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Abstract— In interferometric optical sensors, phase informa-
tion is extracted from the modulated light intensity. In the
case of free-standing interferometers, operating through the far-
field interferogram, multiplex phase detection is not trivial.
Multipinhole or multimicrodisk interferometry are examples of
common-path interferometers that allow multiplex interfero-
metric phase detection. Thereby an unambiguous interference
pattern is required, with no overlap of multiple spatial fre-
quencies. A common pattern in multipinhole interferometry is
a circular arrangement. To increase the element density of
the pattern, Golomb rulers are an interesting concept. Golomb
rulers and rectangles are known from sonar and radar appli-
cations. Recently, they were applied for encoding in quantum
information systems. In this publication, we investigate different
pattern designs of circular diffractors that produce unique spatial
frequencies. We introduce design algorithms. The optimization
criteria are the uniqueness of the spatial frequencies, which show
no overlap with any other frequency, and the density of the
microdisk pattern. Golomb patterns increase the element density
by about 30% compared to the circular pattern. Depending
on the pattern area, the density of the circular Archimedes
spiral surpasses by up to 13% the density of a square Golomb
pattern, referenced to a circular area. To validate the theoret-
ically designed patterns, examples are fabricated on the basis
of photonic crystal microdisk elements and are characterized
optically.

Index Terms— Golomb rectangles, interferometry,
multiplexing, phase detection, photonic crystals.

I. INTRODUCTION

INTERFEROMETRIC optical sensors are among the most
sensitive measurement methods for refractive index sens-

ing. A change in refractive index results in a phase shift of
the light interacting with the refractive index medium. The
phase information of a detection arm is measured relative to a
reference arm. The superposition and interference of the two
light waves result in a modulated light intensity. Usually, for
waveguide integrated interferometers, Mach–Zehnder [1], [2],
[3] or Young’s [4], [5] configurations are used. The first is
based on a Y-junction to separate the light waves into two
arms, with another Y-junction for combining them. At its
output, a photodiode can measure the change in light intensity.
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Young’s interferometers do not have the second Y-junction.
Instead, the different waveguide outputs interfere in the far
field and form an interferogram that can be processed. Opti-
cal fiber-based interferometers rely on Fabry–Perot [6], [7],
[8], fiber Bragg gratings [9], or Mach–Zehnder configura-
tions [10], [11]. These are advantageous technologies for pres-
sure, strain, temperature, and ultrasound sensing. Especially
for medical imaging and structural health monitoring [12].
Also, nonwaveguide-based free-standing interferometers are
common as sensing instruments. Examples of free-standing
interferometers include Michelson, Mach–Zehnder [13], and
common-path [14] configurations. Depending on the config-
uration, multiplexing is performed differently. Sensors based
on integrated Mach–Zehnder interferometers can implement
large multiples of these structures on a single chip [15]. Also,
optical fiber sensors can be bundled for multiplexing [12],
[16]. For hyperspectral imaging of the surface roughness with
a single shot, a multiplex Michelson interferometer based on a
pinhole and a microlens array was introduced [17]. In the case
of Young’s configuration, for integrated interferometers—but
also for free-standing Young’s or common-path interferom-
eters [14]—multiplexing is not so easy. In particular, the
outputs of the single interferometers should not interfere
with each other. The spatial separation required reduces the
compactness of the system. On the other hand, techniques such
as multipinhole [18], [19], [20], [21], [22], and microdisk [23]
interferometry have been introduced that allow the outputs of
all arms or light paths to interfere with each other without
losing information. Here, the key is to find a geometrical
arrangement of the outputs that produce unique spatial fre-
quencies for each pair of outputs. The unambiguous spatial
frequency pattern shows no overlap of spatial frequencies.
A common pattern in multipinhole interferometry is a circular
arrangement [19], [24].

To increase the element density of the pattern, Golomb
rulers are an interesting concept. Golomb rulers [25] and
rectangles [26], [27], [28] are known from sonar and radar
applications. Recently, they were applied for encoding in
quantum information systems [29]. A Golomb rectangle is a 2-
D array with ones and zeros. Its 2-D autocorrelation is allowed
to have only three values: “0,” “1,” and “K ,” whereby K is the
number of “1s” in the array. An optimum Golomb rectangle
has the maximum number of “1s” for a given array size [26].

In this publication, we investigate different pattern designs
for circular diffractor elements that produce unique spatial
frequencies. For this investigation, microdisks [30] are used.
Thereby the criteria for which the designs are optimized are the
uniqueness of the spatial frequencies, which show no overlap
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with any other frequency, and the density of the microdisk
pattern.

II. METHODS

A. Multimicrodisk Interferometry

The pattern designs are to be used in our multiplex
microdisk common-path interferometer [30] [see Fig. 1(b)].
The latter is used for the experimental far-field measurements
described in Section III-H. The measurement setup uses colli-
mated light from a He–Ne laser to excite the guided-mode
resonance (GMR) in photonic crystal microdisks with an
incident angle of 7◦. The microdisks are fabricated on a glass
substrate. The excitation light couples into the disks from the
backside of the glass substrate. GMRs in photonic crystals
exhibit strong reflection. Upon refractive index changes at
the photonic crystal surface, a GMR wavelength and phase
shift occurs, making it useful for sensing applications. The
150-µm diameter microdisks diffract the reflected GMR light.
Fig. 1(b) shows the reflection part of the setup. To reduce
the reflection at the glass–air interface of the glass substrate
a circular polarization filter is placed into the light path of
the incoming and reflecting light, suppressing the nonresonant
reflection. A Fourier lens ( f = 150 mm) projects the far-field
onto a CMOS camera. A single microdisk diffracts the GMR
light and forms an Airy disk. The first minimum is found
at an angle θ1 = 0.295◦ (sin θ = 1.22λ/d). Hence, the inner
bright spot of the Airy disk has a diameter of 1544 µm at the
Fourier lens. The Fourier lens collimates the light and projects
it onto a camera in its back focal plane. The light beams from
multiple microdisks will overlap and interfere with the back
focal plane of the Fourier lens. In the case of two diffractive
elements [see Fig. 1(a) (middle)], straight interference fringes
are formed within the maximum of the Airy disk in the
back focal plane. The fringe distance s depends on the focal
length f and the distance d between the pair of microdisks:
s = f λ/d. The spatial frequency of the interference fringes
is shown in the Fourier domain of the far field [see Fig. 1(d)
(middle)]. Its position in the Fourier domain is proportional
to the difference vector of the two diffractive elements that
produce the interference. The lowest row of images shows
the effect of three diffractive elements. Each pair of two
elements produce a spatial frequency in the far field. This
results in a total of N (N −1) frequencies when N elements are
illuminated. Microdisk patterns have to be found that produce
unambiguous and not overlapping spatial frequencies in the
Fourier domain. The phase-difference information from each
pair of microdisks can be computed from the complex value
of its spatial frequency f (u, v) in the Fourier domain [18],
[19], [20]

f (u, v) = FT −1
{I (X, Y )}

=

N∑
m=1

N∑
n=1

Pmn Am Anei(φm−φn). (1)

It is proportional to the convolution Pmn of the mth with
the nth diffractive element. Its phase is the phase difference
between the two diffractive elements [19].

B. Far-Field Computation

For the validation of the designed patterns, the far-field
intensity that is measured by a camera in the interferometric
measurement setup is computed, as well as its spatial frequen-
cies. To calculate the far-field diffraction pattern, Fourier optics
are applied. The results of the process can be seen in [see
Fig. 1(a), (c), and (d)]. The far-field [see Fig. 1(c)] is described
by Fraunhofer diffraction theory. It is calculated by the 2-D
Fourier transform of the field directly after interacting with the
diffraction object [see Fig. 1(a)]. The spatial frequencies [see
Fig. 1(d)] are obtained by another 2-D fast Fourier transform
(FFT) of the far-field diffraction intensity. The dc component
(middle bright spot) is filtered out in the Fourier domain.
The computation is done with a MATLAB script described
in the flowchart in Fig. 2. As input, the electric field behind
the diffractive element is described by a matrix M(m × n).
With m representing the x-coordinate and n the y-coordinate.
All the pixels M(mDE, nDE) which represent the area of the
diffractive element are set to “1.” The rest of the matrix is “0.”
To include the phase ϕ, a phasor exp(iϕ) is multiplied to the
amplitude “1.”

C. Finding a Pattern Design

The patterns have to be designed without overlapping spatial
frequencies. Fig. 3 shows the importance of the uniqueness
of the spatial frequencies. The microdisk pattern in Fig. 3(a)
is designed to show in the Fourier domain a partial overlap
of two spatial frequencies. The arrows indicate the difference
vectors between a pair of elements. The positions of the spatial
frequencies are determined by the difference vectors [18].
The effect of overlapping is observed in the magnitude [see
Fig. 3(b) and (c)] and phase [see Fig. 3(d) and (e)]. Latter
shows that the phase of the spatial frequency is the phase
difference between the two elements producing the frequency.
In the case of overlapping frequencies, the resulting phase
is determined by the sum of complex numbers. Hence, it is
influenced by the magnitudes and phases of the different
frequencies. In this simple case, the phase could be retrieved.
However, in more complex overlaps and experiments with real
data, this gets difficult. Besides, the phase is extracted from
the center region of the spatial frequency as the magnitude and
hence the signal relative to the noise is the highest. Therefore,
we focus on patterns without overlapping spatial frequencies.

To find such patterns, Section III introduces deterministic
design approaches, such as circular and spiral designs, and
iterative methods that develop the pattern according to a search
algorithm. For the latter case, a similar algorithmic framework,
described in the flowchart Fig. 4, is applied. The algorithm
starts with a coordinate pair of the first element position. After-
ward, a new potential coordinate pair is selected, according
to a selection rule specific to different design methods (see
Section III). Then a test for the pattern’s frequency uniqueness
is performed. For this purpose, all the locations of the spatial
frequencies produced have to be calculated, which can be
performed by computation of the far-field diffraction pattern
(Fourier optics) of the test design and its FFT, as described
in Section II-A. However, this is computationally intensive
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Fig. 1. Measurement setup and three simple element patterns. (a) Real-space microdisk distributions M(x , y). (b) Optical setup showing the simplified
reflection path with the diffraction elements, the Fourier lens, and the camera. (c) Intensity of far-field diffraction patterns I (X , Y ). (d) Magnitude | f (u, v)|

of the spatial frequencies f (u, v) in the Fourier domain of the far-field intensity I (X , Y ).

Fig. 2. MATLAB computation process of spatial frequency distribution based
on input field matrix M(x , y).

when we assume that an N × N matrix M represents the
field distribution after the interaction with the diffractive
element layer and its pixel resolution is 1 µm. In the case
of a 7-mm wide field distribution, we would deal with a
7000 × 7000 matrix. In each iteration of the algorithm, this
intensive computation would have to be performed. An alter-
native and more efficient approach is described in Section II-D.
In the case of no overlap, the coordinate position is selected
to place a diffractive element at this position. This process is
repeated until the maximum number of elements is defined.

D. Test of Spatial Frequency Uniqueness

The computation of the far-field diffraction pattern and
its spatial frequencies is very time-consuming when used in
an iterative algorithmic framework (see Table I). A more

efficient alternative is to use a lower resolution for the matrix
describing the diffractive element positions. Thereby, each
position in the matrix M describes the potential center position
of one diffractive element. Matrix elements with a diffractive
element are set to “1,” otherwise to “0.” By calculating the
2-D-autocorrelation in MATLAB of the matrix we obtain
all the difference vectors which are positions of the spatial
frequencies in the Fourier domain. Therefore, instead of using
all pixels within one diffractive element, we reduce the element
to its center position. Finally, based on the center positions,
we can expand the matrix to a real-space matrix that has,
within the radius around the center position of the diffractive
element, all pixels set to one.

E. Element Density

To determine the density of the patterns, the number of
elements is divided by the area that the pattern occupies. Since
we are investigating circular- and square-shaped designs, the
area is circular in the first case and square in the second case.
Since we have a Gaussian laser beam in our setup and the laser
spot exciting the elements in our patterns is circular, we also
use, for some comparisons, a circular area for square-shaped
patterns. This action reduced the density by comparison with
a square area.

III. RESULTS

In the following sections, different design approaches
regarding the selection of the next coordinate are introduced
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Fig. 3. Effect of overlapping spatial frequencies. (a) Microdisk pattern in real space with different phases. The arrows indicate the difference vectors of the
elements. (b) Magnitude of the spatial frequencies in the Fourier domain. (c) Intersection plot of magnitude in log scale. (d) Corresponding phase and (e) its
intersection plot.

Fig. 4. Algorithmic framework for finding a pattern design.

and described (top round element in flowchart Fig. 4). Parame-
ters such as the element density, number of elements, and the
minimum fringe distance are compared for different pattern
areas. At the end of the section, we show the measured far-field
diffraction patterns for selected designs and their computed
spatial frequencies. For comparison, the exemplary designs
are shown for circular areas with a diameter of 7 mm and
for square areas, with side length of 7 mm. All the diffraction
element diameters are 150 µm.

A. Circular Pattern

The circular design follows a deterministic approach. From
multipinhole interferometers [2], [12], this design is known.
Geometrically, it can be shown (supporting information) that,

for a certain diffractive element diameter DE and an odd
number of elements No, the minimum radius r of the circle on
which the elements are equidistantly aligned can be calculated
using

r ≥
DE

2 sin
(

π
No

)
sin

(
π

2No

) . (2)

Exemplarily the circular pattern for No = 15 is shown in
Fig. 5(a). From the far-field diffraction pattern [see Fig. 5(b)],
the spatial frequencies are computed in the Fourier domain
[see Fig. 5(c)]. The autocorrelation dc component in the center
is filtered out. The inner circle of frequencies results from
interference fringes of neighboring diffraction elements. The
outer frequency circle results from elements that are on the
opposite side of the circle. According to (2), a maximum
number of 15 diffraction elements, with a diameter of 150 µm,
can be placed on a circle with a diameter of 7 mm.

To observe the dependencies of the design parameters
described in (2), the density and number of elements are plot-
ted for different element sizes [see Fig. 5(d)]. For increasing
the number of elements, the circle radius has to increase and
the element density decreases. The smaller the diameter of the
diffraction elements is, the smaller the diameter of the spatial
frequencies in the frequency space is. Thus, more elements
fit on the circle in the real space without overlapping in the
frequency space. For example, when the element diameter
on a circle of diameter d = 9 mm is reduced by half
from 300 to 150 µm, then the number of elements on the
circle can be increased from 12 to 17.

B. Golomb Pattern

Golomb rectangles match our requirement of no overlapping
spatial frequencies and a high density of diffractive elements.
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Fig. 5. (a) Circular design with 7-mm diameter. (b) Computed far-field
diffraction pattern. (c) Computed spatial frequencies in the Fourier domain.
(d) Element density and maximum number of elements relative to the circular
pattern diameter for different diffractive element diameters DE.

A 20 × 20 optimal Golomb rectangle, introduced by Robin-
son [28], is transferred into a 7 × 7 mm pattern by choosing
column and row spacings of 350 µm. The diameter of the
diffractive elements is 150 µm [see Fig. 6(a)]. This pattern
achieves the maximum number of elements with N = 25.
Its density related to its square area is 0.51 elements/mm2,
which is greater than the circle case, with 0.31 elements/mm2.
However, this result changes when a circular reference area for
the density calculation is considered. In that case, the circular
pattern fills out the space more efficiently. Its density becomes
0.39 elements/mm2, higher than the Golomb pattern, which
has 0.32 elements/mm2.

Golomb patterns computed by Robinson [28], ranging from
3 × 3 to 25 × 25 Golomb arrays, are transferred into a
real-space pattern for microdisk diameters of 75, 150, and
350 µm. The column and row spacings are 200, 350, and
650 µm (2DE + 50 µm). The corresponding element density
plot is shown in Fig. 6(d). It has a similar behavior to that of
the circular pattern. But the big difference is that the overall
density is higher, especially for larger patterns with higher N
values, which is explained by the inefficient use of the empty
space in a circle and becomes worse for larger circle diameters.

In the following sections, we search for patterns that fill
out a circular area more effectively than the circular pattern
introduced in Section III-A and which reach similar densities
to the optimum Golomb pattern related to a square area.

C. Random Pattern

Another method is to choose the coordinate of the next
element randomly within the defined area. In our example [see
Fig. 7(a)], the area is circular with a diameter of 7 mm. Since
the autocorrelation part in the algorithm is the computationally
most expensive one, we introduce a “chromosome” [28],

Fig. 6. (a) Optimal Golomb square pattern with a side length of 7 mm.
(b) Computed far-field diffraction pattern. (c) Computed spatial frequencies
in the Fourier domain. (d) Element density and maximum number of elements
relative to the square pattern side length for different diffractive element
diameters DE.

Fig. 7. (a) Random pattern in the circular area of diameter 7 mm.
(b) Computed far-field diffraction pattern. (c) Computed spatial frequencies
in the Fourier domain.

which contains the information from all existing difference
vectors (spatial frequencies) produced by each pair of two
existing elements.

The chromosome is an array for which the center is
defined as the zero-difference vector [see Fig. 8(b)]. Each
marked position in the matrix stands for one difference vector
that exists in the element matrix [see Fig. 8(a)]. When the
chromosome matrix is overlaid onto the existing element
matrix, the middle (zero position) of the chromosome matrix
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Fig. 8. Illustration of the chromosome. (a) Test matrix with three existing
elements. (b) Corresponding chromosome matrix. (c) Chromosome overlapped
with matrix element (m = 1 and n = 2).

TABLE I
COMPUTATIONAL RESOURCES FOR 7 mm RANDOM

PATTERNS WITH N = 18

is aligned with each existing element position, and shows
the positions that would produce overlapping if they were
occupied. This check is much faster than calculating the 2-D
autocorrelation, and it is therefore used to rule out potential
positions that would certainly result in overlap. Table I shows
the computational resources used for the 7-mm random design
with 18 elements. The results from the algorithm with and
without the chromosome method are compared and also the
computation parameters for the far-field intensity distribution
and the spatial frequencies of the real-space pattern are shown.
Each quantity is the average value of 100 pattern designs.
The computation is reduced by half when the chromosome
is used. Without the chromosome, the autocorrelation func-
tion is called approximately three times more than with the
chromosome. The table also shows the benefit of the array
approach versus the FFT computation during the search for a
pattern. Each spatial frequency computation round would last
58 s on average. Therefore, the whole pattern design would
run between 20 and 57 min with and without the chromosome
approach, respectively. The chromosome approach is used for
all other nondeterministic design approaches too. For a 7-mm
diameter circle the maximum number of elements is found,
after various trials, to be N = 18. The pattern, therefore,
has an element density of 0.37 elements/mm2 for a circular
reference area. Compared to the circle, this density represents
an improvement of 21%, and the inner space is used much
more efficiently than in the case of the circular pattern. Even
though the real-space diffraction elements appear to be ordered
chaotically, in the Fourier domain the low spatial frequencies
are arranged on a grid-like array, which explains the improved
results.

D. Spiral Pattern

The spiral design follows an inverse deterministic design
approach that starts in the Fourier domain by designing
spatial frequencies (difference vectors) positioned on multiple
concentric circles [see Fig. 9(a)]. The inner circle has a radius
r0, the radius of the outer spatial frequency circle r1 depends
on the inner radius r0, and the diameter dDE of the diffractive
element. The dependence is derived from the requirement of
there being no overlapping spatial frequencies

rmax = 2r0 (3)
r1 = r0 + 2dDE (4)
rn = r0 + 2ndDE, n ∈ N, n ≥ 2. (5)

Such a design is shown in Fig. 9(a) for a diffractive element
diameter of 150 µm and inner radius of r0 = 750 µm.
The spatial frequencies always occur in pairs, with the same
magnitude but opposite signs (Fig. 9(a) and (b): dotted and
solid arrows and circles of the same color). Subsequently, the
real-space pattern is set up by summing the difference vectors.
Each difference vector starts at a diffractive element and ends
at the following one. Therefore, each difference vector adds
a new element to the spiral. The spiral starts with the inner
circle of lower frequencies marked with the red dotted circle
and arrow. Successively, neighboring frequencies (difference
vectors) are added to the spiral pattern. After placing the last
difference vector before the opposite of the starting frequency
is reached (red circle marked frequency), the frequency selec-
tion jumps to the outer circle (green difference vector) and
successfully adds the frequencies of the outer circle until the
opposite frequency of the starting outer frequency is reached
(green dotted circle). This results in two connected half circles
[see Fig. 8(b)]. Fig. 8(c) shows the far-field diffraction pattern.
From the computed spatial frequencies [see Fig. 9(d)], it can
be seen that this design only guarantees that there is no overlap
of the frequencies on the designed circles. Higher frequencies
that are produced by nonneighboring elements are ignored.

The spiral pattern can be reassembled as a
rectangular-shaped array [see Fig. 9(e)]. Therefore, each
pair of diffractive elements is placed on a grid point in an
array. The distance between the grid lines is at least twice
the maximum difference vector length used in the spiral
design. In Fig. 8(f), the spatial frequencies are shown. Not
all of the element combinations fit on the predefined area
of 7 × 7 mm. The circular spiral pattern has a density
of 0.47 elements/mm2, which is an improvement of 21%.
The array-shaped pattern has a circular area density of
0.23 elements/mm2. The density of both patterns related to a
rectangular area is 0.37 elements/mm2.

E. Concentric Circles Pattern

The concentric circle design follows a deterministic inverse
design approach, in a similar fashion to that for a spiral
pattern. Again, two spatial frequency circles are designed in
the Fourier domain. In contrast, the goal is to produce in real
space not half circles but concentric full circles. Therefore,
only every second frequency (difference vector) on one circle
is chosen but, in contrast to the spiral case, a full-frequency
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Fig. 9. Spiral pattern design. (a) Design of spatial frequencies in Fourier domain. (b) Transfer of design from Fourier domain into real space. (c) Computed
far-field diffraction pattern. (d) Computed spatial frequencies in the Fourier domain. (e) Element array made out of pairs from spiral design. (f) Computed
spatial frequencies in the Fourier domain (inner region).

Fig. 10. (a) Designed spatial frequency circles in the Fourier domain.
(b) Concentric circular pattern design of diameter 7 mm. (c) Computed
far-field diffraction pattern. (d) Computed spatial frequencies in the Fourier
domain.

circle is completed [see Fig. 10(a)]. Once this has been
carried out, the outer frequency circle is started in the same
way. Each frequency circle produces one closed circle of
diffractive elements in real space. The circles in real space are
aligned concentrically. Fig. 10(c) shows the resulting far-field
diffraction pattern and Fig. 10(d) shows the corresponding
spatial frequencies in the Fourier domain.

The inner (low) frequency circle is chosen to be small
enough not to produce difference vectors of nonneighboring

inner circle elements that overlap with the spatial frequencies
of the outer frequency circle. This design guarantees the
nonoverlapping frequencies of all combinations produced by
the inner frequency circle but produces some spatial frequen-
cies that are very close to each other. Neighboring elements on
the outer circle and element pairs with more than two elements
between them show a larger interfrequency spacing again.

F. Archimedes Smart Array Pattern

The Archimedes smart array pattern is designed on the basis
of the algorithm described in Fig. 3 and the chromosome (see
Fig. 11). To check the uniqueness of the spatial frequencies,
the faster alternative procedure described in Section II-D was
used. The area was therefore divided into a 20 × 20 array
[see Fig. 11(a)]. To find the next coordinate, the algorithm
was moved along an Archimedes spiral path from the outside
to the inside of the array and selected the matrix element
in which the spiral coordinate was located. Fig. 11(a) shows
the selected matrix element in yellow for the first half-turn.
The movement from outside to inside was chosen since, on the
outside, the largest number of elements was expected, in a
Golomb array [28]. The Archimedes spiral was designed on
the basis of polar coordinates with radius r and angle α

c = g/2π (6)
r = cα. (7)

The gap g between the spiral lines was the same as the
matrix element size. To transfer the geometry to the real-space
pattern, the matrix element size was defined to be 350 µm,
and its diameter was 7 mm. The Cartesian coordinates were
calculated using

x = r cos α (8)
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Fig. 11. (a) Archimedes spiral plotted on grid lines. The grid lines show the
20 × 20 array. The yellow marked cells show the sequence of selected array
cells during the first half round. (b) Archimedes smart array pattern design
of diameter 7 mm. (c) Computed far-field diffraction pattern. (d) Computed
spatial frequencies in the Fourier domain.

y = r sin α. (9)

G. Comparison Based on Different Area Sizes

To compare different designs, we have looked at their
element density (elements/mm2), number of elements, and
their minimum fringe distance in the far-field, for a focal
length of f = 125 mm. Since the achievable density drops
with increasing area size, different area sizes and shapes
are considered. Fig. 12 shows, for the different designs, the
element density for circular areas (blue) and square-shaped
areas (orange). The different circular areas have diameters d
of 4, 5.7, 7, and 9.9 mm. The square areas have the same
number, but instead of the diameter, the numbers represent
the side length a of the square. Furthermore, the total number
of elements and the minimum fringe distance is plotted [see
Fig. 12(b)]. As a lower benchmark for the element density, the
density of the circular pattern is used (blue dotted line), and as
an upper limit, the Golomb pattern density for a square area
is used (orange dotted line). Both show that, with increasing
area, the achievable element density drops.

Starting with an area of dimension r = 4 mm (a = 4 mm),
it can be seen that the density of the Golomb pattern is about
21% higher when, in both cases, the optimum reference area is
used (for the circle pattern a circular one and for the Golomb
pattern a square). Considering the Gaussian laser beam in
our experimental setup, it also makes sense to use a circular
area for the Golomb pattern as a reference area. However,
in this case, the density of the square Golomb pattern is about
29% lower than that of the circular pattern. The question
becomes how to increase the element density for circular areas
to get closer to the limit of the Golomb pattern for square
areas.

Both the random and the Archimedes spiral smart arrays
are, with densities of 1.03 elements/mm2, very close to the
Golomb limit of 1.06 elements/mm2. Their number of total
elements is still smaller but the circle has a smaller area than
the square from the Golomb pattern.

For better comparison with the previous designs of square
areas with side dimension a = 4 mm, circular areas of
diameter 5.7 mm (4 mm ×

√
2) follow. This diameter gives

the circular area that would be illuminated with a Gaussian
beam when seeking to illuminate a square area with side
length a = 4 mm. It can be seen that the density of the
Golomb pattern with the 4-mm design (and referenced to a
circular area) is still greater if the 5.7-mm circular pattern
design was used, which fills out the edges of the light spot
better. However, the Archimedes spiral pattern achieves the
same circular reference area density and the concentric circle
(+5%) design beat the 4-mm square Golomb pattern when
used with the same circular reference area. It achieves to
include one element more within the circular area than the
Golomb pattern in the smaller square area. It can also be shown
that the Archimedes spiral smart array design performs better
when starting from the outside and moving to the inside during
design (OI), as compared with moving from the inside to the
outside (IO).

Next, designs with an area based on diameters and side
length of 7 mm are investigated. The number of elements
increases for these designs. Again, the square Golomb pattern,
with 25 elements, has an element density that is about 31%
higher compared to the circular pattern density (for optimum
reference areas in each case) but when also using a circular
reference area for the square Golomb pattern, the density
drops by about 18% compared with the circular design.
As before, the question is how to achieve an element density
for circular reference areas close to the Golomb limit of
0.51 elements/mm2.

With multiple runs of the random approach, we obtain a
20% improvement compared with the circular pattern bench-
mark. Furthermore, the spiral pattern shows an improvement
of 20%, but it is still about 8% lower than the Golomb limit.
The concentric circle design surpasses the limit with a density
of 0.52 elements/mm2. However, it is not equal to the square
Golomb pattern, since some pairs of nonneighbor elements
result in frequencies with a very low interfrequency spacing
and partial overlapping.

The Archimedes spiral-based smart array has an element
density of 0.52 elements/mm2, too. It surpasses the square
Golomb limit and possesses only unique spatial frequencies.
A pattern that has the same density as an equivalent square
Golomb pattern has therefore been achieved, but it is optimized
for circular-shaped Gaussian beams. The Golomb pattern has
still five more elements but this is due to its higher square
area.

If the 7-mm Golomb square area would be illuminated with
a Gaussian beam, a 9.9-mm diameter (7 mm ×

√
2) circular

design would be beneficial. The Archimedes design is again
the highest-density design. Surpassing the benchmark by about
36% and even the 7-mm square Golomb array by about 13%,
when a circular reference area is used (as is the case for
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Fig. 12. (a) Element density and number of elements, and (b) minimal fringe distance s (feature size) of various pattern designs for different area sizes and
shapes. Abbreviations: Arch. S. A.: Archimedes smart array, IO: In to out, OI: Out to in, Conc. Circ: Concentric circle, and Spiral A.: Spiral Array.

Gaussian beams). This can be attributed to three additional
elements that can be placed within the circular area enclosing
the 7 × 7-mm2 square area.

In Fig. 12(b), the minimum fringe distance within the
patterns is plotted. It is determined by the maximum element
distance in the pattern. Therefore, a decrease in the minimum
feature size for an increase in pattern diameter is observed. It is
an important value, as there should be at least two camera
pixels available to resolve the spatial frequency. Depending
on the camera chip, this sets a limit to the maximum distance
between elements. On the other hand, in such patterns, the high
frequencies with small feature sizes could be ignored and one
could rely on element pairs of closer distance only.

H. Experimental Characteristics of Selected Patterns

For experimental validation, the circular [see
Fig. 13(a) and (b)] and Archimedes spiral [see
Fig. 13(c) and (d)] designs were fabricated. All patterns
were designed in the 4-mm geometry. The diffractive
elements were fabricated by micro-structuring a photonic
crystal slab [11]. A laser common path interferometric
setup [11] was used to excite the highly reflective GMR in
the microdisks and to measure, in reflection (see Fig. 1), their
near-field [see Fig. 13(b) and (d)] and far-field diffraction
patterns [see Fig. 13(f) and (h)]. From the measured far-
field intensity, the magnitude of the spatial frequencies
in the Fourier Domain was computed via the 2D-FFT
[see Fig. 13(j) and (l)]. As a reference, the images on the
left of the experimental images show the theoretical patterns
computed with MATLAB, as described in Fig. 2.

Experimentally, not all the diffractive elements reflected
the same intensity, due to slightly different elementary res-
onances [30]. Some of the spatial frequencies, therefore, had
better visibility than others. But overall the agreement was
very high and even the details of the far-field diffraction pat-
terns can be seen, when Fig. 13(e) is compared with Fig. 13(f)

and (g) is compared with Fig. 13(h). To compare the measured
spatial frequencies of the circular pattern with the calculated
ones, the spatial frequencies along the blue marked intersection
[see Fig. 13(i)] are plotted in Fig. 14(a) and it can be seen that,
in theory, five frequency pairs are aligned around the zero
autocorrelation part in the center. In the computed frequency
pattern image, the autocorrelation part in the center is filtered
out—but, for the plot of the intersection, it is considered. The
highest frequency pair ( f 5, − f 5) of the measured pattern
was used to scale the measured intersection plot to the size
of the computed intersection. It can be seen that all the
frequencies that are computed are present in the measured
magnitude signal, and their relative spacing and positioning
match with the computed spatial frequencies. The same can
be said about the intersection taken from the Archimedes spiral
spatial frequency pattern. In contrast to earlier, the intersection
does not cross the center—which makes it possible to observe
nine different spatial frequencies, f 1– f 9. After scaling, it can
be seen that the number and the positions of the spatial
frequencies match very well with the theory.

One difference can be seen in the frequency signal of the
circular pattern. The autocorrelation part in the center is much
broader than expected from theory, which is a measurement
error that arises from light reflected at the glass–air interface
on the backside of the glass substrate that supports the
microdisks. The reflected light is a planar wavefront that is
focused by the Fourier lens into the middle of the back focal
plane where the camera is located. A similar effect is seen in
Fig. 13(l). As proof, the theoretical computed far-field intensity
pattern from Fig. 13(g) is manipulated. An artificially bright
spot is placed in the center of the far-field intensity frame
[see Fig. 15(a)] to simulate the focused planar wavefront. Its
Fourier transform with the spatial frequencies in Fig. 15(b)
shows the same effect as in the measurement. A similar
deviation from theory is the background in the Fourier domain
image of the measured far fields. This background looks like
“clouds” in the image, Fig. 13(j) and (l). However, from the
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Fig. 13. Comparison between experimental results and designs. (a) Circular pattern design and (b) its measured near field reflection. (c) Archimedes pattern
design and (d) its measured near field reflection. (e) Computed far-field from circular design and (f) its measured far-field. (g) Computed far-field from
Archimedes spiral design and (h) its measured far-field. (i) Fourier transform of the computed circular pattern far-field. (j) Computed far-field from measured
circular far-field showing spatial frequencies. The blue and red rectangles show the frequency selection plotted in Fig. 14(a). (k) Fourier transform of the
computed Archimedes pattern far-field. (l) Computed far-field from measured Archimedes far-field showing spatial frequencies. The red rectangle shows the
frequency selection plotted in Fig. 14(b).

Fig. 14. Comparison of spatial frequency magnitudes between simulation
(blue) and measurement (red). The spatial frequencies of (a) circular and
(b) Archimedes spiral patterns are selected from the areas marked with the
dotted line in Fig. 13.

intersection plots, it can be seen that the spatial frequencies
that are more dominant can still be located. During phase mea-
surement, the difference between multiple frames is observed.
In the case of a constant “frequency cloud” background,
this difference is subtracted from the phase shift signal. The
cloudiness is explained by the two bright spots and a small
interference pattern in the middle of the far-field intensity

Fig. 15. (a) and (b) Manipulated theoretical far field intensity images based
on Fig. 13(g) with optical signals of disturbances and (c) and resulting spatial
frequencies in the Fourier domain for (a) and (d) for (b).

image [see Fig. 13(h)] that should not exist in theory [see
Fig. 13(g)]. The origin of the center spot was explained before,
the second one originates probably from a tilted planer war
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front reflected at another interface that is slightly tilted relative
to the first one. This effect is also simulated. The manipulated
theoretical far-field intensity pattern from Fig. 13(g) is shown
in Fig. 15(b) and its spatial frequencies in the Fourier domain
in Fig. 15(d). This shows that as in the experiments the
clouds can be observed in the theoretical computed frequency
distribution too, when the optical signals of disturbance are
included.

IV. CONCLUSION

Multiplex common-path interferometric sensors based on
the combined measurement of overlapping interference pat-
terns with nonoverlapping spatial frequencies require that there
is a unique set of spatial frequencies. We have shown that
the circular pattern common in multipinhole interferometry
has a low sensor element/pinhole density. From other sensing
technologies, such as sonar and radar, Golomb rectangles
are known and provide element patterns with the maximum
density. For the introduced pattern designs with a diameter of
7 mm, the Golomb pattern has a 31% higher density than the
circular pattern. However, they are so far available only for
rectangular areas.

We have investigated several different design approaches
and patterns with the aim of increasing the element density
for circular-shaped patterns, with the goal of achieving element
densities close to those for the Golomb rectangle. Thereby, the
pattern computation time was reduced by about four orders
of magnitude from minutes to milliseconds, by employing
a reduced array representation of the diffraction elements.
In addition, the “chromosome method” doubled the speed of
computation.

We have shown that an Archimedes spiral design fulfills this
requirement of nonoverlapping spatial frequencies, combined
with densities similar to the Golomb rectangle. For the 7-mm
design, its density is 0.52 elements/mm2 slightly higher than
the rectangular Golomb pattern density with a square area den-
sity of 0.51 elements/mm2. Furthermore, concentric circular
designs are a good choice when there is reliance on interfer-
ence between neighboring and far-distance element pairs only.
For the larger 9.9 mm design, the Archimedes spiral has a
36% higher density compared to its circular benchmark and a
13% higher density compared to the 7-mm square Golomb
pattern illuminated with a Gaussian beam with a diameter
of 9.9 mm (circular reference area). To increase the number
of diffraction elements, beyond the amount of the optimized
patterns, larger pattern areas are required. However, it has
been shown that the element density drops with increasing
area of measurement. Different geometry sizes relevant to
our common path interferometric measurement setup were
therefore investigated.

To validate the theoretical pattern designs two different
patterns in the 4-mm geometry were fabricated and optically
characterized. Their far-field diffraction pattern and 2D-FFT
show the spatial frequency distribution match well with the
theoretical computed patterns. The difference in the back-
ground signal, observed as “clouds,” is attributed to reflections
in the setup disturbing the signal.

The investigated pattern design allows for an increase in the
sensor density and hence the multiplex ability of multipinhole
and multimicrodisk interferometers. Besides, the pattern might
be used in quantum information processing systems. For sen-
sor systems with element numbers N ≫ 25, we recommend
combining multiple smaller patterns (N < 15) and multiplex-
ing by separating the patterns and optical output spatially.
Another alternative is to place multiple patterns next to each
other, each pattern being based on elements with different res-
onance wavelengths. With a broader excitation spectrum, only
elements of the same pattern would interfere with each other,
since elements from other patterns would reflect a different
wavelength. In the case of nonresonant diffraction elements,
the different wavelengths must be separated spatially.

Instead of photonic crystal microdisk diffraction elements,
optical fiber outputs could be arranged with the proposed
pattern and imaged with a camera CMOS sensor without the
need of separating the outputs or using multiple photodiodes.

Recently, the inverse design method for nanophotonic struc-
tures was proposed [31], [32], [33]. This would be an interest-
ing approach to find alternative circular pattern arrangements.
However, at least for square-shaped patterns the maximum
element density is achieved with the Golomb pattern design
already.
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