IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

6504118

Soft Thresholding Using Moore—Penrose Inverse
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Abstract— The acquisition of a discrete-time signal is an impor-
tant part of a compressive sensing problem. A high-accuracy
algorithm that could bring better signal recovery performance
is often called for. In this work, two thresholding algorithms
that involve a soft thresholding decision are proposed using the
Moore—-Penrose inverse. Numerical examples are conducted and
illustrate that, in the optimal case, both proposed methods con-
sume the computational time at the same level as the conventional
soft homotopy algorithm (SHA). Under no knowledge of the opti-
mal regularization parameter, both methods will perform better
than the conventional SHA with less amount of required time
for the computation. Taking the nonsparse electroencephalogram
signal from a real measurement into account, all soft thresholding
algorithms provide nearly the same error performance for several
compression ratios, while the proposed methods consume less
computational time than the conventional SHA.

Index Terms— Compressive sensing, homotopy algorithm, soft
thresholding.

I. INTRODUCTION

HIS article is an extension of the proceedings paper [1]

and makes reuse of the proceedings paper [1]. In science
and engineering [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], it is required to recover a desired signal x € R¥*! from
a set of observation data or measurement data b € RM*!
where M € N'™! and N e N'*! are the lengths of real-
valued output data and real-valued input data, respectively. The
collection of data is based on a modeling matrix or transfer
matrix A € RM™*N_ which either depends on the model or
can be chosen beforehand. In Fig. 1, if the perturbation § is
negligible, the linear system can be written as

b= Ax +§,
~ Ax. (1)

Irrespective of signal structure, the signal of interest can be
recovered by solving an optimization problem in the sense of
linear least squares (LLS) [2, eq. (4.33)], i.e.,

A . 2
XLLs = argmin llx 1l

{u|Au = b}, noiseless
s.t. x € i (2)
{u||Au — b|» < €}, noisy
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Fig. 1. Noisy linear input—output system.

where € is the maximal allowable value of the square root of
the noise power [13] and ||x||, is the £;-norm of vector x. It is
fruitful to note that the matrix A can be chosen to be of full
rank, i.e.,

rank(A) = min(M, N) 3)

where rank(A) is the rank of matrix A. There are three
possible cases for any size of the matrix A. The number of
provided data M can be less than, equal to, or greater than
the number of unknown variables N. The LLS problem can,
thus, be classified into

arg min ||x||% st. x € {ul]Au =b}, M <N
X

M=N @

RLLs = a)rcg Ax = b,

arg min || Ax —b||%, M > N.

The closed-form solution to (4) is well known as [8,
p- 204], [14, egs. (2.3) and (2.9)], [15, p. 311, [16, p. 98],
[17, eq. (12.5)]

AT(AA") b, M <N

A7'b, M=N (5)
(ATA)'ATh, M >N

XLLs =

where -7 is the transpose of a vector or a matrix and X!
is the inverse of a square matrix X. The LLS estimate exists
when the matrix ATA or A or AA" is invertible due to the
full-rank assumption of A. The solution in (5) has no concern
with any special structure of the obtained solution [18]. The
LLS estimate X11s usually returns all nonzero entries to the
desired signal x.

The measurement of physiological signals, e.g., electrocar-
diogram (ECG) or heart rate and electromyogram (EMG) or
blood pressure, plays a vital role in health monitoring [19].
Wireless body sensor networks (WBSNs) consist of multiple
biosensors that create several wireless links. The WBSNs are
often applied to modern health monitoring systems because
wireless medical sensors allow for the mobility of a patient on
a daily life basis [20]. Unfortunately, due to the restriction in
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miniature size compared to the human body, most biosensors
are subject to small batteries, and thus, limited power supply
leads to low transmission rates, limited memory, and limited
computational ability. Data compression and data recovery,
also known together as compressed sensing, are the techniques
that can overcome the above battery-related limitations. Many
works, thus, are devoted to compressing the measurement
data and recovering the compressed data [21], [22], [23].
In [24], a simple deterministic measurement matrix is proposed
to facilitate the hardware implementation. Measured ECG
and EMG biosignals are adopted to validate the recovery
algorithm.

A microwave imaging system is also adopted in medical
applications to detect breast cancer and other biological tis-
sues [25]. The nonionizing radiation reveals its nondestructive
testing property. To get a high spatial resolution, one must
keep a small step size, which unfortunately leads to a drastic
increase in data volume. Compressive sensing, thus, plays an
important role in tackling the challenges of this application
(see [26]). The microwave imaging system using compressive
sensing spans its applications even to synthetic aperture radar
(see [27]).

The measurement of current and voltage in smart grid and
microgrid power systems needs to spend a long observation
time in order to achieve fine frequency resolution or high
harmonic estimation accuracy. Alternatively, short observa-
tion time is often preferred since it can handle dynamic
measurement scenarios and enables measurement transient
reduction [28]. The short observation time can be made possi-
ble by using a compressive sensing idea [29]. In [30], extensive
numerical simulation is conducted for phasor measurement
units that are the instruments capable of estimating the syn-
chrophasor, frequency, and rate of change of frequency in
power electronic circuitry. In [31], a compressive sensing tech-
nique using the £;-norm is proposed for harmonic pollution
source identification in smart grids. Several simulations are
performed on two distribution networks that involve harmonic
measurements.

In this work, we pay attention to the data recovery process.
It can be coped with the applications stated above straight-
forwardly. Two iterative computation algorithms are proposed
for signal recovery in a compressive sensing problem. Both
methods adopt the Moore—Penrose inverse (MPI) in order to
improve the signal acquisition error performance given by
an iterative computation algorithm using a soft thresholding
decision.

II. COMPRESSIVE SENSING

In this section, we consider several compressive sensing
algorithms related to the ¢;-norm. A least-squares crite-
rion with an £;-norm regularization (LS-LIR) is given by
[32, Sec. 1.3.2]

FisLir = argmin | Ax — b[3 + x| (6)

where ||x||; is the £;-norm of vector x. In [33], an £;-norm
constrained least-squares estimate is proposed as least absolute
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shrinkage and selection operator (LASSO) in statistics, i.e.,

Frasso = argmin |Ax —bl5 st x € {ulllufy < T} (7)

where 7 € RY! is a positive number. Also known as basis
pursuit denoising [18], an optimization problem similar to (7),
is formulated by £;-norm regularized least-squares (L1RLS)
criterion, which is given by

A !
XLIRLS = argn}vaHAx - b||§ + Allx|ly ®)

where A € R} is a regularization parameter. The solution to
(8) is the same as that of (6) when the regularization parameter
A is 0.5. The £;-norm minimization is given in a convex
optimization framework by [34]

£y, =argmin||x|; st x € {u|Au = b}. 9)
p

The above optimization framework is also known as basis
pursuit [18]. When the regularization parameter A\ tends to
zero, it is found that [35, Proposition 15.1], [36]

lim Xpiris = fz]- (10)

A—0,
A. Soft Thresholding Decision

A scalar minimization problem is
[18, eq. (5.2)]

formulated by

(1)

Sq(x) = argmin(x — u)* + alu|

where a is a constant and | - | is the absolute value operator.
Its solution turns out to be a soft thresholding operator [37],
given by

0,
sy =1 x| < (12)
sign(x)(|x| —a), otherwise
where sign(-) is the sign of a real number -, given by
X £0
—, X
sign(x) = 7 IxI (13)
0, x=0.
In a short form, one can see that [38]
54(x) = sign(x) max{|x| — a, 0}
= sign(x)(Jx| —a), (14)

where (x); = max{x, 0} is the positive-definite operator.

B. Soft Homotopy Algorithm
If (1) is multiplied by AT along the left direction, one can
attain

ATAx ~ Ab. (15)

If (15) is added by x’s in its both sides, one can see that the
result x + ATAx ~ x + Ab leads to
x~x+A'b— AT Ax

=x+A'(b— Ax). (16)
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The result in (16) discloses a possible fixed-point iteration.
The iterative method based on (16) is known as Landweber’s
algorithm [39], which is one of the simplest iterative methods
for solving the normal equation in (15).

The homotopy technique is a method that tries to find
a minimizer of the problem in (9). The composite gradient
mapping is used to update the ith iterated solution from the
previous iteration by [40], [41]

£[i] = argmin(x, AT(AZ[i — 1] - b))

1 .
+ 7l — 2l - 1013 + M- llx

=sx, (i — 11+ AT (b — AZ[i — 11)) (17)

where (u,v) = u'v is the inner product of # and v, and

s.() : RV*1 s RNx1 g the elementwise vector operator of
the same size as input vector -, which is given by

Sa (XN)]T

with the soft thresholding operator s,(-) discussed in (12) and
(14). Note that the argument inside the soft thresholding vector
in (17) is similar to the right-hand side of (16). One may
imply that an iterative computation of (17) is equivalent to a
soft thresholding version of the fixed-point iteration indicated
by (16). Let us introduce the following:

$a(X) = [sa(x1)  sa(x2) (18)

1) the pseudo-fo-norm of the vector x as lim,_g ||x||Z,
which is equal to the number of nonzero elements in
x [16, p. 4], i.e.,

lin% Ixl5 = Hoxalxn #0,n € {1,2,...,N}}| (19)
pP—
where || - ||, is the £,-norm, given by

Izll, = (lzil” + 221" +- -+ 1znl?) 7. (20)

| - | is the absolute value of number - or the cardinality
of set -;

2) the infinity norm as ||x ||, which is equal to the maxi-
mum of the absolute values of the elements in x, i.c.,

[Xllc = max x| (21)
ne{l,2,...,N}

An iterative computation based on the result of (17) can be
summarized in Algorithm 1.

Algorithm 1 SHA [41]

Input: A € RN p e RM*I K ¢ N1 € (0, 1), and
Npmax € NI
Output: tgys € RV*!
x[0] <0
Ao < A7h]lx
i< 0
while lim,,_¢ |X[i]|) < 2K Ai < Npax do
i <—i+1
2[i] < s, (i — 11+ AT(b — AR[i — 1]))
Ai <= yAio
end while
return x[i]
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Algorithm 1 is known in [41] as a simple homotopy
algorithm, which might be coined in the sequel as soft
homotopy algorithm (SHA).

C. Soft Homotopy Algorithms Using Moore—Penrose Inverse
Instead of multiplying (1) by AT along the left direction and

yielding (15), one may multiply (1) by AMPwhich results in
AMP Ax ~ AMPp (22)

where AMP is the MPI, which is given by
AMP = AT(4AT) (23)

Note that the data on both sides of (22) are weighted by
(AAT)’1 compared to the data on both sides of (15). The
weighting method would bring more numerical stability. If one
adds x to both sides of (22), the outcome x + AP Ax ~
x + AMPp Jeads to

x ~x+ AMPp — AMP Ax

=x+ AP (b — Ax). (24)

The result of (24) offers another possible fixed-point iteration.
It serves as the basis for the algorithm design in what follows.
In [1], the term A" of the updating solution X[i] <« s»,_,
(X[i —1]+AT(b—Ax[i —1])) in Algorithm 1 is replaced by the
MPI in (23). Similar to Algorithm 1, an iterative computation
is proposed as follows.

Algorithm 2 SHA-MPI [1]

Input: A € RN b e RM*I K e NIy € (0,1), and
Nmax € NIXI
Olltpllt: -fSHA-MPI S RNXI
x[0] < 0
Ao < 1A7b]lx
i <0
while lim,_o [X[i]Il} < 2K Ai < Npax do
i< i+1
2] < sx, (R — 11+ AP (b — AR[i — 1]))
Ai <= YA
end while
return x[i]

The above algorithm can be denoted by SHA with MPI
(SHA-MPI). Furthermore, it is worth noting that one of the
stopping criteria in the SHA is lim,_. ||x[i]||ﬁ < 2K. In the
theoretical case, the number of nonzero elements should satisfy

i P —
lim [lxoll} = K (25)
where x is the true value of x. Therefore, a relaxed stopping
criterion could be lim,_¢ |X[i]l|} < K, which inspires the
following algorithm.

Note that the soft minimal homotopy algorithm with the
MPI (SMHA-MPI) should have less computational burden
than the SHA-MPI due to a relaxed stopping criterion
lim,, o | £[i1]} < K.
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¥

/Input: A e RMXN p e RMX1 K € N'X1 4 €(0,1), and Npax € NIXL /

¥

Initialization: £[0] < 0, \g + ||AMPb||., and i + 0.

T
:f}[l] — SAFI(

I
<.
|
=
+
>

<
vl
S
|
>
IS
<.
|
o=

11)1_% ||53[@H|§ < 2K N < NmaX' /\1 — ’Y/\i—l'

/Output: ZTsTA-MPI = :f:[l] € RVxL, /

¥

Stop

Fig. 2. STA-MPI framework corresponding to Algorithm 4.

Algorithm 3 SMHA-MPI [1]

Algorithm 4 STA-MPI

Input: A € RN p ¢ R¥*I K e N'X!I y € (0, 1), and

Nmax € NIXI
Olltpllt: fSMHA—MPl € RNXI

x[0] <0

Ao < 1ATD] I

i <0

while lim,,_¢ |X[i]ll), < K Ai < Nmax do
I <—i+1
2] < sy, (Bl — 11+ AP (b — AR[i — 1]))
Ai <y Aic1

end while

return x[i]

Input: A € RN p e R¥*I K ¢ N'*!I| y € (0, 1), and
Nmax € NIXI
Olltpllt: fSTA—MPI € RNXI
x[0] <0
Ao < 1AM D]l
i <0
while lim, o | £[i]]15 < 2K Ai < Ny do
I <—i+1
2[i] < sx, (Bl — 11+ AP (b — AR[i — 1]))
Ai <= yAic1
end while
return x[i]

D. Soft Thresholding Algorithms Using Moore—Penrose
Inverse

In this work, two additional algorithms are proposed by
invoking the MPI also at the initialization of the regularization

parameter .
The flowchart of the STA-MPI is shown in Fig. 2.

Similar to Algorithm 3, we propose a relaxed version of
Algorithm 4 as follows.
The flowchart of the SMTA-MPI is given in Fig. 3.

III. NUMERICAL EXAMPLES

All numerical simulation in this work is conducted using
Python language.
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‘ Stop

Fig. 3. SMTA-MPI framework corresponding to Algorithm 5.

Algorithm 5 Soft Minimal Thresholding Algorithm With MPI

Input: A € RN p e RM*1 K ¢ N'*! y ¢ (0, 1), and
Nmax c lel
Olltpllt: fSMTA-MPI € RNX]
x[0] <0
Ao < 1A% D]l
i <0
while lim,,_¢ [|X[i]ll) < K Ai < Nmax do
i <i+1
£[i] < sy, (X — 11+ AMP (b — AZ[i — 1]))
Ai < YA
end while
return x[i]

A. Random Number Generation

The true value x( is assumed to follow an identical and
independent real-valued Gaussian distribution with zero mean
and normalized variance, i.e.,

x0 ~ N (0, LIN). (26)

VK

The transfer matrix A is assumed to have an identical and
independent real-valued Gaussian distribution with zero mean
and normalized variance, i.e.,

A=la; a ay] (27a)

a, ~ NR(O, \/LMIM), ne{l,2,...,N}. (27b)
As K < N holds for a sparse signal vector, the K locations
of all K nonzero elements in x are assumed to have an equal
probability on all N possible positions.

The random signal generation in this manner can cover a
specific signal class, e.g., the ECG signal [42], the electroen-
cephalogram (EEG) signal [43], and random combination of
sine waves [44].

B. Algorithmic Comparison
The methods
following:
1) LLS, the estimate given by (5);
2) LS-LI1R, the estimate formulated in (6) and solved by an
open-source Python-embedded modeling language for

for numerical comparison involve the
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/Input: K, M, N, Nnax, Vs A, Nsupp(wo)’ Na, and ng < 0. /

¥

Random number generation: xg, A,
and Nsupp(xo) 0.

¥

Random sparsity

pattern generation: supp(xo).

v

Signal reconstruction: &.

¥

Squared-relative error and computational time.

¥

< N,

Nsupp(zo) supp(@o) -

na < Na.

Nsupp(@o) <~ Msupp(@o) T 1-

yes
na < na + 1.

no

/ Output: RMSRE and average computational time. /

¥
‘ Stop ’

Fig. 4. Diagram of the experimental setup for the noiseless case.

convex optimization problems, also known as ConVeX
PYthon (CVXPY) [45];
3) LIRLS, the estimate formulated in (8) and solved by
CVXPY [45];
4) SHA, the estimate given by Algorithm 1;
5) SHA-MPI [1], the estimate given by Algorithm 2;
6) SMHA-MPI [1], the estimate given by Algorithm 3;
7) STA-MPI, the estimate given by Algorithm 4;
8) SMTA-MPI, the estimate given by Algorithm 5.
It is found that the closed-form expression of the LLS estimate
in (5) provides exactly the same error performance as that
given by solving (4) with the CVXPY [45].
Figs. 2 and 3 and other algorithms that we have taken
for comparison in this work are in the same kind of signal

reconstruction, which does not involve the treatment of A.
They need to know A earlier. There are some works that
propose the algorithms to design A for a specific purpose
(see [46] and [47]). Those works do not lie exactly in the
same area as this work.

Fig. 4 shows the structure of numerical simulation, which is
applied to every algorithm. Figs. 2 and 3 and other algorithms
in this work are implicitly inside Fig. 4. The numerical
simulation has to supply the matrix A to each algorithm.
For averaging the error performance, the numerical simulation
will supply different random values of the matrix A to every
algorithm. All algorithms in this work do not deal with the
design of the matrix A as same as [46] and [47]. Similar
to most works, we pay attention to only the reconstruction
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A (for LIRLS) and v (for SHA-based algorithms): Regularization parameters

Fig. 5. RMSRE as a function of regularization and shrinking parameters,
such as A for LIRLS and y for SHA-based algorithms with K = 6.

technique for a given A rather than the design of the
matrix A.

C. Performance Metric

The simulation result will not be fair if one relies on only a
single realization of cascaded random variables. It is general or
in various works to average the simulation results from a large
number of realizations. See the outer loop in Fig. 4. The mean
value given by this large number of simulations will suppress
the fluctuation due to the randomness and is more reasonable
than the result given by a single realization. Therefore, the
matrix A has to be different for each realization. Rather than
invoking a specific set of values for the random variables, the
randomization technique, sometimes known as Monte Carlo
simulation, is commonly used for fair results.

In other words, the matrix A is fixed when it is plugged
into an algorithm. The matrix A does not change inside
the algorithm. However, the matrix A is set to be changed
randomly to other values in the next round when it is inserted
into the algorithm.

The root mean square relative error (RMSRE), denoted by

A 2
RMSRE = gAaxo-,SUPP(xo)ﬁb M

2
\ llxoll5

A~ 2
£ = xol,

28
llxoll, 8

= SA,xo,surlp(xo),éb

\

is the metric for the performance evaluation of each algorithm.
It is computed by the square root of the probabilistic
average of the square of the normalized estimation error,
where €4 x, supp(xo),s, (-} 1S the expectation with respect to all
randomization.

D. Simulation Results

In the interest of fairness, numerical simulation in [1] is
conducted by always keeping the same value for both A, which
is required by the L1RLS criterion, and y, which is required by
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Fig. 6. RMSRE as a function of regularization and shrinking parameters,
such as A for the LIRLS and y for the SHA-based algorithms with K = 6.
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Fig. 7. RMSRE as a function of regularization and shrinking parameters,
such as A for the LIRLS and y for the SHA-based algorithms with K = 16.

the SHA and our homotopy and thresholding methods. In this
work, we find that this equality setup might not be justifiable
for each algorithm because each method is constructed from
different criteria.

Assume that the optimality lies in the sense of minimal
RMSRE. Therefore, it would rather be fruitful to look for the
optimal values that might be different for each approach, given
a circumstance, e.g., for K = 6 or K = 16. The simulation
setup for the noiseless case is provided in Fig. 4.

In Fig. 5, we search for the optimal value for the regulariza-
tion parameter A\ for the LIRLS approach. The parameters for
the simulation of Figs. 5 and 6 include Nz = 1000002 inde-
pendent runs, M = 128, N = 256, and Ny, = 100.
In Figs. 6 and 7, the optimal values of soft thresholding
parameter y are explored for five algorithms for K = 6 and
K = 16, respectively, while corresponding time consumption
in the computation by each method is shown in Fig. 8 for
the case of K = 16. The parameters for the simulation
of Figs. 7 and 8 include Ny = 100000 independent runs,
M =128, N = 256, and Ny,.x = 100.
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Fig. 8. Elapsed time of computation as a function of regularization and
shrinking parameters, such as A\ for the LIRLS and y for the SHA-based
algorithms with K = 16.

Under a finite grid search in Fig. 5, we find that the
value A = 1073 brings the minimal RMSRE to the LIRLS
method when the number of nonzero elements of x is 6. It is
worth noting that, from our simulation experience, the LIRLS
framework may suffer from the nonconvergence, especially in
the noisy signal case, when X is less than or equal to 107*.
The tiny value region in (107, 10~!) does not provide any
low RMSRE to other methods.

In Fig. 6, the finite grid search comes up with a set of
optimal values, such as y = 0.95 for the SHA, y = 0.9 for
the SHA-MPI, y = 0.91 for the SMHA-MPI, y = 0.88 for
the STA-MPI, and y = 0.93 for the SMTA-MPIL.

Comparing to the results given by Fig. 6, one may find that,
in Fig. 7, the optimal values of y for the proposed homotopy
and thresholding methods deviate from those derived from
Fig. 6 when the number nonzero elements increase from
K = 6 to K = 16. This variation implies that there are no
fixed optimal values of y for all homotopy and thresholding
algorithms under different sparsity circumstances.

In Fig. 8, one can see that the relaxed stopping criterion can
reduce the complexity of the proposed homotopy and thresh-
olding approaches. In addition, the homotopy and thresholding
algorithms, including the SHA, need less computational time
than the convex optimization methods, such as the LS-L1R,
the L1RLS, and the LLS.

Assume that we are interested in a very sparse signal,
such as that of K = 6. The regularization parameters
for Figs. 9 and 10 include y = 0.95 for the SHA, y = 0.9 for
the SHA-MPI, y = 0.91 for the SMHA-MPI, y = 0.88 for the
STA-MPI, y = 0.93 for the SMTA-MPI, and A = 1073 for the
LI1RLS. Other parameters encompass Ng = 100002 inde-
pendent runs, K = 6, M = 128, and N = 256. Fig. 9
reveals that only the STA-MPI and the SMTA-MPI can

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

100 | *
8
= -2 -
= 10
[§3]
3}
=
£ N
g 107 RN |
= b

— \J\
S 1078 | . *
X ——LS-LIR [32]: CVXPY [45]
g LLS [17]: CVXPY [45] N
> ——+— SMHA-MPI (&[0] = 0) [1] [o N
% 10-8 | | —%—sHA @0)=0) 41] N n
1) —6— SHA-MPI (£[0] = 0) [1] S
& —— LIRLS [18]: CVXPY [45] Y
SMTA-MPI (£[0] = 0) \J\
10— 10|~ | —=~— STA-MPI (&[0] = 0) \,\ —
! ! | | | | L

! !
0 20 40 60 80 100 120 140 160 180 200

Nmax: The maximum number of iterations for iterative algorithms

Fig. 9. RMSRE as a function of the maximum number of iterations.

10-1 T T T T T T T T T T
e B == mm=RRC R == RS s S SRS Y

10—2

LLS [17]: CVXPY [45]
—— LIRLS [18]: CVXPY [45]
—— LS-LIR [32]: CVXPY [45]
—&— SHA (&[0] = 0) [41]
SMTA-MPI (£[0] = 0)

——— STA-MPI (£[0] = 0)
—6— SHA-MPI (2[0] = 0) [1]
——— SMHA-MPI (2[0] = 0) [1]

Elapsed time of computation (in s)

\ \ \ \ \ \ \ \ \ \
0 20 40 60 &80 100 120 140 160 180 200

10-3

Nmax: The maximum number of iterations for iterative algorithms

Fig. 10. Elapsed time of computation as a function of the maximum number
of iterations.

provide lower RMSRE than the L1RLS method for Np,x > 40
and Npx > 70, respectively. Fig. 10 indicates that all the
homotopy and thresholding algorithms, including the SHA,
perform almost identically and have the advantage of low
computational time over those convex optimization methods.

The regularization parameters for Figs. 11 and 12 are
y = 0.95 for the SHA, y = 0.9 for the SHA-MPI, y = 0.91
for the SMHA-MPI, y = 0.88 for the STA-MPI, y = 0.93
for the SMTA-MPI, and A = 10~ for the L1RLS. Other
parameters comprise of N = 100000 independent runs,
M = 128, N = 256, and Ny« = 100. For the sake of
various signal sparsity, Fig. 11 shows that the homotopy and
thresholding algorithms can outperform the LIRLS approach
when the signal contains a tiny amount of nonzero elements.
Only the STA-MPI can perform better than the LIRLS method
for every level of signal sparsity.

Fig. 12 implies that the SHA-MPI and the SMHA-MPI take
significantly lower computational time than the SHA, the STA-
MPI, and the SMTA-MPI.
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All previous simulation results are conducted under the
situation where there was no additive noise embedded in the
output vector b. The simulation setup that accounts for
the additive noise is provided in Fig. 13.

In the next aspect, we investigate the effect of system output
uncertainty in Figs. 14 and 15, i.e., there exists additive noise
according to Fig. 1.

Let us introduce the signal-to-noise ratio (SNR) in
decibel (dB) as

£ Axo|2
SNR:IOIOg;o( Ao suppte | xOHZ}). (29)

Es, {118,113}

The regularization parameters for Figs. 14 and 15 incorporate
y = 0.95 for the SHA, y = 0.9 for the SHA-MPL, y =
0.91 for the SMHA-MPI, y = 0.88 for the STA-MPI, y =
0.93 for the SMTA-MPI, and A = 1072 for the LIRLS.

6504118

)}

Other parameters for the simulation cover Ny = Ny, =
Nsupp(xo) = 17, N;b = 100, and NR = NANsupp(xo)NSb
100200 independent runs, M = 128, N = 256, and Ny =
100. In Fig. 14, for SNR in the range (—10,35) dB, the
SHA outperforms the others, including the proposed methods.
However, when the received signal tends to be noiseless, e.g.,
for SNR greater than 55 dB, all homotopy and thresholding
methods start to exhibit their accuracy. This result implies that,
when the shrinking parameter y is chosen to be optimal from
the noiseless case, the proposed methods in this work are quite
sensitive to the additive noise.

In Fig. 15, one can see that, although it gives the lowest
RMSRE in the practical noisy case, e.g., for the SNR in the
range (—10, 35) dB, the SHA consumes more computational
time than the proposed MPI methods. The convex optimization
frameworks take much more time than all homotopy and
thresholding approaches.

Next, we present a blind scenario where there is no
knowledge of the optimal regularization parameters avail-
able to any algorithm. The parameters for the simulation of
Figs. 16 and 17 include Ny = Ny, = 16, Nyppx) = 63,
Ns, = 100, Ngp = Ny NgppixNs, = 100800 independent
runs, K = 16, M = 32, N = 64, Ny = 100, and
y = A = 0.5. Figs. 16 and 17 demonstrate that, for the SNR
greater than 0 dB, the proposed homotopy and thresholding
methods using the MPI can achieve lower RMSRE and take
lower computational time than the previous methods.

In addition, a realistic signal is taken into account.
We downloaded a realistic EEG signal from [48], which is
a part of CHB-MIT Scalp EEG Database [49]. The measured
signal from the file “chb18_18.edf” contains 7000 samples.
Unfortunately, due to a limit amount of memory, the computer
cannot process all 7000 samples simultaneously.

Therefore, we process only N = 7000 samples of the
whole 921600 samples. To complete all 921600 samples,
this computation is repeated to the next data blocks until it
reaches and covers the last data point. It means that the last
data block will be of the length N = 4600.

Let y(z) be the raw data of 7000 data points from the file
“chb18_18.edf” in [48]. It can be expressed in the form of a
vector as

i

y=[n » )’7000]T (30)

where y, is the nth sample from y(z), i.e.,

yn = ynTy) 3D

with T; being a sampling period. The vector y is shown in
Fig. 18, while one of its portions is illustrated in Fig. 19.

The signal in Figs. 18 and 19 is very weak, i.e., on the
order of 107°~1073 due to the low voltage induced by the
mechanism inside the human brain.

In this work, the discrete cosine transform (DCT) is pre-
ferred because it involves only a real-valued number per
data point, whereas the discrete Fourier transform contrives
a complex-valued number per data point, which incurs double
memory for data storage. Furthermore, the discrete wavelet
transform is more suitable for 2-D data, such as an image.



6504118 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

Start

i
/Input: K, M, N, Nnax, Yo A, Nsupp(wo)’ Na, Ngb, and ny < 0. /

i

Random number generation: x(, A,
and Nsupp(xo) ~— 0.

¥
Random sparsity pattern
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¥

Random noise generation: dy,.

¥

Signal reconstruction: &.

¥

Squared-relative error and computational time.
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Nsupp(zo) < Nsupp(o)- Nsupp(zo) <~ Msupp(ao) T 1-

yes

na < Na. nag < na + 1.

no

/ Output: RMSRE and average computational time. /

i
‘ Stop ’

Fig. 13. Diagram of the experimental setup for the noisy case.

Let the DCT of y, for n € {1,2,...,7000} be where ¢ is given by
[50, eq. (8.158)], [51, Sec. 5.6] 1

N—1 | B \/ﬁ’
Yeos[k] = i Z Yn COS W(Zn + Dk (32) o = 5
‘,N7 ke{l,2,...,N—1}

=0 _yry)

(33)
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and N = 7000. In Fig. 20, the signal along the time is
transformed to the domain of a cosine function by using
the DCT. It can be seen that the transformed signal in the
cosine domain does not exhibit a sparsity in the spectrum. The
EEG signal from the above database represents an example
of a nonsparse signal in nature. If we assume that the DCT
signal ycos[k] in (32) for k € {1,2,...,7000} is the desired
information x in (1), we have

X = [Yeosl 1] Yeos[2] ycos[7000]]T~ (34

If C{-} is the DCT operator of a vector or a matrix -, it follows
from (32) that

x =C{y}. (35)

In Fig. 21, we randomly pick up only M = 3430 samples
from all N = 7000 samples shown in Figs. 18 and 19.
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Fig. 18. EEG signal that is taken from the first N = 7000 samples of the

whole 921 600 samples.

The signal of a smaller size can be denoted by b(¢), which
can be written in a discrete-time form as

T
baszo] -

b=[b b (36)
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Zoom from ¢ = 10 to t = 12 s for the sampled signal that is
randomly chosen from 49% samples of the original signal in Fig. 18.

From 7000 samples to 3430 samples, there exists a sampling
matrix @ € R3*39x700 gych that

b= dy.
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Fig. 22.  Zoom from ¢t = 10 to t = 12 s for the EEG signal reconstructed

by the LLS method.
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Fig. 23.  Zoom from ¢t = 10 to t = 12 s for the EEG signal reconstructed
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Fig. 24. Zoom from ¢t = 10 to t = 12 s for the EEG signal reconstructed
by the LIRLS method using y jrrs = 1074,

In practice, the sampling matrix ® does not need to be
generated. Let C~'{:} be the inverse DCT (IDCT) operator
of a vector or a matrix -. To comply with the compressive
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Fig. 25. Zoom from ¢t = 10 to t = 12 s for the EEG signal reconstructed

by the SHA method using yspa = 0.95.

10~*

10~5

107¢

(t): Reconstructed signal

L R R w3
L

10-7 | | |
10 10.5 11 11.5 12
t: Time (in s)
Fig. 26. Zoom from ¢t = 10 to t = 12 s for the EEG signal reconstructed

by the SHAMPI method using yspampr = 0.9.

sensing concept [52], [53], the linear sampling model in (37)
can be written as

b=a&C"'} Cly)

—~—
=x, (35)

= <I>C*1{IN}x
—_——
v
= &V x
——
A, (1)

— Ax (38)

where W € RV*V is the IDCT matrix of the identity matrix,
which is given by [51, Sec. 5.6]

W =C I\ (39)
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Fig. 27. Zoom from ¢t = 10 to t = 12 s for the EEG signal reconstructed

by the SMHAMPI method using ysmpampr = 0.91.

T T T

10~4

10~5

7(t): Reconstructed signal

R = s s s

1076 =
7 \ | |
10 10 10.5 11 11.5 12
t: Time (in s)
Fig. 28. Zoom from t = 10 to t = 12 s for the EEG signal reconstructed

by the STAMPI method using ystampr = 0.88.

and the sensing matrix A € R®*V is given by

A =0V, (40)

The sampling matrix @ is implicit in the selection of only M
rows from all N rows of W to be A. The signal b(¢#) shown
in Fig. 21 is due to only a single realization of sampling
randomization. In Fig. 21, the sampled signal is of length
M = 3430. It is randomly chosen under sub-Nyquist sampling
from the original signal of length N = 7000. Hence, the
reconstructed results, in terms of

5=

from Figs. 22 to 29 are derived from only a single realization
of random sampling in Fig. 21.

Figs. 22 to 29 adopt x[0] = 0, Ny. = 100, and the

compression ratio (1/N)(N — M) = 0.51. All methods

provide the reconstructed signals of length N = 7000 and
the performance in Table I.

(41)
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Fig. 29. Zoom from t = 10 to ¢+ = 12 s for the EEG signal reconstructed

by the SMTAMPI method using ysmrampr = 0.93.
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TABLE I

NORMALIZED ERROR AND COMPUTATIONAL TIME OF WIND SPEED
SIGNAL RECOVERY GIVEN BY EACH ALGORITHM FOR
Npgr = 100 INDEPENDENT RUNS AND A
COMPRESSION RATIO OF 0.8
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Npr = 100 independent runs for K = M, N = 7000, and Npyax = 100.

Methods | Normalized Error | Computational Time (in s)
LLS [17] 0.8943 1.31
LS-L1R [32] 0.2434 36.21
LI1RLS [18] 0.2551 68.35
SHA [41] 0.2426 199.42
SHA-MPI 0.2417 93.12
SMHA-MPI 0.2418 68.87
STA-MPI 0.2413 70.90
SMTA-MPI 0.2409 89.99

TABLE I

NORMALIZED ERROR AND COMPUTATIONAL TIME OF EEG SIGNAL
RECOVERY GIVEN BY EACH ALGORITHM
COMPRESSION RATIO OF 0.51

Methods Normalized Error [ Computational Time (in s)
LLS [17] 0.7139 500.17
LS-LIR [32] | 1.0 9,788.64
LIRLS [18] 1.0 15,396.74
SHA [41] 0.2880 118.73
SHA-MPI 0.2874 111.02
SMHA-MPI 0.2876 56.44
STA-MPI 0.2874 104.76
SMTA-MPI 0.2870 72.57

In Figs. 30 and 31, we average the EEG signal reconstruc-
tion error and the computational time from 100 realizations
of random sampling. The regularization parameters for
Figs. 30 and 31 consist of y = 0.95 for the SHA, y = 0.9 for
the SHA-MPI, y = 0.91 for the SMHA-MPI, y = 0.88 for

the STA-MPI, y = 0.93 for the SMTA-MPI, and )\ = 1074
for the LIRLS. One can see from Fig. 30 that, for a range
of the compression ratio, all soft thresholding algorithms
achieve nearly the same recovery error, while, from Fig. 31,
the soft thresholding algorithms using the MPI consume less
computational time than the conventional thresholding method.
The flowchart of the experimental setup for this EEG signal
is given in Fig. 32.

In Fig. 33, the wind speed of a wind turbine system
was measured for 302.75 days [54, Ch. 2]. The measure-
ment started on October 7, 2014, at 02:00 and finished
on October 7, 2015, at 00:00. This result is taken from a
real measurement and available in terms of a support file.
All regularization parameters are chosen to be the same
as in Figs. 22-29. The length of the data in Fig. 33 is
N = 7266.
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Fig. 32. Diagram of the experimental setup for the EEG signal.
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From Figs. 34 to 41, the wind speed signal is reconstructed
with the compression ratio of 0.8 for a single realization of
the sampling pattern. These results are shown only from yjo
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Fig. 34. Wind speed signal reconstructed by the LLS.

to yi15 for the sake of clarity. It can be seen that all algorithms
recover the desired signal with nearly the same error, except
for the LLS in Fig. 34, which is the worst.
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Fig. 40. Wind speed signal reconstructed by the STA-MPI.

column of Table II. However, one can see in the second

If we reconstruct the wind speed signal as in Figs. 34—41 for column of Table II that the computational time consumed
100 possible sampling patterns, the average error performance, by the methods using the MPI is relatively low compared to
which appears to be almost identical, is shown in the first the former SHA.
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IV. CONCLUSION

Apart from the two previously proposed SHAs in [1],
two thresholding algorithms that involve a soft decision are
proposed in this work by means of the MPI. The additional
complexity is relatively minimal since the necessary matrix
inverse (AAT)’1 and the matrix multiplication AT(AAT)’1
can be done before the iteration starts. Numerical examples
have been conducted to illustrate the improved error perfor-
mance from the optimal values of the shrinking parameter y
in the noiseless case. It is found that, in the noisy case, the
proposed MPI methods require less computational time than
the SHA at the expense of signal acquisition accuracy. Under a
blind setup where no optimal values of the regularization and
shrinking parameters are available, the proposed homotopy and
thresholding algorithms can outperform the former methods in
terms of both higher accuracy and lower computational time.
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