e., the elitist operator).

However, when facing complex search scenarios, the possi-
bility of obtaining high-quality solutions within certain regions
(i.e., intensification) is reduced. Therefore, the subsequent
generations have to evaluate criteria whether the predetermined
performance criteria of the LS are satisfied. In this context, the
LS allows performing a search within the solution space of an
individual’s neighborhood to find the locally optimal solution.
To do so, the algorithm evaluates the neighborhood and selects
the neighbor with the best fitness function to replace the
current individual. Then, a new search is performed in the
new neighborhood. This neighborhood change is performed
deterministically through the variable neighborhood descent
(VND) [23] algorithm. The LS algorithm continues until it
obtains a local optimum or until it reaches a stopping criterion.

Nevertheless, not all individuals are selected for the LS.
The choice of the individuals depends on the calculation of
their improvement potential to reduce the convergence time
of the algorithm. For this purpose, a memory stores where the
number of times that each individual has not improved, the
degree of improvement obtained by the individual in previous
LS iterations, and the step used in the VND [23]. This memory
is initialized at the beginning of the algorithm and undergoes
changes whenever the individuals are modified (e.g., by the
genetic operators or during the execution of the LS). Therefore,
the benefits for each individual to undergo the LS process are
calculated to reduce the number of possible executions without
sacrificing the obtained accuracy [23].

As detailed in previous sections, the location of the sensors
in the NLE of the industrial plant presents a large number
of potential solutions, so the use of the MA-VND-Chains
algorithm is very important to reduce time and improve the
results. Each individual that is part of the population is a
solution that obtains a higher or lower RMSE depending on
its adaptation to the industrial plant.

In our previous research, these individuals were composed
of the Cartesian coordinates (i.e., x , y, and z) representing
the location of the sensors that make up the TDOA archi-
tecture [72]. Nevertheless, since the sensors are located on
the building walls, this representation is not optimal for an
industrial plant.

Fig. 5. Encoding used for the individuals of the population.

Fig. 5 shows the chromosome representation of the individ-
uals. Two of the components of the reference system appear
explicitly in the encoding and the third is reflected implicitly.
Therefore, the value of wi allows us to know on which wall the
sensor is located (i.e., W1, W2, . . . , W6), as shown in Fig. 3.
In this representation of the NLE space, wi corresponds to
the width coordinate of the sensor and zi is the height value.
These parameters are the NLP decision variables, generating
numerous potential locations.

This arrangement of the representation of the 3-D coordi-
nates allows us to avoid generating invalid individuals outside
the NLE. Thus, to carry out the decoding of the individual,
it is necessary to apply the following constraints according to
the dimensions of the NLE represented in Fig. 3:

W1,min ≤ wi ≤ W1,max ⇒ (yi = wi ) ∧
(
xi = xlim1

)
(32)

W2,min ≤ wi ≤ W2,max ⇒ (xi = wi ) ∧
(
yi = ylim1

)
(33)

W3,min ≤ wi ≤ W3,max ⇒ (yi = wi ) ∧
(
xi = xlim2

)
(34)

W4,min ≤ wi ≤ W4,max ⇒ (xi = wi + ς) ∧ (yi = ρ) (35)
W5,min ≤ wi ≤ W5,max ⇒ (yi = wi + ρ) ∧ (xi = ς) (36)

W6,min ≤ wi ≤ W6,max ⇒ (xi = wi ) ∧
(
yi = ylim2

)
(37)

where wi is the binary value encoded in the individual and
corresponds to x or y, and W j,min and W j,max corresponds to
the limits of wall j , as shown in Fig. 3.

The encoding adopted allows homogenizing the x and y
coordinates in w, generating valid positions in each crossover
and mutation. In this sense, w represents only the coordinate
that is modified when advancing through each wall, while
the other coordinate, which remains constant in this system,
determines the wall at study.

The representation of the nodes without w (i.e., the tradi-
tional x , y, and z Cartesian coordinates used in our previous
studies in rural and urban scenarios) generates a large number
of invalid positions within the industrial plant, increasing the
computational cost of the metaheuristic since there would be
many more invalid positions than valid locations considering
traditional encodings [72]. This modification has reduced the
number of reachable solutions by more than 95%.

Section VI shows the deployed architectures obtained by the
MA-VND-Chains algorithm as well as their RMSE calculated
at each potential navigation position for the AGVs.

VI. RESULTS

This section shows the results of the optimization of the
sensors’ location for the UWB TDOA architecture deployed
in the asymmetric 3-D environment presented in Section IV.
This passive architecture does not require the synchronization
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TABLE III
CONFIGURATION OF THE SYSTEM CLOCKS [58]

TABLE IV
VALUES USED BY THE MA-VND-CHAINS SELECTED FOLLOWING THE

METHODOLOGY PRESENTED IN [23] AND [73]

between the TS clock and all the architecture sensors involved
in the localization process since it uses relative times for the
position calculation reducing the system complexity. However,
the architecture sensors clocks may suffer deviations that
disturb the time measurements, affecting the calculation of the
AGV location. To minimize these uncertainties, as introduced
in Section V, it is necessary to perform an adequate opti-
mization of the sensors’ location. Table III shows the selected
characteristics for the anchors clocks of the proposed UWB
TDOA architecture.

The architecture allows tracking single and multiple targets
by calculating the difference in the arrival times of the signals
on spatially separated receivers. However, in addition to clock
errors, noise and signal degradation generate uncertainties in
the range estimation although they are minimized by selecting
the UWB signal characterization of Table I.

For these reasons, the MA-VND-Chains algorithm can
select optimized positions for the sensors, reducing the posi-
tioning error of the AGVs within the TLE. The balance
between exploration and intensification achieved allows us to
optimally adapt to the orography and characteristics of the
scenario. Table IV determines the tuning parameters for the
MA-VND-Chains algorithm employed for the NLP optimiza-
tion addressed. The algorithm has been coded in the MATLAB
development environment and has been run on an Intel Core
i9 CPU with 32 GB RAM.

As shown in Table IV, the MA-VND-Chains algorithm has
been run for five, seven, nine, and 11 sensors TDOA configura-

Fig. 6. RMSE distribution after the MA-VND-Chains optimization for 11,
9, 7, and 5 TDOA anchors, respectively. The error distributions highlight
the media, typical deviation, median, interquartile ranges, and outlier values
results obtained.

TABLE V
RMSE IN CENTIMETERS FOR THE MA-VND-CHAINS WITH FIVE,

SEVEN, NINE, AND 11 SENSORS

tions to compare the RMSE obtained by each WSN analyzed.
The analysis of different distributions allows comparing the
accuracy bounds provided by each of the TDOA architectures
attained by the metaheuristic.

Thus, Fig. 6 and Table V present the error distribution
achieved by each TDOA configuration examined.

Fig. 6 presents the error distributions obtained after analyz-
ing the final architectures generated by the MA-VND-Chains
algorithm. The left side of each element represents the error
obtained for each point within the TLE (i.e., the potential
locations for AGV navigation within the industrial scenario),
without explicitly indicating their spatial coordinates. On the
right side of Fig. 6, the boxplot provides a visual depiction of
the statistical data for the error distributions.

As it can be seen in Table V, the five-sensor architecture
presents a higher dispersion and a higher mean error value
over the TLE, which prevents reaching adequate performance
for AGV precision tasks such as pick and place, or the
coordination with other industrial digitized devices which
requires an error bound limited to 10 cm [74]. The rest
of the architectures present an average error below 10 cm
but the seven-sensor architecture presents a greater dispersion
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than the nine-sensor and 11-sensor architecture, preventing the
seven-sensor architecture to generate a robust, reliable, and
stable localization system for AGVs navigation.

In the literature, there are studies that employ UWB
technology combined with the TDOA architecture for target
localization and tracking [75]. In this case [75], a four-sensor
optimization methodology is implemented in a room with
limited NLOS, approximately 7 × 5 m in size, resulting in
an RMSE of 11.21 cm. Additionally, there are studies that
replicate slightly larger environments to measure the position-
ing error. For instance, UWB MultiCell TDOA achieves an
average error of 10 cm with eight sensors [76], or another
UWB TDOA study that also analyzes multipath errors, obtains
an average error of approximately 8 cm [77]. These errors
are on the same order of magnitude as those observed in the
previous table but it is important to highlight that our analyzed
scenario is larger and more complex.

The differences between the nine- and 11-sensors distribu-
tions obtained in this article remain significant, but they are
less pronounced compared to five- and seven-sensors distri-
butions. This can be due to the fact that, in particular AGV
locations, the consideration of a greater number of sensors
to calculate the target location does not necessarily lead to
a reduction of the localization uncertainties as demonstrated
in [64]. However, the upper fence below 10 cm in the error
distribution, the stability of the architecture under potential
sensor failures [15], and the potential for the network to
cover various tags at the same time (e.g., AGVs fleets [78])
recommends the deployment of the 11-sensor architecture in
the industrial scenario proposed.

The study of architectures with a greater number of sensors
was discarded since no significant difference in the error
bounds can be achieved to justify the deployment of an
architecture with higher costs and higher energy consumption.
In addition, the theoretically achieved accuracy of 11-sensor
architecture can even be increased through the treatment of the
localization signal to partially mitigate NLOS and multipath
effects following the research presented in Section II.

We also demonstrated in Section II the importance of
performing a pre-deployment analysis of the network, since
it reduces the uncertainty in the navigability area of the
targets. Therefore, we have performed a comparison between
an optimized architecture with a CRB without multipath
(CRBnoise/clock) (i.e., the most complete actual literature model
considering noise and clock uncertainties) and our proposal
of this article that adds the multipath effect to the CRB
(CRBcomplete) (i.e., a model considering noise, clock and mul-
tipath uncertainties as introduced in Section III).

Subsequently, the two final sensor distributions achieved
through the MA-VND-Chains algorithm presented in
Section V (i.e., one optimization considering the CRBnoise/clock
and the other considering the CRBcomplete of this article) are
evaluated through the CRB complete model in the factory
introduced in Section IV.

Fig. 7 shows the shape, distribution, and most probable
values of the error obtained for the two optimized LPSs using
an 11-sensor UWB TDOA architecture. A higher density value

Fig. 7. RMSE distribution of the points that compose the TLE for two
different optimized UWB TDOA architectures: 1) following an error model
that considers noise and clock uncertainties in orange and 2) following an
error model that considers noise, clock, and multipath uncertainties in blue.

indicates that more points in the TLE exhibit that RMSE value,
signifying a more homogeneous error distribution.

The error difference perceived in Fig. 7 is with the dif-
ferences presented in [28] between our previous CRB error
model of [27] and the actual experimentation on an indoor
UWB TDOA indoor system analyzed in [28]. In addition,
the increased error due to the multipath interference effects is
about 3 cm, which is around the reference values obtained in
UWB experimentation [47] which further validates our novel
CRB error model introduced for the first time in this article.

The multipath and the NLOS conditions are factors that
degrade the signal emitted by the AGV, thus increasing the
location uncertainty of the position calculation. It should be
noted that these effects are increased when the number of
obstacles is higher or with reflective surfaces, as frequently
happens on the floor of the industrial plant (i.e., low area) due
to the placement of machines, tools, and material.

So it is important to perform an exhaustive error analysis
considering the different heights that autonomous mobile
robots can have. Therefore, a classification considering the
most common types of AGVs found in the factory is done.

The first category, called Low (i.e., 30–70 cm height)
presents harsher conditions and refers to the area mainly
occupied by AGVs such as Amazon Robotics’ Kiva or Mobile
Industrial Robots’ MIR100. Medium height is for those robots
such as Atlas Robotics with a height of less than 120 cm.
Finally, the Maxi category includes larger AGVs such as those
from Jungheinrich (i.e., less than 200 cm). The division allows
us to analyze and compare the influence of LOS/NLOS and
multipath conditions on the localization accuracy of AGVs of
different heights.

Table VI shows the error measurements obtained by the
optimized architecture deployed in the scenario for each of
the different heights.

As shown in the previous Table, the optimized sensor
configuration presents mean accuracy values that differ up to
4.14%, 0.33%, and 1.66% from the accuracy results presented
over the low, medium, and maxi areas, respectively. These
low variances in the error distributions of the three regions
demonstrate the adequate performance of the metaheuristic
for attaining a robust and balanced sensor arrangement that
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TABLE VI
STATISTICAL RESULTS FOR THE RMSE FOR THE MA-VND-CHAINS

WITH 11 ANCHORS ACCORDING TO THE DIFFERENT
HEIGHT OF THE TLE

Fig. 8. RMSE evaluation in centimeters for each potential target location
under the detailed scenario described in Section IV. (a) Represents the total
points of TLE within the industrial plant. (b) Depicts the low range of TLE,
covering target heights ranging from 30 to 70 cm. (c) Shows the medium range
of TLE, encompassing targets at heights less than 120 cm. (d) Represents the
maximum range of TLE, including targets with heights up to 200 cm. The
spatial location for the final optimized sensor distribution of the UWB TDOA
architecture deployed in this article is depicted in magenta.

minimizes the error throughout the entire TLE region guaran-
teeing the optimal performance of the localization architecture
for any kind of industrial mobile robot.

Finally, Fig. 8 displays the RMSE evaluation for the opti-
mized positioning architecture achieved using the MA-VND-
Chains algorithm. The final LPS is deployed in the scenario,
utilizing the predefined operating conditions as presented in
this article. The figure serves as a comprehensive overview of
the architecture performance, providing a visual representation
of the quality of the positioning results.

VII. CONCLUSION

The deployment of AGVs in industrial scenarios is open-
ing a collaborative framework for internal transportation that
increases the overall efficiency of factories. The embedded
intelligence in these vehicles enables their autonomous naviga-
tion in the industrial plant. However, their localization system
does not yet allow some precision tasks to be addressed by
AGVs.

Consequently, we propose in this article the deployment
of an ad hoc WSN based on UWB signal modulation for
designing a robust and accurate localization system for the
indoor precise navigation of AGVs.

UWB signal modulation takes advantage in these contexts
of the very short duration of the pulses and of the large

bandwidth to reduce multipath and NLOS negative effects on
the localization signal thereby promoting the definition of a
robust indoor localization system with centimeter accuracy.

However, the effective deployment of the proposed localiza-
tion system requires an optimized location of the architecture
nodes to minimize the error bounds of the architecture.

In this sense, we perform in this article an optimization
of the sensors’ location through the MA-VND-Chains meta-
heuristic. This optimization is guided by the minimization of
the clock, noise, and multipath uncertainties of the localization
system which are jointly modeled for the first time in the
literature to the authors’ knowledge.

Results have shown that an optimized 11-sensor architecture
attains medium errors of 6 cm and an upper fence limited
below 10 cm in the proposed industrial scenario, validating our
proposed UWB TDOA localization system for AGVs’ precise
indoor navigation. In addition, the error distribution has shown
stability for low, medium, and maxi-height AGVs which
demonstrates the efficacy of the metaheuristic for reducing the
localization errors in the entire navigation area thus designing
a robust localization system for any type of industrial mobile
robot within the factory.

Finally, the novel error model considering multipath has
an error definition with actual UWB indoor experimentation
also covering the differences of our previous CRB modeling
considering noise and clock errors for actual deployments of
UWB indoor localization systems. This constitutes a novel
framework for determining the error bounds of an indoor
localization architecture and for extracting valid conclusions
that can maximize the theoretical performance of indoor
localization systems enabling high-precision tasks in indoor
spaces.
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