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Abstract— This study proposes a linear approach for prop-
agating uncertainties in the multiline thru-reflect-line (TRL)
calibration method for vector network analyzers (VNAs). The
multiline TRL formulation we are proposing applies the law
of uncertainty propagation as outlined in the ISO Guide to
the Expression of Uncertainty in Measurement (GUM) to both
measurement and model uncertainties. In addition, we conducted
a Monte Carlo (MC) analysis using a combination of measured
and synthetic data to model various uncertainties, such as
measurement noise, reflect asymmetry, line mismatch, and line
length offset. The results of our linear uncertainty formulation
demonstrate agreement with the MC analysis and provide a
more efficient means of assessing the uncertainty budget of the
multiline TRL calibration.

Index Terms— Calibration, metrology, microwave measure-
ment, traceability, uncertainty propagation, vector network
analyzer (VNA).

I. INTRODUCTION

THE calibration of vector network analyzers (VNAs) is
crucial to establish a reference measurement plane for

the measured device under test (DUT). However, random
measurement variations can arise from various sources, such
as instrumentation or calibration standards. To account for
these uncertainties, it is essential to quantify them at the new
measurement plane through uncertainty propagation.

A common method for uncertainty propagation is to con-
sider disturbances as multivariate Gaussian distributions and
to use the first-order Taylor series expansion of the underlying
mathematical model used in the calibration process. This
approach is known as the law of uncertainty propagation,
outlined in the ISO Guide to the Expression of Uncertainty
in Measurement (GUM) [1]. However, the law of uncertainty
propagation can only be applied if the sources of uncertainties
can be explicitly expressed in the mathematical model used for
calibration. For example, the short-open-load-thru (SOLT) cal-
ibration technique relates directly to all calibration standards
and the law of uncertainty propagation can be applied without
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issues. However, for VNA self-calibration methods, such as
multiline thru-reflect-line (TRL), partially defined calibration
standards present a challenge. The lack of a direct relationship
between the calibration equations and the standards makes it
difficult to assess uncertainties using the law of uncertainty
propagation directly.

Uncertainty propagation for classical TRL calibration has
been studied in many publications [2], [3], [4], [5]. In terms
of multiline TRL calibration, uncertainty propagation has been
addressed by the National Institute of Standards and Technol-
ogy (NIST) in their Statistical Plus and Microwave Uncertainty
Framework (MUF) software packages, where the multiline
TRL algorithm is based on optimization procedures [6], [7],
[8]. Other approaches to uncertainty evaluation in multiline
TRL are via Monte Carlo (MC) analysis [9], where the
classical multiline TRL algorithm [10], [11] is treated as a
black box. Such MC simulations are usually time intensive.
The challenges of applying the law of uncertainty propagation
to multiline TRL calibration arise from the mathematical
limitations of the classical algorithm [10], [11]. The multiline
TRL algorithm involves perturbing the solutions of TRL pairs
by selecting a common line as the reference for all line pairs.
However, this heuristic approach of selecting a common line
can result in inconsistencies across the frequency axis.

In a prior publication, we proposed a unique mathematical
formulation for multiline TRL calibration that simplifies the
process by reducing it to solving a single 4 × 4 eigenvalue
problem, regardless of the number of line standards used [12].
We have demonstrated that our method is more reliable
than previous approaches by considering all line pairs and
utilizing optimal weighting to the measurements, rather than
weighting the eigenvectors of the TRL pairs. Furthermore,
in [13], we demonstrated the application of linear uncertainty
propagation in multiline TRL calibration. The objective of
this article is to provide more details on linear uncertainty
propagation in multiline TRL calibration, which was briefly
discussed in [13]. For this purpose, we have refined our
original formulation by relying exclusively on matrix decom-
position, resulting in a more efficient and direct application of
the law of uncertainty propagation. In addition, we address the
update of the measurement covariance matrix to account for
different sources of uncertainty, such as line mismatch, that
cannot be explicitly expressed in the calibration.

The remainder of this article is structured as follows.
Section II presents the mathematical formulation of multi-
line TRL calibration, incorporating a new weighting matrix
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Fig. 1. Two-port VNA error-box model.

technique based on Takagi decomposition. In Section III,
we provide a comprehensive framework for handling vari-
ous types of uncertainties in linear uncertainty propagation.
Section IV compares our method with the MC method using
on-wafer measurements and synthetic data. Finally, we con-
clude in Section V.

II. FORMULATION OF MULTILINE TRL CALIBRATION

A two-port VNA can be modeled with the error-box
model [14], as depicted in Fig 1. Mathematically, we describe
the error-box model with T -parameters as seven error terms

Mdut = kakb︸︷︷︸
k

[
a11 a12
a21 1

]
︸ ︷︷ ︸

A

T dut

[
b11 b12
b21 1

]
︸ ︷︷ ︸

B

(1)

where Mdut and T dut are the T -parameters of the uncalibrated
measurement and the actual DUT, respectively. The matrices A
and B are the scaled T -parameters of the error boxes holding
the first six error terms, and k is the seventh error term.

In contrast to the conventional formulation of the error-box
model in (1), we use a matrix vectorization and the Kronecker
product formulation and their relationship [15] to redefine the
problem as

vec(Mdut) = k
(
BT

⊗ A
)
vec(T dut) (2)

where ⊗ is the Kronecker product and vec(·) is the vectoriza-
tion operation (more details on these operations, see [15]).

The transmission line standards used in multiline TRL are
of different lengths with the same cross-section geometry.
Therefore, when measuring a line standard, the T -parameters
are given by

Li =

[
e−γ li 0

0 eγ li

]
(3)

where γ is the propagation constant of the line standards (the
same for all line standards) and li is the length of the i th line
standard. Assuming that we have N ≥ 2 transmission line
standards (including the thru standard), the primary equations
from [12] we care about are

M = k X L (4a)

D−1 MT P Q =
1
k

LT P QX−1 (4b)

where

M =
[
vec(M1) vec(M2) · · · vec(M N )

]
(5a)

L =
[
vec(L1) vec(L2) · · · vec(LN )

]
(5b)

X = BT
⊗ A (5c)

D = diag
([

det(M1) · · · det(M N )
])

(5d)

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

, Q =


0 0 0 1
0 −1 0 0
0 0 −1 0
1 0 0 0

.

(5e)

A. Construction of the Eigenvalue Problem

The eigenvalue problem is formulated by multiplying an
N × N weighting matrix W on the right-hand side of (4a).
Then, we multiply the new equation on the left-hand side of
(4b). This finally results in

MW D−1 MT P Q︸ ︷︷ ︸
F: 4×4

= X LW LT P Q︸ ︷︷ ︸
H : 4×4

X−1. (6)

In general, the problem presented in (6) is a similarity
equation between the matrices F and H , where X is the
transformation matrix. However, by choosing an appropriate
W , the matrix H can turn into a diagonal matrix. As a result,
the similarity problem in (6) transforms into an eigenvalue
problem. From [12], the optimal W that maximizes the eigen-
value separation is found to be

W H
= z yT

− yzT
=

[
z y

][ 0 1
−1 0

][
zT

yT

]
(7)

where (·)H is the Hermitian transpose (conjugate transpose).
The vectors y and z are given by

y =
[
eγ l1 · · · eγ lN

]T (8a)

z =
[
e−γ l1 · · · e−γ lN

]T
. (8b)

Therefore, under the condition that W was chosen according
to (7), the eigenvalue problem is now given by

F = X


−λ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 λ

X−1 (9)

with

λ =

N−1∑
i=1

i< j≤N

∣∣eγ (li −l j ) − e−γ (li −l j )
∣∣2

. (10)

The calibration coefficients can be solved as the eigenvec-
tors associated with the eigenvalues ±λ . However, eigenvector
solutions are only known up to a complex scalar factor. There-
fore, the calibration coefficients obtained from the eigenvectors
must be normalized to obtain a unique solution. In addition,
as X is constructed as a Kronecker product, it can be shown
that the remaining inner columns of X can be obtained
directly from the normalized eigenvectors of ±λ [12]. The
denormalization of the eigenvectors is accomplished with the
measurements of the reflect and the thru standards, while
simultaneously solving for the seventh error term k. The
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equations for denormalization can be found in [12]. At last, the
propagation constant can be determined as a final step from
the normalized calibration coefficients and the measurements
of the line standards. In this step, the exponential terms of the
line standards are extracted and combined in the least squares
sense. This estimate of the propagation constant can be used
to shift the reference plan if desired or used in other mea-
surements such as characteristic impedance estimation [16] or
permittivity measurement [17].

B. Computing the Weighting Matrix

The weighting matrix W is an essential part of achieving a
reliable calibration, as it optimally weights the measurement
pairs according to their importance. Measurement pairs that
are near singular are given less weight. In general, we can
determine W by knowing the propagation constant and the
length of the line standards, as given in (7). In [12], we orig-
inally proposed to compute the propagation constant from
the measurements through nonlinear optimization. However,
numerical optimization procedures can pose issues in linear
uncertainty propagation, as such methods are solved itera-
tively, and a proper convergence is required.

In this article, we propose a new technique for deriving W
without having to compute the propagation constant. We first
define a new equation by multiplying (4a) with the right-hand
side of (4b). In this way, we get the following equation:

D−1 MT P QM︸ ︷︷ ︸
measurements: N×N

= LT P QL︸ ︷︷ ︸
model: N×N

(11)

where

LT P QL = z yT
+ yzT

=
[
z y

][0 1
1 0

][
zT

yT

]
(12)

with y and z being the same as defined in (8).
From (11), it is clear that the equation does not depend

on error boxes. In addition, from (12), we can see that its
structure is very similar to the equation for W H given in (7).
The only difference between (7) and (12) is that the subtraction
changes to a summation sign. This structural similarity implies
that both equations share the same vector basis. To derive this
vector basis from (11) and construct W accordingly, we use
the Eckart–Young–Mirsky theorem [18], [19] by performing a
singular value decomposition (SVD) and recovering the first
two dominant singular values and their associated singular
vectors. This process can be written as

LT P QL = s1u1v
H
1 + s2u2v

H
2 (13)

where si , ui , and vi are the singular values and associated
left and right singular vectors of the measurements in (11).
Furthermore, as (11) has a symmetric structure, we can use
the Takagi decomposition to split the matrix into a symmetric
product as

s1u1v
H
1 + s2u2v

H
2 = U t St U T

t = G︸︷︷︸
N×2

GT (14)

where U t is a unitary matrix that holds the Takagi singular
vectors and St is a diagonal matrix with positive real-valued
singular values (equal to the singular values in SVD). As a

result, G = U t (St )
1/2. Takagi decomposition is analogous to

the eigen-decomposition of real-valued symmetric matrices but
for complex-valued symmetric matrices (without conjugation).
In fact, the Takagi decomposition can be computed through
SVD or eigen-decomposition [20], [21]. Therefore, we can
simultaneously apply the Eckart–Young–Mirsky theorem and
perform Takagi decomposition in a single step, either with
SVD or eigen-decomposition.

At last, the matrix G is the common vector basis between
equations (7) and (12). As a result, W is determined by

W H
= ±G

[
0 j

− j 0

]
GT (15)

where the sign ambiguity results from not knowing the order
of the sum from the matrix decomposition. This sign ambi-
guity can be resolved by choosing the answer which has the
smallest Euclidean distance to a known estimate, for example,
an estimate extracted from material properties. The complex
number j in (15) is to compensate for the square-root matrix
of the permutation matrix in (12), which is implicit in the
matrix G.

III. LINEAR UNCERTAINTY PROPAGATION

The law of uncertainty propagation described by the
ISO GUM [1] is defined for real-valued quantities. How-
ever, S-parameters are complex-valued quantities. Therefore,
to express uncertainties in S-parameters, we need to split the
complex-valued expression into their real-valued equivalent.
Suppose that we have the complex-valued function f (z) :

Cm
→ Cn , we define a real-valued equivalent of f (z) by

the function h(r) :R2m
→ R2n , where

r = Re(z) ⊗

[
1
0

]
+ Im(z) ⊗

[
0
1

]
(16a)

h = Re( f ) ⊗

[
1
0

]
+ Im( f ) ⊗

[
0
1

]
. (16b)

Then, the multidimensional Taylor expansion [22] of h(r)
is given by

h(r) = h(µr) + J h(µr)r +O(r2) (17)

where µr is the mean value around which the expansion is
evaluated, J h(µr) is the Jacobian matrix of h(r) evaluated at
µr , and O(r2) indicates the remaining higher-order terms.

If we assume that the input parameters follow a multi-
variate Gaussian distribution r ∼ N (µr , 6r), where 6r is
the covariance matrix of r , and consider only the first-order
Taylor expansion of h(r), then the mean and covariance of
the output are also distributed after multivariate Gaussian
h ∼ N (µh, 6h), where

µh = h(µr) (18a)

6h = J h(µr)6r J T
h (µr). (18b)

To perform linear uncertainty propagation, it is necessary
to evaluate the function and its Jacobian at the mean value of
the input parameter. The analytical calculation of the Jacobian
can be challenging, particularly for complex operations such
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as eigenvalue decomposition. However, there are various ways
to estimate the Jacobian, such as using software packages
that numerically estimate the Jacobian using a finite-difference
method, or analytically using automatic differentiation (AD)
techniques. Examples of software packages that perform AD
calculations are [23] and [24].

In Sections III-A and III-B, we discuss the various uncer-
tainty contributions in multiline TRL calibration and how to
propagate them linearly through the calibration.

A. Measurement and Forward Model Uncertainty

Measurement uncertainties originate from the instrument
itself. Such uncertainties could come in the form of addi-
tive or multiplicative noise. The general approach to model
measurement uncertainties of S-parameters is through sample
statistics. The covariance matrix of measured S-parameters
can be determined from a sample covariance. If we assume
a multivariate Gaussian distribution, then the unbiased sample
covariance is given by

6S ≈
1

n − 1

n∑
i=1

(hi − µh)(hi − µh)
T (19)

where n is the total number of samples, hi is the vectorized
real-valued representation of the measurements of the i th
S-parameters, and µh is the corresponding mean value. hi

is defined similar to (16)

hi = Re(vec(Si )) ⊗

[
1
0

]
+ Im(vec(Si )) ⊗

[
0
1

]
. (20)

In many modern VNAs, the wave parameters of a two-port
device can be directly measured for a given port source. Using
the wave parameters, we can compute the S-parameters by
combining the measurements of both source directions [25],
as stated below

S =

[
b′

11 b′

12
b′

21 b′

22

][
a′

11 a′

12
a′

21 a′

22

]−1

(21)

where a′

i j and b′

i j represent the measured incident and reflected
waves at the receiver port i when sourced by port j , respec-
tively. The formulation in (21) accounts for switch terms [14],
eliminating the possibility of correlation between measure-
ments through switch term correction equations.

In the multiline TRL calibration, as we deal with
T -parameters, the sample covariance can be propagated after
converting from S- to T -parameters. Knowing the covariance
of the measurements allows for the direct propagation of
uncertainties at every step of the calibration through the chain
rule of Jacobian matrices, ensuring accurate and consistent
uncertainty calculations throughout the calibration process.

Forward model uncertainties are parameters that are con-
sidered during the calculation of calibration coefficients.
An example of such a parameter is the length of line standards
used to determine the propagation constant. Even though the
propagation constant itself is not directly used in the calibra-
tion process, it can affect the reference plane by specifying
its location. In addition, when the calibration coefficients are
denormalized using reflection measurements, it is possible

Fig. 2. Flow diagram of multiline TRL calibration with forward uncertainty
propagation showing the steps involved in the process. It includes the use
of T -parameter measurements of all line standards (including thru) in matrix
M, weighting matrix W , normalized calibration coefficients X̃ , a vector of
length of all line standards (in reference to the thru standard) l , S-parameter
measurements of the reflect standard Sreflect, and its estimated reflection
coefficient 0reflect.

to include the uncertainty of the unknown symmetric reflect
standard by treating it as an independent variable in the
denormalization equation. This can be done by substituting
its estimated value into the corresponding Jacobian matrix.

The flow diagram of the forward uncertainty propagation in
multiline TRL calibration is shown in Fig. 2. The Jacobian
matrix is updated at each step, and the covariance of the
calibration coefficients is determined using (18b). If the ref-
erence plane is shifted, the Jacobian matrix of the calibration
coefficients shall be updated to account for the dependence on
the shifted reference plane.

B. Inverse Model Uncertainty

Inverse model uncertainty quantification is the process
of identifying the uncertainty contributions arising from the
model’s limitations used to estimate calibration coefficients.
Various sources of uncertainty cannot be forward propagated
in the multiline TRL algorithm, such as line mismatch,
connecting/probing repeatability, and cable movement. For
instance, the eigenvalue problem in multiline TRL assumes
that all line standards have the same cross section (i.e., the
same characteristic impedance and propagation constant) and
that error boxes remain unchanged for each measurement.
In reality, these assumptions are not always accurate due to
randomness. However, on average, they are considered valid
if the underlying phenomena are unbiased (i.e., their effects
average to zero).

Various techniques can be used to address inverse model
uncertainty quantification, such as numerical methods based
on Bayesian modeling [26], [27]. In this work, a more
straightforward approach is taken by reformulating the inverse
problem as a forward uncertainty propagation by updating
the covariance matrix of the measurements. It is important to
note that the measurement noise and the model uncertainties
are two independent statistical processes. Measurement noise
originates from the VNA, while model uncertainties originate
from the calibration standards. By assuming that each process
follows a zero-mean multivariate Gaussian distribution, the
overall distribution of the measurement remains multivariate
Gaussian with the same mean value but with a total covariance
comprising the sum of the measurement noise and model
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uncertainties as represented in the equation

6M = 6N + 6F + 6 I (22)

where 6N is the covariance due to noise, 6F represents
the model uncertainties that can be directly accounted for in
the forward uncertainty propagation, and 6 I represents every
source of uncertainty that is addressed with inverse uncertainty
propagation. In this work, we focus on the line mismatch, as it
can be easily modeled in relation to the measurements. Still,
the presented technique can also be applied to other uncer-
tainty types, such as cable movement, connection repeatability,
or probing uncertainties, if they can be adequately modeled in
relation to the measurements.

To quantify the line mismatch uncertainty, we can use the
generalized mismatched line model in the error-box model
given by

vec
(
M ′

i

)
= k Xvec

(
L ′

i

)
(23)

where L′

i is the i th mismatched line model given by [28]

L′

i =
1

1 − 02
i

[
1 0i

0i 1

][
e−γi li 0

0 eγi li

][
1 −0i

−0i 1

]
(24)

with 0i = δZi /(2µZ + δZi ) and γi = µγ + δγi , where δZi

and δγi are random processes that describe uncertainties in the
impedance and propagation constant of the i th line standard.
Under the assumption that δγi and δZi are jointly distributed
after zero-mean Gaussian distribution, then the joint distribu-
tion of 0i , γi is also Gaussian, 0i , γi ∼ N ([µ0, µγ ], 60i ,γi ).
Following that δZi is assumed to be zero-mean Gaussian,
then it follows that µ0 = 0. In addition, for the value of
µγ , we use the estimated value computed by the multiline
TRL calibration. The joint covariance 60i ,γi is determined
through propagating uncertainties in the cross section of the
transmission line (e.g., martial properties and dimensional
quantities) by using an appropriate model (e.g., analytical or
electromagnetic simulation).

At last, to determine 6 I , we only need to propagate 60i ,γi

through the error-box model in (23), using the estimated values
of the calibration coefficients and the propagation constant
from the multiline TRL as mean values. Thus, 6 I for the
i th line standard is given by

6
(i)
I = J M ′

i
(µ0 = 0, µγ )60i ,γi J T

M ′

i
(µ0 = 0, µγ ). (25)

With knowledge of 6 I , we update the covariance matrix of
the measurements and propagate it in the forward uncertainty
propagation, as discussed in Section III-A. The flow diagram
in Fig. 3 summarizes the steps for inverse uncertainty propa-
gation of the line mismatch.

It is important to note that the definition of uncertainties
in the transmission line model can be rephrased in alternative
terms. For instance, instead of using the reflection coefficient
0, the analysis could be based on the characteristic impedance
Z , and instead of using the propagation constant γ , the relative
effective permittivity ϵr,eff could be used. It is also important
to remember that the Jacobian matrix needs to be adjusted
accordingly.

Fig. 3. Flow diagram of multiline TRL calibration accounting for line
mismatch uncertainty. γmTRL and k X are the multiline TRL computed
propagation constant and calibration coefficients, l is a vector containing the
length of all line standards, and L′ and M ′ contain the T -parameter of all line
standards before and after the application of the error-box model, respectively.

Fig. 4. Experiment setup. The parameters of the calibration standards are
perturbed, while Gaussian noise is generated based on the sample covariance
estimate obtained from the VNA measurements.

IV. EXPERIMENT

To validate our uncertainty propagation technique, we com-
pare it to the MC simulation in which the actual calibration
standards are perturbed. For this purpose, we use real mea-
surements to model error boxes and synthetic data to model
coplanar waveguide (CPW) structures as calibration standards.
Fig. 4 provides an overview of the design of the simulation.
In the experiment, the error boxes remain constant while the
parameters of the CPW standards are perturbed by Gaussian
noise. In addition, the entire simulation is perturbed by Gaus-
sian noise based on the covariance matrix estimated from the
actual VNA measurements.

A. Measurement

The measurement setup includes a VectorStar VNA from
Anritsu, with mm-wave heads up to 150 GHz, used together
with a SUMMIT200 probe station from FormFactor. The
CPW calibration standards were implemented on a commercial
impedance standard substrate (ISS) from FormFactor. The
measurements were conducted using 150-µm-pitch ground-
signal-ground (GSG) ACP probes with a 0.8-mm connector
interface from FormFactor. Fig. 5 depicts the measurement
setup. The calibration standards comprise six CPW lines with
edge-to-edge length {200, 450, 900, 1800, 3500, 5250} µm
and an open standard, which is measured by setting the probes
to float.

The measurements were conducted in the frequency range
1–150 GHz with a step of 1 GHz, resulting in 150 points.
A low number of frequency points was necessary to reduce
the measurement time, as 500 frequency sweeps of the
wave parameters were collected for each standard at an
IF-bandwidth of 1 kHz and power level of −10 dBm. It took
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Fig. 5. Measurement setup, depicting the ACP probes in contact with the
calibration substrate.

Fig. 6. Scatter plots and corresponding marginal histograms from 500 points
of uncalibrated measurements of (a) S11 and (b) S21, from the 1800-µm line
standard at 120 GHz. The estimated contour lines of the bivariate Gaussian
distribution correspond to a coverage of 68%, 95%, and 99.7%, respectively.

less than 10 min to collect all sweeps for each standard,
resulting in a measurement time of under 70 min for all
standards. The S-parameters were calculated and the sample
covariance matrix for each standard was estimated. Fig. 6
shows scatter plots and the corresponding marginal histograms
of the uncalibrated measurements of S11 and S21 from the
1800-µm line standard at 120 GHz.

B. CPW Cross Section Modeling

To model the CPW structures used in the measurements,
we used the dimensional and material parameters along with
their uncertainties. Since publicly available data on these
parameters are limited, we conducted optical measurements for
dimensional parameters and obtained material properties from
publicly available sources. Gold was used for the conductor
layer, and lossless alumina with a relative permittivity of
9.9 was used for the substrate. To demonstrate the propagation
of uncertainty in multiline TRL calibration, we assumed
±10% standard uncertainty for the smallest planar dimensional
feature, ±10% for both the thickness and the conductivity
of the gold layer, and ±0.2 for the relative permittivity
of the alumina substrate. These uncertainty assumptions are
for demonstration purposes only and are not intended to be

TABLE I
CROSS-SECTION DIMENSIONS AND MATERIAL PROPERTIES OF THE CON-

SIDERED CPW STRUCTURE AND THEIR STANDARD UNCERTAINTIES

Fig. 7. Comparison between measurements and CPW model of the relative
effective permittivity and the loss per unit length. The CPW parameters are
presented in Table I.

considered accurate. Table I summarizes the parameters and
their uncertainties.

The CPW model we are basing our analysis based on is the
analytical model presented in [29], [30], and [31]. This model
includes corrections for radiation loss from [29] and [30].
A comparison between the CPW model based on the data
in Table I and the extracted relative effective permittivity and
loss per unit length from the multiline TRL measurements
is shown in Fig. 7. The measurements and the model are in
reasonable agreement. Therefore, the MC analysis given in
Section IV-C should represent a realistic scenario of the CPW
on-wafer measurements. It is worth noting that the offset seen
in the relative effective permittivity can be attributed to the fact
that the calibration substrate has a thickness of 254 µm placed
on an absorbent chuck, whereas the CPW model assumes an
infinite extent of the substrate.

C. MC Analysis and Linear Uncertainty Propagation

The uncertainties considered in our analysis are measure-
ment noise, line mismatch, length offset, and reflect asym-
metry. Measurement noise was modeled based on the sample
covariance from the measurements. Line mismatch uncer-
tainties were established by perturbing the cross-sectional
parameters based on the values in Table I. The length offset
was assumed to have ±40 µm standard uncertainty to account
for the contact overtravel of the ACP probes. The reflect
asymmetry was introduced as an offset of ±40 µm standard
uncertainty to emulate the effects of changes in the open
capacitance.

For the MC analysis, we generated S-parameter data of
the calibration standards using the CPW model and embed-
ded them into the error boxes obtained from the multiline
TRL measurements. We perturbed the relevant parameters
in each realization and collected the corresponding output.
The uncertainty of the output parameters was estimated as
sample covariance. We conducted the MC analysis using
5000 samples to ensure reliable numerical convergence. While
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Fig. 8. Evaluated relative effective permittivity and loss per unit length from
the multiline TRL and the calibrated S11 and S21 of the DUT. Uncertainty
bounds are shown as dashed lines and correspond to the 95% coverage of
the Gaussian distribution. The curve labeled “Model value” represents the
simulated model before introducing randomness and embedding it with the
error boxes.

it was possible to use more samples, we noted that using as few
as 100 samples yielded results comparable to those achieved
with 5000 samples. It is worth noting that the MC analysis
with 5000 samples took more than 1.5 h to complete.

For linear uncertainty propagation, we estimated the neces-
sary covariance matrices. The covariance for line mismatch
was estimated using numerical calculation of the Jacobian
matrix of the CPW model, as the analytical model proposed
by [29], [30], and [31] contains the complete elliptic integral
of the first, second, and third kinds, which hinders the ability
to compute analytical derivatives. The covariance of the asym-
metry of the open standard was computed analytically by its
Jacobian matrix. We implemented the multiline TRL algorithm
in Python and used the package scikit-rf [32] for process-
ing S-parameter data and the package Metas.UncLib [23]
to automatically compute Jacobian matrices and propagate
uncertainties linearly.

To analyze the impact of uncertainty in calibration, we con-
sidered a symmetric, lossless DUT with equal transmission
and reflection to be calibrated. In Fig. 8, we compare MC
analysis and linear uncertainty propagation for relative effec-
tive permittivity and loss per unit length, as well as S11
and S21 of calibrated DUT. From the plots we can see an
excellent agreement between the two methods, validating our
approach. Since we are running a finite number of MC trials
and the linear propagation remains an approximation, there is
an error tolerance between the derived uncertainties from the
two methods. On average, over all the frequency points, the
relative error of the estimated uncertainties from the linear
propagation method compared to the MC method is about
0.6% for the relative effective permittivity, 5.33% for the
loss per unit length, 4.61% for the magnitude of S11, and
4.99% for the magnitude of S21. It is worth noting that for
the MC method, we perturbed each parameter directly in
the simulation, whereas in the linear uncertainty propagation,
we only provided the covariance matrices. This means that

Fig. 9. Uncertainty budget due to the individual uncertainty types. The
uncertainties are given as 95% coverage of the Gaussian distribution.

Fig. 10. Uncertainty budget due to the individual calibration standards. The
uncertainties are given as 95% coverage of the Gaussian distribution.

if the covariance matrices are available (even if it is a rough
estimate), the uncertainty evaluation can be performed quickly,
simultaneously with the calibration.

Linear uncertainty propagation allows for a quick evaluation
of the uncertainty budget caused by different sources of uncer-
tainty. As shown in Fig. 9, the impact of each type of uncer-
tainty can be analyzed. For example, length uncertainty and
line mismatch have significant uncertainties in the extracted
relative effective permittivity. In addition, noise in measure-
ments affects all quantities significantly, except for the relative
effective permittivity. As observed in the uncertainty budget,
the noise contribution from the VNA is higher than expected
at higher frequencies, most significantly after 100 GHz. After
contacting the VNA manufacturer, we discovered that the issue
originated from an additional statistical error introduced by the
VNA firmware. The manufacturer was able to fix this issue
with an updated firmware version. This experience emphasizes
the usefulness of analyzing the uncertainty budget, as it allows
for proper debugging.
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Furthermore, by breaking down the uncertainty contribution,
we can see how each standard contributes to the overall
uncertainty, as shown in Fig. 10, which can be used to optimize
calibration standards and identify measurement bottlenecks.

V. CONCLUSION

In summary, we presented an efficient method for linear
uncertainty propagation in multiline TRL calibration. This
approach allows for a quick and easy evaluation of the uncer-
tainty budget caused by different sources of uncertainty, such
as measurement noise, line mismatch, length uncertainty, and
reflect asymmetry. The results were validated by comparing
them to those obtained from an MC analysis. It is important to
note that the proposed method is based on the principles of the
ISO GUM, which includes assumptions such as linearization
and a Gaussian distribution of uncertainties. These assump-
tions should be considered when interpreting the results,
as they may limit the scope of the method’s applicability.
Despite these limitations, the presented approach still provides
valuable insights into the uncertainty contributions within the
calibration. It can give a quick overview of the primary sources
of uncertainty in the measurements.

ACKNOWLEDGMENT

The authors thank ebsCENTER, Graz, Austria, for provid-
ing access to their measurement equipment; Martin Medebach
for helping with programming the VNA; and Sitaram Step-
ponat for helping with measuring the dimensions of the
calibration substrate.

REFERENCES

[1] Evaluation of Measurement Data—Supplement 2 to the ‘Guide
to the Expression of Uncertainty in Measurement’—Extension to
Any Number of Output Quantities, document JCGM 102, Joint
Committee for Guides in Metrology (JCGM), 2011. [Online]. Available:
http://www.bipm.org/utils/common/documents/jcgm/JCGM_102_2011
_E.pdf

[2] B. D. Hall, D. Allal, A. Litwin, and F. Ziadé, “Evaluating the uncertainty
of self-calibrating VNA procedures,” in Proc. Conf. Precis. Electromagn.
Meas. (CPEM), Jul. 2018, pp. 1–2, doi: 10.1109/CPEM.2018.8501006.

[3] W. Zhao and Y. Wang, “A reformulation and sensitivity analysis of
TRL,” IEEE Trans. Instrum. Meas., vol. 69, no. 7, pp. 5107–5115,
Jul. 2020, doi: 10.1109/TIM.2019.2950825.

[4] M. Garelli and A. Ferrero, “A unified theory for S-parameter uncertainty
evaluation,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 12,
pp. 3844–3855, Dec. 2012, doi: 10.1109/TMTT.2012.2221733.

[5] M. Wollensack, J. Hoffmann, D. Stalder, J. Ruefenacht, and M. Zeier,
“VNA tools II: Calibrations involving eigenvalue problems,” in Proc.
89th ARFTG Microw. Meas. Conf. (ARFTG), Jun. 2017, pp. 1–4, doi:
10.1109/ARFTG.2017.8000832.

[6] D. F. Williams, C. M. Wang, and U. Arz, “An optimal multiline
TRL calibration algorithm,” in IEEE MTT-S Int. Microw. Symp. Dig.,
Mar. 2003, pp. 1819–1822, doi: 10.1109/MWSYM.2003.1210494.

[7] D. F. Williams, J. C. M. Wang, and U. Arz, “An optimal vector-
network-analyzer calibration algorithm,” IEEE Trans. Microw. The-
ory Techn., vol. 51, no. 12, pp. 2391–2401, Dec. 2003, doi:
10.1109/TMTT.2003.819211.

[8] D. Williams and A. Lewandowski. (2011). NIST Microwave Uncertainty
Framework. NIST. [Online]. Available: https://www.nist.gov/services-
resources/software/wafer-calibration-software

[9] P. Luan et al., “Monte Carlo analysis of measurement uncertainties for
on-wafer multiline TRL calibration including dynamic accuracy,” IEEE
Trans. Instrum. Meas., vol. 69, no. 11, pp. 8874–8880, Nov. 2020, doi:
10.1109/TIM.2020.2995970.

[10] R. B. Marks, “A multiline method of network analyzer calibration,” IEEE
Trans. Microw. Theory Techn., vol. 39, no. 7, pp. 1205–1215, Jul. 1991,
doi: 10.1109/22.85388.

[11] D. C. DeGroot, J. A. Jargon, and R. B. Marks, “Multiline TRL
revealed,” in 60th ARFTG Conf. Dig., Fall, Dec. 2002, pp. 131–155,
doi: 10.1109/ARFTGF.2002.1218696.

[12] Z. Hatab, M. Gadringer, and W. Bösch, “Improving the relia-
bility of the multiline TRL calibration algorithm,” in Proc. 98th
ARFTG Microw. Meas. Conf. (ARFTG), Jan. 2022, pp. 1–5, doi:
10.1109/ARFTG52954.2022.9844064.

[13] Z. Hatab, M. Gadringer, and W. Bösch, “Propagation of measurement
and model uncertainties through multiline TRL calibration,” in Proc.
Conf. Precis. Electromagn. Meas. (CPEM), 2022, pp. 1–2.

[14] R. B. Marks, “Formulations of the basic vector network analyzer error
model including switch-terms,” in Proc. 50th ARFTG Conf. Dig., vol. 32,
Dec. 1997, pp. 115–126, doi: 10.1109/ARFTG.1997.327265.

[15] J. Brewer, “Kronecker products and matrix calculus in system theory,”
IEEE Trans. Circuits Syst., vol. CS-25, no. 9, pp. 772–781, Sep. 1978,
doi: 10.1109/TCS.1978.1084534.

[16] R. B. Marks and D. F. Williams, “Characteristic impedance determi-
nation using propagation constant measurement,” IEEE Microw. Guided
Wave Lett., vol. 1, no. 6, pp. 141–143, Jun. 1991, doi: 10.1109/75.91092.

[17] Z. Hatab, M. Gadringer, M. Habib, and W. Bösch, “mm-wave complex
permittivity extraction of LTCC substrate under the influence of surface
roughness,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11, 2022, doi:
10.1109/TIM.2022.3152319.

[18] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, Sep. 1936,
doi: 10.1007/BF02288367.

[19] L. Mirsky, “Symmetric gauge functions and unitarily invariant
norms,” Quart. J. Math., vol. 11, no. 1, pp. 50–59, 1960, doi:
10.1093/qmath/11.1.50.

[20] A. M. Chebotarev and A. E. Teretenkov, “Singular value decomposition
for the Takagi factorization of symmetric matrices,” Appl. Math. Com-
put., vol. 234, pp. 380–384, May 2014, doi: 10.1016/j.amc.2014.01.170.

[21] M. Che, S. Qiao, and Y. Wei, “Adaptive algorithms for computing the
principal Takagi vector of a complex symmetric matrix,” Neurocomput-
ing, vol. 317, pp. 79–87, Nov. 2018, doi: 10.1016/j.neucom.2018.07.064.

[22] N. V. Khang, D. C. Dat, and N. T. M. Tuan, “Taylor expansion for matrix
functions of vector variable using the Kronecker product,” Vietnam
J. Mech., vol. 41, no. 4, pp. 337–348, Dec. 2019, doi: 10.15625/0866-
7136/14196.

[23] M. Zeier, J. Hoffmann, and M. Wollensack, “Metas.UncLib—A mea-
surement uncertainty calculator for advanced problems,” Metrolo-
gia, vol. 49, no. 6, pp. 809–815, Nov. 2012, doi: 10.1088/0026-
1394/49/6/809.

[24] B. D. Hall, “The GUM tree calculator: A Python package for mea-
surement modelling and data processing with automatic evaluation of
uncertainty,” Metrology, vol. 2, no. 1, pp. 128–149, Mar. 2022, doi:
10.3390/metrology2010009.

[25] A. Rumiantsev and N. Ridler, “VNA calibration,” IEEE Microw. Mag.,
vol. 9, no. 3, pp. 86–99, Jun. 2008, doi: 10.1109/MMM.2008.919925.

[26] X. Wu, T. Kozlowski, H. Meidani, and K. Shirvan, “Inverse uncertainty
quantification using the modular Bayesian approach based on Gaussian
process. Part 1: Theory,” Nucl. Eng. Des., vol. 335, pp. 339–355,
Aug. 2018, doi: 10.1016/j.nucengdes.2018.06.004.

[27] X. Wu, K. Shirvan, and T. Kozlowski, “Demonstration of the rela-
tionship between sensitivity and identifiability for inverse uncertainty
quantification,” J. Comput. Phys., vol. 396, pp. 12–30, Nov. 2019, doi:
10.1016/j.jcp.2019.06.032.

[28] R. B. Marks and D. F. Williams, “A general waveguide circuit theory,”
J. Res. Nat. Inst. Standards Technol., vol. 97, no. 5, p. 533, Sep. 1992.

[29] G. N. Phung, U. Arz, K. Kuhlmann, R. Doerner, and W. Heinrich,
“Improved modeling of radiation effects in coplanar waveguides with
finite ground width,” in Proc. 50th Eur. Microw. Conf. (EuMC),
Jan. 2021, pp. 404–407, doi: 10.23919/EuMC48046.2021.9338133.

[30] F. Schnieder, T. Tischler, and W. Heinrich, “Modeling dispersion and
radiation characteristics of conductor-backed CPW with finite ground
width,” IEEE Trans. Microw. Theory Techn., vol. 51, no. 1, pp. 137–143,
Jan. 2003, doi: 10.1109/TMTT.2002.806926.

[31] W. Heinrich, “Quasi-TEM description of MMIC coplanar lines including
conductor-loss effects,” IEEE Trans. Microw. Theory Techn., vol. 41,
no. 1, pp. 45–52, Jan. 1993, doi: 10.1109/22.210228.

[32] A. Arsenovic et al., “Scikit-RF: An open source Python pack-
age for microwave network creation, analysis, and calibration,”
IEEE Microw. Mag., vol. 23, no. 1, pp. 98–105, Jan. 2022, doi:
10.1109/MMM.2021.3117139.

http://dx.doi.org/10.1109/CPEM.2018.8501006
http://dx.doi.org/10.1109/TIM.2019.2950825
http://dx.doi.org/10.1109/TMTT.2012.2221733
http://dx.doi.org/10.1109/ARFTG.2017.8000832
http://dx.doi.org/10.1109/MWSYM.2003.1210494
http://dx.doi.org/10.1109/TMTT.2003.819211
http://dx.doi.org/10.1109/TIM.2020.2995970
http://dx.doi.org/10.1109/22.85388
http://dx.doi.org/10.1109/ARFTGF.2002.1218696
http://dx.doi.org/10.1109/ARFTG52954.2022.9844064
http://dx.doi.org/10.1109/ARFTG.1997.327265
http://dx.doi.org/10.1109/TCS.1978.1084534
http://dx.doi.org/10.1109/75.91092
http://dx.doi.org/10.1109/TIM.2022.3152319
http://dx.doi.org/10.1007/BF02288367
http://dx.doi.org/10.1093/qmath/11.1.50
http://dx.doi.org/10.1016/j.amc.2014.01.170
http://dx.doi.org/10.1016/j.neucom.2018.07.064
http://dx.doi.org/10.15625/0866-7136/14196
http://dx.doi.org/10.15625/0866-7136/14196
http://dx.doi.org/10.15625/0866-7136/14196
http://dx.doi.org/10.1088/0026-1394/49/6/809
http://dx.doi.org/10.1088/0026-1394/49/6/809
http://dx.doi.org/10.1088/0026-1394/49/6/809
http://dx.doi.org/10.3390/metrology2010009
http://dx.doi.org/10.1109/MMM.2008.919925
http://dx.doi.org/10.1016/j.nucengdes.2018.06.004
http://dx.doi.org/10.1016/j.jcp.2019.06.032
http://dx.doi.org/10.23919/EuMC48046.2021.9338133
http://dx.doi.org/10.1109/TMTT.2002.806926
http://dx.doi.org/10.1109/22.210228
http://dx.doi.org/10.1109/MMM.2021.3117139


HATAB et al.: PROPAGATION OF LINEAR UNCERTAINTIES THROUGH MULTILINE TRL CALIBRATION 1007409

Ziad Hatab (Student Member, IEEE) received the
B.Sc. and Dipl.-Ing.(M.Sc.) degrees in electrical
engineering from the Graz University of Technology,
Graz, Austria, in 2018 and 2020, respectively, where
he is currently pursuing the Ph.D. degree with the
Institute of Microwave and Photonic Engineering.

He joined the Christian Doppler Laboratory for
Technology Guided Electronic Component Design
and Characterization (TONI), Graz University of
Technology, as a Research Member, in 2020. His
research focuses on passive component design, mea-

surement techniques, and calibration methods at millimeter-wave frequencies
and beyond.

Michael Ernst Gadringer (Senior Member, IEEE)
received the Dipl.-Ing. and Dr.Techn. degrees from
the Vienna University of Technology, Vienna,
Austria, in 2002 and 2012, respectively.

He moved to the Institute of Microwave and Pho-
tonic Engineering, Graz University of Technology,
Graz, Austria, in July 2010, where he has been hold-
ing a tenure track research and teaching position at
the Institute of Microwave and Photonic Engineering
since 2016. In addition, he was a Visiting Researcher
with Rohde&Schwarz GmbH, Munich, Germany,

in 2017, and Infineon Technology AG, Neubiberg, Germany, in 2018. During
his studies, he was involved in designing analog and digital linearization
systems for power amplifiers and behavioral modeling of microwave cir-
cuits. He has authored or coauthored more than 20 journal articles and
52 conference papers. He holds four worldwide patents and has co-edited
the book RF Power Amplifier Behavioral Modeling (Cambridge University
Press). In addition, he is involved in planning and implementing complex
measurements, emphasizing calibration, and de-embedding techniques. His
current research activities focus on developing and linearizing broadband
microwave and millimeter-wave (mm-wave) communication systems.

Dr. Gadringer is a member of the IEEE P1765 Standard Working Group
on the recommended practice for estimating the error vector magnitude of
digitally modulated signals. In addition, he is contributing to the IEEE P2822
Working Group on the recommended practice for microwave, mm-wave,
and terahertz on-wafer calibrations, de-embedding, and measurements. The
IEEE Instrumentation and Measurement Society selected him as the 2020
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT (TIM)
Outstanding Reviewer. Since August 2022, he has been an Associate Editor
of the IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT.

Wolfgang Bösch (Fellow, IEEE) received the
Dipl.Ing. degree from the Technical University of
Vienna, Vienna, Austria, in 1985, the Ph.D. degree
from the Graz University of Technology, Graz,
Austria, in 1988, and the M.B.A. degree from the
School of Management, University of Bradford,
Bradford, U.K., in 2004.

In 2010, he joined the Graz University of Tech-
nology to establish the Institute for Microwave
and Photonic Engineering. For the last eight years,
he was also the Dean of the Faculty of Electrical

and Information Engineering, which currently incorporates 13 institutes and
20 full professors covering the areas of energy generation and distribution,
electronics, and information engineering. He is responsible for the strategic
development, budget, and personnel of the faculty. Prior to this, he was the
Chief Technology Officer (CTO) of the Advanced Digital Institute, Shipley,
U.K. He was also the Director of business and technology integration with
RFMD, Newton Aycliffe, U.K. For almost ten years, he was with Filtronic
plc, Leeds, U.K., as the CTO of Filtronic Integrated Products and the Director
of the Global Technology Group. Before joining Filtronic, he held positions
at the European Space Agency (ESA), Noordwijk, The Netherlands, working
on amplifier linearization techniques; MPR-Teltech, Burnaby, BC, Canada,
working on MMIC technology projects; and the Corporate Research and
Development Group, M/A-COM, Boston, MA, USA, where he worked on
advanced topologies for high-efficiency power amplifiers. For four years,
he was with DaimlerChrysler Aerospace (now Hensoldt), Ulm, Germany,
working on T/R modules for airborne radar. He has published more than
180 articles and holds four patents.

Dr. Bösch is a fellow of IET.


