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Designing Optimal Loop, Saddle, and Ellipse-Based
Magnetic Coils by Spherical Harmonic Mapping
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Niall Holmes , Max A. Weil , Matthew J. Brookes , Richard Bowtell , and Mark Fromhold

Abstract— Adaptable, low-cost, coils designed by carefully
selecting the arrangements and geometries of simple primitive
units are used to generate magnetic fields for diverse applications.
These extend from magnetic resonance and fundamental physics
experiments to active shielding of quantum devices including
magnetometers, interferometers, clocks, and computers. How-
ever, finding optimal arrangements and geometries of multiple
primitive structures is time-intensive and it is challenging to
account for additional constraints, for example, optical access,
during the design process. Here, we demonstrate a general
method to find these optimal arrangements. We encode specific
symmetries into sets of loops, saddles, and cylindrical ellipses and
then solve exactly for the magnetic field harmonics generated by
each set. By combining these analytic solutions using computer
algebra, we can use numerical techniques to efficiently map the
landscape of parameters and geometries which the coils must
satisfy. Sets of solutions may be found which generate desired
target fields accurately while accounting for complexity and size
restrictions. We demonstrate this approach by employing simple
configurations of loops, saddles, and cylindrical ellipses to design
target linear field gradients and compare their performance
with designs obtained using conventional methods. A case study
is presented where three optimized arrangements of loops,
designed to generate a uniform axial field, a linear axial field
gradient, and a quadratic axial field gradient, respectively, are
hand-wound around a low-cost, 3-D-printed coil former. These
coils are used to null the magnetic background in a typical
laboratory environment, reducing the magnitude of the axial field
along the central half of the former’s axis from (7.8 ± 0.3) µT
(mean ± standard deviation) to (0.11 ± 0.04) µT.

Index Terms— Analytical models, coils, electromagnetic mea-
surements, Fourier transforms, magnetic resonance, magnetic
shielding, magnetometers, mathematical programming.

I. INTRODUCTION

EVERMORE sophisticated methods of magnetic field
design are required to better null unwanted variations
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and generate targeted biases in precision measurement devices.
Techniques to control magnetic fields have been applied
for various precision measurements including in magnetic
resonance scanners [1], [2], [3], electric dipole moment
experiments [4], [5], [6], and Kibble balances for mass deter-
mination [7], [8], [9]. As well as this, precision magnetic field
control is a necessity for new generations of quantum-enabled
devices, including atomic magnetometers [10], [11], [12], [13],
[14], [15], atom interferometers [16], [17], atom [18], [19] and
ion [20] clocks, and quantum computers [21], [22]. Recently,
the design of onboard coils for quantum-enabled devices has
garnered extensive research interest [23], [24], [25], [26] as
these coils must balance magnetic constraints, such as power
efficiency and field uniformity, with significant nonmagnetic
considerations, including optical access and ease of assembly.

Turner [27] pioneered the design of target coils from dis-
cretized surface currents, in which wires emulate a continuum
of current flowing on a surface. Typically, the surface current
is decomposed into a set of weighted orthogonal modes [28],
[29], [30]. As these modes generate spatially orthogonal
magnetic fields, the best combinations of weightings to gener-
ate a specified target field profile may be determined using
simple mathematical programming [31], often least-squares
minimization. However, the real-world performance of surface
current-based coil systems is limited if the surface current
is inaccurately emulated by the wire pattern. This is known
as discretization error [32]. This error increases if the target
field region is close to the coil or if manufacturing limitations
prevent precise emulation of the surface current. In some cases,
discretization error may be calculated analytically [33], [34],
but often it may only be ascertained by numerically simulating
each wire pattern a posteriori until a well-represented design
is found. This may be very computationally intensive.

Unlike surface current-based coils, those directly designed
from simple building blocks, including loops, saddles, and
ellipses, hereby referred to as primitives, do not suffer from
discretization error and have regular shapes, making them
cheap and easy to manufacture. Roméo and Hoult [35] devel-
oped a method to design magnetic fields using these coils
by exploiting the symmetries in a desired magnetic field,
expressed using a spherical harmonic decomposition, with
sets of primitives. They then maximized the target harmonic
strength by tuning both the continuous geometric coil param-
eters, which determine the shape of the sets of primitives,
and the discrete ratios of the number of turns of wire among
different sets of primitives. Arrangements of multiple sets of
primitives can produce a high-quality magnetic field since each
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extra primitive provides additional parameters that one can
optimize. However, the optimization of multiple primitives
is challenging as each primitive generates many spherical
harmonics. To design such systems, one may examine Tay-
lor expansion coefficients [36], [37], [38], [39] of analytic
expressions [23], [40], but these do not relate simply to the
basis of spherical harmonics in many cases. This can make
it difficult to ascertain how the minimization of different
undesired variations should be prioritized to maximize field
quality. Alternatively, numerically solved analytic formulations
of the magnetic field [41], [42], [43] have been used effectively
to design loops and saddles, but such approaches do not allow
the relationship between the coil parameters and field quality
to be determined a priori. As a result of these limitations,
surface current-based coils are often preferred over primitive-
based systems in settings where accurate target fields are
required over large target regions relative to the coil size.

Here, we facilitate the wider use of primitive-based coil
systems by providing a generalized approach to their design.
We mathematically encode sets of primitive building blocks
with spherical harmonic-like symmetries such that all mag-
netic field variations in free space generated by the sets may
be encoded as exact, closed-form expressions. To achieve
this, we impose the sets directly into Turner’s surface current
solution [27] and apply a spherical harmonic decomposi-
tion [35]. We solve the resulting integral equations analytically
to determine the expansion coefficients as simple derivatives
with respect to the coil parameters. Then, we use Mathematica
to construct and simplify the analytic expressions for the
expansion coefficients, upon which numerical root-finding
routines search the coil parameter space for solutions that
cancel field errors. By interpolating these solutions, we deter-
mine a meshed contour in the parameter space on which
the solutions lie. We then rank the solutions according to a
desired attribute, for example, field fidelity, power efficiency
(field strength per unit current), inductance, or by practical
concerns such as spatial extent, overlaps with access holes,
or the distance between sets of primitives. We present three
worked examples of this process—one of each using sets of
loops, arcs, and ellipses primitives—to demonstrate the scope
of our method, and compare each to standard equivalents.
To finish, we design and build uniform axial, linear axial
gradient, and quadratic axial gradient, field-generating loops
on a 3-D-printed cylindrical coil former. We examine how this
system can be used to null the background magnetic field in
a typical laboratory environment.

The analytic model developed in this work was initially
presented at the Conference on Precision Electromagnetic
Measurements 2022 [44].

II. MATHEMATICAL FRAMEWORK

A. Field Harmonic Basis

In free space, the magnetic field can be represented as the
gradient of a magnetic scalar potential, B = −∇9. The scalar
potential and magnetic field both satisfy Laplace’s equation,
∇

2B = ∇
29 = 0. Here, we express the magnetic scalar

potential as the complete basis of real spherical harmonics

and so the magnetic field may be expressed in terms of the
complete basis of the vector derivatives of each real spherical
harmonic [45]. We refer to this as the basis of field harmonics

B(r) =

∞∑
n=1

n∑
m=−n

fn,mBn,m(r) (1)

where each field harmonic, with magnitude fn,m , is denoted
by Bn,m(r) = ∇hn,m(r) and hn,m(r) is the spherical harmonic
of the same order n ∈ Z+ and degree m ∈ Z ∈ [−n:n]. Each
spherical harmonic may be expressed as

hn,m(r, θ, φ) = ηn,mrn Pn,|m|(cos θ)
(

cos(mφ)
sin(|m|φ)

)
(2)

where the upper and lower terms in the right-hand-side bracket
denote variations of degree m ≥ 0 and m < 0, respectively.
Each spherical harmonic has a zenith dependence described by
Ferrer’s associated Legendre polynomials, Pn,|m|(cos θ). The
harmonics are defined with the standard normalization

ηn,mηn′,m ′

∫ π

0
dθ

∫ 2π

0
dφ

×hn,m(r0, θ, φ)hn′,m ′(r0, θ, φ) = δn,n′δm,m ′ (3)

on a unitary sphere, r0 = 1, with

ηn,m =

√
ζm,0(2n + 1)

4π
(n − |m|)!

(n + |m|)!
(4)

and ζm,m ′ = 2 − δm,m ′ , where δm,m ′ is the Kronecker delta
function.

Here, we shall only consider cos(mφ)-like variations, for
m ≥ 0. Any sin(|m|φ)-like variations, for m < 0, may be
generated by rotating the equivalent cos(mφ)-like variation
by π/(2|m|). The field harmonic components in Cartesian
coordinates, Bn,m(r) = Xn,m(r)x̂ + Yn,m(r) ŷ + Zn,m(r) ẑ, are
presented in Appendix A. The axial component is

Zn,m(r, θ, φ) = ηn,m(n + m)rn−1
× Pn−1,m(cos θ) cos(mφ).

(5)

The symmetry of the axial component along the z-axis is
determined by the parity of (n +m −1) due to its dependence
on Pn−1,m(cos θ) [46]. Thus, the axial component is symmetric
along the z-axis if (n + m − 1) is even and is antisymmetric
along the z-axis if (n + m − 1) is odd.

The low-order field harmonics encode simple variations
when expressed in Cartesian coordinates. For example, for
n = [1, 2] and m = [0, 1], they are

B1,0 =
1
2

√
3
π

ẑ (6)

B1,1 =
1
2

√
3
π

x̂ (7)

B2,0(x, y, z) =
1
2

√
5
π

(
−x x̂ − y ŷ + 2z ẑ

)
(8)

B2,1(x, z) =
1
2

√
15
π

(
z x̂ + x ẑ

)
(9)

as shown in Fig. 1.
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Fig. 1. Cartesian field harmonic components (a) Xn,m(r), (b) Yn,m(r), and (c) Zn,m(r) (see (33)–(35), respectively, in Appendix A) of order n ∈ [1, 2] and
degree m ∈ [0, 1] shown on the surface of unitary spheres (black outline; red-to-white-to-blue showing positive-to-zero-to-negative field harmonic amplitude),
where Bn,m(r) = Xn,m(r)x̂ + Yn,m(r) ŷ + Zn,m(r) ẑ, and

(
x̂, ŷ, ẑ

)
represent Cartesian unit vectors.

B. Harmonic Matching

The magnetic field, (1), generated by the surface currents
with cos(mφ)-like symmetry flowing on a cylinder of radius ρc

may be separated into contributions where the axial magnetic
field has total symmetry (+) or total antisymmetry (−) along
the z-axis about the origin

B+(r) =
µ0

π

∞∑
ν=0

∞∑
m=0

f2ν+m+1,m

ρ2ν+m+1
c

B2ν+m+1,m(r) (10)

B−(r) =
µ0

π

∞∑
ν=1

∞∑
m=0

f2ν+m,m

ρ2ν+m
c

B2ν+m,m(r). (11)

The axially symmetric field harmonics are of order n =

2ν + m + 1 for ν ∈ Z0+ and degree m ∈ Z0+. The axially
antisymmetric field harmonics are of order n = 2ν + m for
ν ∈ Z+ and degree m ∈ Z0+.

As the magnetic field must relate uniquely to the scalar
potential, the spatial forms of the field harmonics are preserved
when examining the field generated by the surface current.
Thus, the field harmonics must also be present within the well-
known Green’s function integral expression for the axial field
in free space generated inside a cylindrical azimuthal surface
current [27]. We express this in the axially symmetric and
antisymmetric cases as

B+

z (ρ, φ, z)= −
µ0

πρc

∞∑
m=0

ζm,0 cos(mφ)

×

∫
∞

0
dk k cos

(
kz
ρc

)
Im

(
kρ
ρc

)
K ′

m(k)J
m+

φ

(
k
ρc

)
(12)

B−

z (ρ, φ, z)= −
iµ0

πρc

∞∑
m=0

ζm,0 cos(mφ)

×

∫
∞

0
dk k sin

(
kz
ρc

)
Im

(
kρ
ρc

)
K ′

m(k)J
m−

φ

(
k
ρc

)
(13)

where Im(z) and Km(z) represent the modified Bessel func-
tions of the first and second kinds, respectively, of order
m. The Fourier transforms of the axially symmetric and

antisymmetric azimuthal current flows, J+

φ (r′) and J−

φ (r′),
respectively, are

J m±

φ (k) =
1

2π

∫ 2π

0
dφ′ e−imφ′

∫
∞

−∞

dz′ e−ikz′

J±

φ

(
r′
)
. (14)

As detailed in Appendix B, we can transform the cylindrical
variations in (12) and (13) into spherical variations like those
in the axial field harmonic component, (5). We find

Im

(
kρ
ρc

)
cos
(

kz
ρc

)
=

∞∑
ν=0

(−1)ν

(2(ν + m))!

×

(
kr
ρc

)2ν+m

P2ν+m,m(cos θ) (15)

Im

(
kρ
ρc

)
sin
(

kz
ρc

)
=

∞∑
ν=1

(−1)ν

(2(ν + m)− 1)!

×

(
kr
ρc

)2ν+m−1

P2ν+m−1,m(cos θ). (16)

Substituting (15) and (16) into (12) and (13) and grouping
terms to match the field harmonic basis, (10) and (11), we find

f2ν+m+1,m

=
ζm,0(−1)ν+1

(2(ν + m)+ 1)!

[∫
∞

0
dk k2ν+m+1 K ′

m(k)J
m+

φ

(
k
ρc

)]
(17)

f2ν+m,m

=
iζm,0(−1)ν+1

(2(ν + m))!

[∫
∞

0
dk k2ν+m K ′

m(k)J
m−

φ

(
k
ρc

)]
. (18)

The axial field harmonic component is zero for harmonics
of equal order and degree, Zn,n(r) = 0. To derive these
magnitudes, we follow the same procedure as above using the
transverse field, Bx (r), from the well-known solution [27] and
the transverse field harmonic component Xn,n(r). The resulting
integrals which determine the field harmonic magnitudes are
the same as (17) and (18).

III. PRIMITIVE DESIGN

Now, we encode the azimuthal surface current on example
sets of simple primitive building blocks: loops, saddles, and
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Fig. 2. Variation of primitive current patterns (red arrows indicate current flow direction) in the φz-plane on a cylinder of radius ρc to generate the field
harmonics optimized in the main text. (a) Axially antisymmetric loops separated axially by 2dc generate field harmonics of order N = 2ν, for ν ∈ Z+, and
degree M = 0. (b) Even number of pairs of axially symmetric sets of arcs with onefold symmetry along φ, separated axially by 2dc1 and 2dc2 and which
extend azimuthally by 2φc , may be connected to make saddles which generate field harmonics of order N = 2ν for ν ∈ Z+ and degree M = 2µ + 1 for
µ ∈ Z+. (c) Axially symmetric sets of ellipses with onefold symmetry along φ, separated axially by 2dc and which extend axially by a maximum of ec ,
generate the same field harmonics as (b).

ellipses. We design the sets of primitives to have specific
azimuthal and axial symmetries so that only certain field
harmonics are present in the magnetic field. We then solve the
field harmonic magnitude integrals, (17) and (18), analytically
to exactly determine the magnitudes of the remaining field
harmonics.

These solutions are used to choose the coil parameters of
combinations of sets of primitives to generate target field
harmonics. In Section III-A, we design axially antisymmetric
loops to generate the B2,0 field harmonic and, in Section III-B,
we design separate axially symmetric sets of saddles and
ellipses to generate the B2,1 field harmonic. The optimiza-
tion methodology we apply is presented in Section IV. The
Mathematica programs we use to design each coil are pub-
licly available for noncommercial use and are stored in the
repository listed in [47]. The default arguments in each of the
examples in the repository return the coil systems optimized
in the main text.

A. Linear Axial Gradient With Respect to Axial Position

The B2,0 field harmonic is contained within the axially
antisymmetric field, (11), and has m = 0 azimuthal symme-
try (no φ-dependence). As such, it is generated by axially
antisymmetric current flows with m = 0 azimuthal symmetry.
These symmetries are matched by pairs of simple loops which
carry equal and opposite current, I , and are separated about
the origin by an axial distance 2dc [see Fig. 2(a)]. We may
represent such a pair of loops using the following azimuthal
current density:

J−

φ

(
z′
)

= I
(
δ
(
z′

− dc
)
− δ

(
z′

+ dc
))
. (19)

The Fourier transform, (14), of (19) is

J m−

φ (k) = −2i I sin(kdc)δm,0. (20)

We determine the field harmonic magnitudes by substitut-
ing (20) into (18)

f2ν,0(χc) =
2I
(2ν)!

×

[
(−1)ν

∫
∞

0
dk k2ν sin(kχc)K1(k)

]
(21)

Fig. 3. Schematics of Nloops axially antisymmetric loop pairs (red arrows
indicate current flow direction) of radius ρc at axial positions z′

= ±dci for
i ∈

[
1:Nloops

]
. (a) Nloops = 1 pair of loops with dc1 =

(
(3)1/2/2

)
ρc (black).

(b) Nloops = 3 pairs of loops with dci = [0.5544, 0.6748, 0.8660]ρc and turn
ratios 1:−2:2 (black, blue, and brown, respectively, with higher turn ratios in
bold lines).

where the normalized separation is χc = dc/ρc.
In Appendix C, we analytically solve the class of integrals,
including (21), which encode the field harmonic magnitudes
generated by loops. We find that

f2ν,0(χc) =
π I
(2ν)!

∂2ν

∂χ2ν
c

(
χc√

1 + χ2
c

)
. (22)

We design B2,0 using (22) by choosing turn ratios and
separations to maximize the f2,0 field harmonic while min-
imizing all others. We then proceed by exactly nulling as
many leading-order field harmonics as possible, which we
define as the lowest order field harmonics generated by the
selected primitive current pattern that are not the desired field
harmonic. This is generally more effective than minimizing
as many field harmonics as possible since the leading-order
errors have the lowest spatial frequencies. In this specific case,
as expected, the leading-order field harmonic, f4,0, is nulled
exactly for χc = (3)1/2/2 [see Fig. 3(a)]. This coil geometry
may be referred to as an anti-Helmholtz pair/gradient-field
Maxwell coil.

Here, we use Mathematica (as detailed in Section IV) to
optimize three axially antisymmetric loop pairs, as presented in
Fig. 3(b). We null [ f4,0, f6,0] and simultaneously maximize the
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Fig. 4. Magnitude of the normalized axial magnetic field (color scales right),
Bz = Bz/B0, where B0 is the magnetic field gradient strength specified
in Table I, in the xz-plane generated by the coils in Fig. 3(a) and (b),
corresponding to (a) and (b), respectively, where the coils are of radius
ρc . White contours enclose the regions where dBz/dz deviates from perfect
linearity by less than 1% (dot-dashed curves).

weighted sum of f2,0/ f8,0, that is, the ratio of the target field
harmonic magnitude to the magnitude of the next-leading-
order error weighted by the respective turn ratios of each
set of primitives. We also constrain all optimized separations
to be less than or equal to that of an anti-Helmholtz pair,
χc ≤ (3)1/2/2, to make the generated design equally as
applicable as an anti-Helmholtz pair in settings where the
maximum axial extent of the system is limited, for example,
due to experimental equipment.

In Fig. 4, the axial magnetic field generated by an anti-
Helmholtz pair is compared to that generated by the optimized
coil. The properties of the coils are summarized in Table I. The
size of the central volume where B2,0 is generated with less
than 1% error (less than 1% deviation from the target; bounded
within the central dot-dashed curves in Fig. 4) is a factor of
2.85 greater than that generated by an anti-Helmholtz pair.
However, due to the increased number of turns and alternating
turn ratio polarities, compared to the anti-Helmholtz pair, the
optimized coil is 1.17× times less power-efficient and has
5.24× greater inductance. In a scenario where fast current
switching is required alongside high gradient linearity, the
inductance could be calculated analytically [49] and imposed
as an additional minimization condition.

B. Linear Transverse Gradient With Respect to Axial Position

The B2,1 field harmonic is contained within the axially
symmetric field, (10), and has m = 1 azimuthal symmetry (one
line of symmetry in the ρφ plane). To match this, we optimize
sets of symmetric arcs of azimuthal extent 2φc, which are
axially separated about the origin by 2dc and have onefold
azimuthal periodicity [the arc pairs repeat every φ = π with
alternating polarity; Fig. 2(b)]. The azimuthal current density
that describes one such set of arcs may be represented as

J+

φ

(
φ′, z′

)
= I

(
δ
(
z′

− dc
)
+ δ

(
z′

+ dc
))

×

1∑
λ=0

(−1)λ
[
H
(
φ′

+ φc − λπ
)
− H

(
φ′

− φc − λπ
)]
(23)

where H(x) is the Heaviside step function. The Fourier
transform, (14), of (23) is

J m+

φ (k) =
2I
(
1 − (−1)m

)
πm

sin(mφc) cos(kdc). (24)

Fig. 5. Schematics of Narcs axially symmetric sets of arcs (red arrows indicate
current flow direction) with onefold azimuthal symmetry of radius ρc at axial
positions z′

= ±dci for i ∈ [1:Narcs] which are connected to make double
saddles. (a) Narcs = 2 sets of arcs (black) which extend azimuthally over
2φc1 = 2π/3 and are at axial positions dci = [0.404, 2.56]ρc . The sets of arcs
are connected in series to make double saddles. (b) Narcs = 4 sets of arcs,
each of which contains two nested azimuthal extensions, 2φc1 = 7π/15 and
2φc2 = 13π/15, at axial positions dci = [0.2995, 0.4170, 0.6550, 2.5522]ρc ,
where the first and second (black) and the third and fourth (blue) sets of arcs
are connected in series to make double saddles with the same turn ratios.

Substituting (24) into (17), we find

f2ν+m+1,m(χc, φc)

=
4I
(
1 − (−1)m

)
πm(2(ν + m)+ 1)!

sin(mφc)

×

[
(−1)ν+1

∫
∞

0
dk k2ν+m+1 cos(kχc)K ′

m(k)
]
. (25)

As with the case of the loop, we analytically solve the class
of integrals, including (25), which encode the field harmonic
magnitudes generated by arcs in Appendix C. We find

f2ν+m+1,m(χc, φc)

=
I (2m)!

(
1 − (−1)m

)
2m−1m!(2(ν + m)+ 1)!

× sin(mφc)
∂2ν+1

∂χ2ν+1
c[

χc

m

(
1

1+χ2
c

)m+1/2

+

m−1∑
k=0

(−1)k

2k+1

(
m−1

k

)(
χ2

c

1+χ2
c

)k+1/2
]
(26)

where the binomial coefficient is
(n

k

)
= n!/((n − k)!k!).

Now, we use (26) to select turn ratios, separations, and
extents of four sets of arcs to maximize f2,1 while minimizing
leading-order errors. To obey current continuity, the number
of sets of arcs must be even and the current in each set of arcs
must correspond to an equal and opposite current in another
set of arcs. As a result, we join each set of arcs to another to
form double saddles [see Fig. 2(b)].

First, we note that (26) prohibits all even degrees and shows
us that all field harmonics of odd degrees are proportional to
sin(mφc). We find optimal extents of multiple sets of arcs
by substituting sin(mφc) for the relevant Chebyshev polyno-
mial [46] and then finding the root of the functions where
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TABLE I
PROPERTIES OF THE STANDARD COILS IN FIGS. 3(a), 5(a), AND 7(a), DESIGNED USING THE METHODOLOGY PRESENTED IN ROMÉO AND HOULT [35],

AND THE OPTIMIZED EQUIVALENTS IN FIGS. 3(b), 5(b), AND 7(b) DESIGNED IN THIS WORK FOR A COIL RADIUS OF ρc = 10 cm. THE
FOLLOWING COIL PROPERTIES ARE LISTED: TARGET FIELD HARMONIC, Bn,m OF ORDER n AND DEGREE m ; THE MAXIMUM AXIAL

DIMENSION, max(dimc), WHERE dimc = dc IN THE LOOPS AND SADDLES CASES, dimc = dc + ec IN THE ELLIPSES CASE, dc
IS THE SEPARATION OF THE COIL UNITS FROM THE ORIGIN, AND ec IS THE AXIAL EXTENT OF THE ELLIPSES FROM

THEIR CENTER; THE TOTAL LENGTH OF THE WIRE IN THE COIL, l , INCLUDING REPEATED UNITS WITH MULTIPLE
TURN RATIOS; THE MAGNETIC FIELD GRADIENT STRENGTH, B0 , THAT IS, dBz/dz FOR B2,0 AND dBx/dz
FOR B2,1 ALONG THE z-AXIS AT THE CENTER OF THE COIL, PER UNIT CURRENT, I ; THE INDUCTANCE, L ;
AND THE SIZE OF THE CENTRAL VOLUME WHERE THE TARGET FIELD GRADIENT IS GENERATED WITH
LESS THAN 1% DEVIATION FROM TARGET RELATIVE TO THAT GENERATED BY THE STANDARD COIL, V1% .
THE INDUCTANCE IS APPROXIMATED NUMERICALLY FROM THE TOTAL MAGNETIC ENERGY [48] USING

COMSOL MULTIPHYSICS, ASSUMING THAT THE WIRE TRACKS ARE FILAMENTARY

Fig. 6. Magnitude of the normalized transverse magnetic field (color scales
right), Bx = Bx/B0, where B0 is the magnetic field gradient strength specified
in Table I, in the xz-plane generated by the coils in Fig. 5(a) and (b),
corresponding to (a) and (b), respectively, where the coils are of radius
ρc . White contours enclose the regions where dBx/dz deviates from perfect
linearity by less than 1% (dot-dashed curves).

leading-order degrees are nulled. Here, to null all field har-
monics with m = [3, 5], the required azimuthal extents of two
sets of arcs with unitary turn ratios are φc = [7π/30, 13π/30].
We then use Mathematica to optimize four sets of arcs
(each of which has two nested azimuthal extensions) to null
the leading-order errors, [ f4,1, f6,1, f8,1], and maximize the
weighted sum of f2,1/ f10,1 generated by the four sets of arcs.
As with Section III-A, we also constrain all axial separations,
here to χc ≤ 2.56, so that the maximum extent is less than or
equal to that of a standard design created in [35] [see Fig. 5(a)].

The optimized coil design is presented in Fig. 5(b).
In Fig. 6, we show that the optimized coil generates B2,1 much
more effectively than the standard coil. The power efficiency of
the optimized coil is 1.47× greater and it generates B2,1 with
less than 1% error over a central region that is 4.55× greater

in volume (see Table I). Compared with the standard coil,
however, as with Section III-A, the increased complexity
of the optimized coil arrangement increases the comparative
inductance by a factor of 4.25.

Given the acute changes in flow direction in saddles between
current-carrying arcs and axial connecting wires, inaccuracy in
saddle construction may generate unwanted high-order field
harmonics [35]. To overcome this, we can use smoothly
varying elliptical wire tracks on the surface of a cylinder
instead of saddles to generate the same field harmonics.

Here, we demonstrate this by generating B2,1 using sets of
axially symmetric cylindrical ellipses, which each extend over
an axial distance 2ec and are separated about the origin by
a central axial distance 2dc > 2ec. The sets of ellipses do
not cross, preserving the axial symmetry, and have onefold
azimuthal periodicity [the ellipse pairs repeat every φ = π

with alternating polarity; Fig. 2(c)]. The azimuthal current
density which traces the path of one such set of ellipses may
be represented as

J+

φ

(
φ′, z′

)
= I

1∑
λ=0

(−1)λ
[
δ
(
z′

−
(
dc + ec cos

(
φ′

− λπ
)))

+δ
(
z′

+
(
dc+ec cos

(
φ′

−λπ
)))]

.

(27)

The Fourier transform, (14), of (27) is

J m+

φ (k) = −2I im+1(1 − (−1)m
)
Jm(kec) sin(kdc) (28)

where Jm(z) represents the Bessel function of the first kind of
order m. Substituting (28) into (17), we find

f2ν+m+1,m(χc, ψc)

=
4I
(
1 − (−1)m

)
(2(ν + m)+ 1)!

×

[
(−1)ν+(m+3)/2

×

∫
∞

0
dk k2ν+m+1 Jm(kψc) sin(kχc)K ′

m(k)
]

(29)

where the normalized extent is ψc = ec/ρc.



HOBSON et al.: DESIGNING OPTIMAL LOOP, SADDLE, AND ELLIPSE-BASED MAGNETIC COILS 1005815

Fig. 7. Schematics of Nellipses axially symmetric sets of ellipses (red arrows
indicate current flow direction) with onefold azimuthal symmetry of radius ρc
at axial positions z′

= ±dci for i ∈
[
1:Nellipses

]
. (a) Nellipses = 1 set of ellipses

with dc1 = 1.25ρc and which extend by a maximum axial distance ec1 = ρc
(black). (b) Nellipses = 2 sets of ellipses with dci = [0.6842, 0.7493]ρc
which extend by maximum axial distances eci = [0.2842, 0.4036]ρc and have
opposite current ratios, 1:−1 (black and blue, respectively).

We solve the class of integrals that include (29) analytically
in Appendix D. We find

f2ν+m+1,m(χc, ψc)

=
8I

(2(ν + m)+ 1)!
(−1)m+1

×
∂2ν+1

∂χ2ν+1
c[

χc
∂m S̃m(χc,ψc)

∂χm
c

+m
∂m−1 S̃m(χc,ψc)

∂χm−1
c

+ψc
∂m S̃m(χc,ψc)

∂χm−1
c ∂ψc

]
(30)

where

S̃m(χc, ψc) =
(1 − i)

2im
√

2ψc
Qm−1/2

(
i
ψ2

c − χ2
c − 1

2ψc

)
(31)

and Qm−1/2(z) represents a Legendre function of the second
kind of half-integer order, (m − 1/2).

Now, we use (30) to select turn ratios, separations, and
extents of two sets of ellipses to maximize f2,1 while min-
imizing leading-order errors. Unlike the case of the saddle,
the optimization of orders and degrees cannot be separated.
Thus, to maximize a field harmonic using two sets of
ellipses, we completely null the leading-order magnitudes,
[ f4,1, f4,3, f6,1], and maximize the weighted ratio of f2,1/ f8,1
generated by both sets of ellipses. Additionally, we impose
(χc + ψc) ≤ 1.32 to limit the maximum system dimension to
be less than or equal to half that of the optimized saddle coils.

In Figs. 7 and 8, we present schematics and performances
of a standard coil design from [35] and the optimized design,
respectively. As expected, the optimized elliptical coils are
effective at generating B2,1 even with the constraint on system
extent. Compared to the standard double saddles [see Fig. 5(a)]
and ellipses [see Fig. 7(a)], the optimized elliptical coil has a
maximum axial extent 2.22× and 1.96× smaller, but generates
B2,1 with less than 1% error over central volumes 1.36× and
6.26× greater in size. However, due to opposite directions

Fig. 8. Magnitude of the normalized transverse magnetic field (color scales
right), Bx = Bx/B0, where B0 is the magnetic field gradient strength specified
in Table I, in the xz-plane generated by the coils in Fig. 7(a) and (b),
corresponding to (a) and (b), respectively, where the coils are of radius
ρc . White contours enclose the regions where dBx/dz deviates from perfect
linearity by less than 1% (dot-dashed curves).

of current polarity between the two sets of ellipses in the
optimized design, the standard coils are 5.31× and 5.65×

more power-efficient than the optimized elliptical coil.

IV. OPTIMIZATION ROUTINE

Our goal is to find an optimal set of coil parameters
that maximize a desired field harmonic while minimizing
unwanted contributions. We shall only consider optimization
of continuous geometric parameters, not discrete turn ratios
which we specify alongside other properties like the minimum
separation between primitives. To determine the best turn
ratios, we rerun the optimization for simple combinations of
turn ratios and then rank solutions across all runs.

Each coil parameter affords a degree of freedom with which
to null a field harmonic. In theory, it is possible to null
as many field harmonics as there are coil parameters, but
in nontrivial scenarios, these solutions are difficult to find
and may not exist within the constrained parameter space.
Instead, we consider an underdetermined problem system,
that is, we null fewer field harmonics than there are coil
parameters. In the space of coil parameters, the solutions lie on
a contour of dimension equal to the number of coil parameters
less the number of nulled harmonics. Finding a solution on
this contour using numerical techniques is faster and more
reliable than finding a single-point solution. Increasing the
dimensionality of the contour makes it easier to find solutions
at the expense of nulling fewer harmonics. Once solutions
are found on a contour, we rank them according to a desired
property, such as the ratio of the desired-to-leading-order-error
harmonic magnitudes, and then select the best-ranked solution.
We implement the optimization in Mathematica because of
its fast and easy-to-use symbolic expression simplification
(via the Simplify function), numerical root-finding (via the
FindRoot function), and process parallelization.

Let us consider the design presented in Section III-A to
generate B2,0 using Nloops = 3 pairs of loops. Our optimization
algorithm is summarized in Fig. 9.
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Fig. 9. Algorithm used to determine optimal sets of normalized coil
separations, χc . The inputs are: a target field harmonic, Bn,m , of order n and
degree m; turn ratios of primitive groups, Ii ; and constraints on the values of
χc . The weighted magnitudes of field harmonics, Fn,m , are used to search the
parameter space for solutions on the contours where the set of leading-order
harmonics are nulled. These solutions are ranked and the optimal solution is
returned.

First, we construct and simplify symbolic expressions for
the total magnitudes of the low-order field harmonics gen-
erated by the primitive set, weighted by the predetermined
turn ratios. The weighted magnitude of each field harmonic
is

Fn,0 =

Nloops∑
i=1

Ii fn,0(χci ) (32)

where Ii are the turn ratios of each loops pair and the
individual field harmonic magnitudes, fn,0, may be obtained
using (22). We use (32) as the objective function to search
for solutions of F4,0 = F6,0 = 0 in a coarse mesh of
the Nloops-dimensional parameter space. In this design, three
filtering conditions are applied to the mesh to bound the search
space and impose a minimum distance between adjacent coil
pairs: χci ≥ 0.1, χci ≤ (3)1/2/2, and (χc(i+1) − χci ) ≥

0.01. This reduces the number of mesh points to 1140 [see
Fig. 10(a)].

At each mesh point, we apply FindRoot, which uses a
Newton–Raphson method with step control [50] to search
locally around positions in the solution space for locations
where the undesired harmonics are nulled. The search over

Fig. 10. (a) Initial seeds (green scatter) for the FindRoot function in
Mathematica in the search space of optimal normalized separations, χci , for
i∈[1:Nloops], to design the set of Nloops = 3 axially antisymmetric loop pairs
presented Fig. 3(b). (b) Contour of solutions in the search space of χci that
null the field harmonics of undesired orders n = [4, 6] and degree m = 0.
Coloring corresponds to the magnitude of the ratio of the weighted sum of
the magnitudes of the target field harmonic generated by the set of loop pairs,
F2,0, to that of the leading-order error field harmonic generated by the set of
loop pairs, F8,0. The optimal solution (arrow) maximizes this ratio.

1140 points takes 0.65 s to complete1 and 21 unique points
are found on the 1-D solution contour. We then linearly
interpolate between the known points on the solution con-
tour to estimate further solutions. The interpolated points are
randomized slightly to expand the evaluation scope and are
then used to seed FindRoot once more. This process occurs
at 411 interpolated points and takes 0.18 s. This is more
efficient than the previous step because the seeds are close
to the solution contour and therefore converge rapidly. In this
example, all the interpolated seeds converge onto the solution
contour, which is shown in Fig. 10(b), but in cases where
the contour is discontinuous or varies greatly, not all seeds
may converge. Finally, we rank the solutions on the contour
according to the absolute value of the ratio of the magnitude
of the desired field harmonic, F2,0, to the leading-order error
field harmonic, F8,0. We select the solution that maximizes
this ratio [denoted with an arrow in Fig. 10(b)], which takes
0.01 s for the B2,0 example.

V. CASE STUDY: AXIAL NULLING

Now, we present a case study demonstrating the imple-
mentation of optimized magnetic field coils to null residual
axial variations in free space, for example, for residual field
compensation for atomic magnetometers [13] or atom inter-
ferometers [17].

The system comprises the loop coil in Fig. 3(b) which
generates the B2,0 field harmonic, along with other loop coils
(presented in Appendix E) designed using our open-access
Mathematica program to generate the B1,0 and B3,0 field har-
monics. We choose to generate these field harmonics as they
are the lowest order m = 0 field harmonics [35], and so are
most likely to be present in the background field. The coils are

1Calculations are bench-marked using a MacBookPro18,2 equipped with an
M1 Max processor with eight 3228-MHz performance cores, two 2064-MHz
efficiency cores, and 32 GB of 512-bit LPDDR5 SDRAM memory.
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Fig. 11. Hand-wound 3-D-printed coil former containing independent
uniform axial, Bz , linear axial gradient, dBz/dz, and quadratic axial gradient,
d2 Bz/dz2, field-generating coils.

wound by hand using 0.63 mm diameter (22 AWG) enameled
copper wire on a coil former of a radius of ρc = 50 mm (see
Fig. 11). During optimization, the normalized axial separations
are bounded between 0.35 < χc < 1. This allows the coil
former to be only 100 mm long and leaves a large central
axial region of length 35 mm where there are no wires. This
area contains four optical access holes that are evenly spaced
and have a height of 30 mm and an azimuthal extent of
π/3 radians. The coil former is manufactured using fused
deposition modeling (FDM) with a commercially available
UltiMaker S5 using hard PLA body material and PVA support
material. The PVA support is dissolved during postprocessing
by soaking the print in lukewarm water for 48 h. The FDM
printer is capable of rendering grooves in the coil former
with a resolution of 0.06 mm and uses cost-effective materials
(< £20 in this scenario).

The axial magnetic field generated by each coil is measured
using a Stefan Mayer Fluxmaster magnetometer connected
to an NI-USB 6212 data acquisition system. During each
measurement, sinusoidal currents of amplitude 80 mA and
oscillating at a frequency of 5 Hz are passed through each
coil in turn for 7 s. The magnetic field produced by each coil
is obtained by calculating the fast Fourier transform (FFT)
of the magnetometer output, eliminating the need for separate
measurement offsets. The measured and expected field profiles
show excellent agreement and are presented in Fig. 12(a).

Next, the static axial magnetic field along the central 50 mm
of the coil’s axis is decomposed into uniform, linear gradient,
and quadratic gradient contributions using the method of
least-squares, following the method in [51]. Coil currents of
I = ([178, 59, 9]±1) mA are applied to the B1,0, B2,0, and
B3,0 field-generating coils, respectively, to null the measured
static background. The magnitude of the axial field pre- and
postnull is shown in Fig. 12(b). Over the central 50 mm of
the coil’s axis, the mean axial field magnitude reduces by
over a factor of 70 from 7.8 to 0.11 µT and the standard
deviation in the axial field magnitude reduces by over a factor
of 7 from 300 to 40 nT. To further diminish the axial field,
several approaches could be considered, such as adding more
field-generating coils to null higher-order field harmonics,
increasing the number of leading orders nulled in existing coil

Fig. 12. (a) Magnitude of the axial magnetic field, Bz , per unit current, I ,
along the z-axis, generated by the uniform (light blue curve), linear gradient
(orange curve), and quadratic gradient (light green curve) axial field-gener-
ating coils presented in Figs. 13(a), 3(b), and 13(b), alongside experimental
measurements (black scatter). The magnetic null region is shown with dashed
lines (gray). (b) Measured static axial magnetic field magnitude without active
nulling (blue curve) and with active nulling (red curve), alongside labels (blue
and red) displaying the mean (also shown with black dashed curves) and
standard deviation in the axial field magnitude within the null region.

designs by increasing the number of separations optimized,
or incorporating dynamic feedback from a reference magne-
tometer to update the applied coil currents [52].

VI. CONCLUSION AND OUTLOOK

Here, we have presented a spherical harmonic decompo-
sition of the magnetic field in free space generated inside
sets of primitive structures based on loops, saddles, and
ellipses. In each case, we solved for the magnetic field
harmonic magnitudes as simple derivatives with respect to the
coil parameters. These derivatives can be computed rapidly
using computer algebra software, and in this work we used
Mathematica. We then demonstrated a generalized approach
to design simple primitive coil structures by mapping the
landscape of parameters that control the geometry of each
set. Using this approach, we designed three field-generating
structures—nested sets of loops, arcs, and ellipses—which
generate target fields accurately by completely nulling a set
number of leading-order undesired contributions. To allow
a fair comparison with standard systems, in each worked
example, we chose the solutions closest to the global optimum
(which null the leading-order deviations while maximizing the



1005815 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

target-field-to-next-leading-order-error ratio) within the con-
strained space of coil parameters. However, the optimization
procedure could be readily adjusted to prioritize other con-
straints such as power efficiency, size, and inductance.
Furthermore, more diverse objective functions could also be
added to ensure that designs can be manufactured easily, for
example, sensitivity to wire misplacement or the number of
wire overlaps.

Although we have focused on specific worked examples
within the main text, the Mathematica program we pro-
vide [47] may be used to design any low-order field harmonic
using the integral solutions in Appendices C and D. We use
the loops coil optimized in the main text, alongside other loops
coils generated using our program (see Appendix E), to con-
struct a 3-D-printed, hand-wound axial field compensation sys-
tem. By calculating the appropriate currents applied to the coil,
we were able to significantly reduce both the magnitude and
variation in the measured axial field along the central half of
the coil’s axis in a typical laboratory environment. Specifically,
we were able to reduce the axial field magnitude from 7.8 µT
to 0.11 µT and its standard deviation from 300 to 40 nT.

One can design any magnetic field in free space using
our program by decomposing the target field into a weighted
sum of field harmonics and combining sets of axially sym-
metric and antisymmetric primitives. Optimized arrangements
of primitive coils may be useful in diverse contexts such
as the design of accurate and power-efficient linear gradient
fields for magneto-optical traps [53] or the cancellation of
external interference for atomic magnetometers [51] by using
modified governing equations accounting for the response of
external passive magnetic shielding [32]. The field harmonics
generated by primitives could also be posed and solved for
other surface geometries. For example, cuboidal primitives
may be useful for generating magnetically shielded enclo-
sures [54] and toroidal primitives may be applied for plasma
confinement in tokamaks [55]. Discrete building blocks and
discretized surface current-based coils could also be imple-
mented together to maximize their performance, for example,
broadband reduction in the noise floor using power-efficient
simple building block coils combined with accurate shimming
of residual field harmonics using complex surface current-
based coil patterns. Alternatively, one may modify and resolve
the governing equations to impose more complex primitives,
such as combinations of axially symmetric and antisymmetric
units with predetermined turn ratios. This may be useful for
applications where a single coil is required to generate a target
magnetic field profile composed of multiple field harmonics
with different symmetries.

Our optimization approach may also be applied in other
settings where there are diverse contributions that need to be
minimized and maximized simultaneously, including aerofoil
design [56] and perturbation analysis in optimization prob-
lems [57].

APPENDIX A
FIELD HARMONIC COMPONENTS

Following Roméo and Hoult [35], we calculate the vector
gradient of the spherical harmonics of degree m ≥ 0, (2),

to find the field harmonics, Bn,m(r) = Xn,m(r)x̂ + Yn,m(r) ŷ +

Zn,m(r) ẑ, where

Xn,m(r, θ, φ)

= ηn,mrn−1
[
−

1 + δm,0

2
× Pn−1,m+1(cos θ) cos((m + 1)φ)

+

(
1 − δm,0

)
(n + m − 1)(n + m)

2

× Pn−1,m−1(cos θ) cos((m − 1)φ)
]

(33)

Yn,m(r, θ, φ)

= ηn,mrn−1
[
−

1 + δm,0

2
× Pn−1,m+1(cos θ) sin((m + 1)φ)

−

(
1 − δm,0

)
(n + m − 1)(n + m)

2

× Pn−1,m−1(cos θ) sin((m − 1)φ)
]

(34)

Zn,m(r, θ, φ)

= ηn,m(n + m)rn−1
× Pn−1,m(cos θ) cos(mφ). (35)

APPENDIX B
MATCHING CYLINDRICAL AND SPHERICAL FIELD

VARIATIONS

First, let us consider the standard series expansions [46]

Im(x) =

∞∑
l=0

1
l!(l + m)!

( x
2

)2l+m
(36)

cos(y) =

∞∑
l=0

(−1)l y2l

(2l)!
. (37)

To match the variations in (36) and (37) with the arguments
of (12), x = kρ/ρc and y = kz/ρc, we group the terms
with common exponents of k and then convert to spherical
coordinates, ρ = r sin θ and z = r cos θ . We find

Im

(
kρ
ρc

)
cos
(

kz
ρc

)
=

(
kr sin θ

2ρc

)m ∞∑
ν=0

ν∑
l=0

1
(ν − l)!(ν − l + m)!

×
(−1)l

22(ν−l)(2l)!

(
kr
ρc

)2ν

cos2l θ sin2(ν−l) θ.

(38)

We now introduce the expansion of the associated Legendre
polynomials, as derived in [58]

Pn,m(x) = 2n(1 − x2)m/2
×

n∑
l=m

l!
(l − m)!

x l−m
(

n
l

)( n+l−1
2

n

)
.

(39)

We substitute x = cos θ into (39) and reindex to n = 2ν + m
and l = l ′ + m, finding

P2ν+m,m(cos θ)
= 22ν+m sinm θ

×

2ν∑
l ′=0

(
l ′ + m

)
!

l ′!

(
2ν + m
l ′ + m

)(
ν + m +

l ′−1
2

2ν + m

)
cosl ′ θ. (40)
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For a fixed value of ν, one may factorize out the variations
proportional to sinm θ in (38) and (40) by examining the
l = l ′ = 0 terms. We can, therefore, match these variations
together, with an unknown scaling, and invert to find the
scaling. We find

Im

(
kρ
ρc

)
cos
(

kz
ρc

)
=

∞∑
ν=0

(−1)ν

(2(ν + m))!

×

(
kr
ρc

)2ν+m

P2ν+m,m(cos θ). (41)

Similarly, following the same method using the standard series
expansion of sin(y) [46] and reindexing (39) to n = 2ν +

m − 1, we find

Im

(
kρ
ρc

)
sin
(

kz
ρc

)
=

∞∑
ν=1

(−1)ν

(2(ν + m)− 1)!

×

(
kr
ρc

)2ν+m−1

P2ν+m−1,m(cos θ). (42)

APPENDIX C
SOLVING THE LOOPS AND SADDLES HARMONIC

WEIGHTING FUNCTION

Here, we obtain the complete class of integrals

β+

2ν+m+1,m(χc) = (−1)ν+1
∫

∞

0
dk k2ν+m+1 cos(kχc)K ′

m(k)

(43)

β−

2ν+m,m(χc) = (−1)ν+1
∫

∞

0
dk k2ν+m sin(kχc)K ′

m(k) (44)

which we shall refer to as the symmetric and antisymmetric
cases, respectively, for ν ∈ Z0+ and m ∈ Z0+. We shall use
the standard result [59]∫

∞

0
dk km cos(kχc)Km(k) =

π(2m)!
2m+1m!

(
1

1 + χ2
c

)m+1/2

. (45)

First, we integrate the left-hand side of (45) by parts∫
∞

0
dk km cos(kχc)Km(k)= −

1
χc

∫
∞

0
dk km sin(kχc)K ′

m(k)

−
m
χc

∫
∞

0
dk km−1 sin(kχc)Km(k)

(46)

which we can rearrange to show∫
∞

0
dk km sin(kχc)K ′

m(k)= −χc

∫
∞

0
dk km cos(kχc)Km(k)

− m
∫

∞

0
dk km−1 sin(kχc)Km(k).

(47)

We can substitute (45) into this to find∫
∞

0
dk km sin(kχc)K ′

m(k)= −
πχc(2m)!
2m+1m!

(
1

1+χ2
c

)m+1/2

− m
∫

∞

0
dk km−1 sin(kχc)Km(k).

(48)

Now, we note that the derivative of the second term on the
right-hand side of (48) with respect to χc relates to (45) via

∂

∂χc

(∫
∞

0
dk km−1 sin(kχc)Km(k)

)
=

∫
∞

0
dk km cos(kχc)Km(k)

(49)

and so∫
∞

0
dk km−1 sin(kχc)Km(k)=

∫
dχc

(
π(2m)!
2m+1m!

(
1

1+χ2
c

)m+1/2
)
.

(50)

To solve (50), we perform the substitution χc = tan θc, and so
cos θc = 1/(1 + χ2

c )
1/2, finding∫

dχc

(
1

1 + χ2
c

)m+1/2

=

∫
dθc cos2m−1 θc. (51)

Changing variables to u = sin θc, (51) can be expanded as∫
dθc cos2m−1 θc =

∫
du

(
1 − u2)m−1

=

m−1∑
k=0

(−1)k

2k + 1

(
m − 1

k

)
u2k+1 (52)

where we have applied the binomial theorem

(A + B)n =

n∑
k=0

(
n
k

)
An−k Bk . (53)

Therefore, (50) can be expressed as∫
∞

0
dk km−1 sin(kχc)Km(k)

=
π(2m)!
2m+1m!

m−1∑
k=0

(−1)k

2k + 1

(
m − 1

k

)(
χ2

c

1 + χ2
c

)k+1/2

. (54)

Then, we note that we can perform derivatives of (47)
with respect to χc an odd or even number of times to
match (43) and (44)

∂2ν+1

∂χ2ν+1
c

(∫
∞

0
dk km sin(kχc)K ′

m(k)
)

= (−1)ν ×

∫
∞

0
dk k2ν+m+1 cos(kχc)K ′

m(k) (55)

∂2ν

∂χ2ν
c

(∫
∞

0
dk km sin(kχc)K ′

m(k)
)

= (−1)ν ×

∫
∞

0
dk k2ν+m sin(kχc)K ′

m(k). (56)

Thus, the symmetric and antisymmetric integral cases,
(43) and (44), have the same result

βn+m,m(χc)=
π(2m)!
2m+1m!

∂n

∂χn
c[

χc

(
1

1 + χ2
c

)m+1/2

+m
m−1∑
k=0

(−1)k

2k + 1

(
m − 1

k

)(
χ2

c

1 + χ2
c

)k+1/2
]

(57)
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where n = 2ν + 1 in the symmetric case and n = 2ν in the
antisymmetric case. In the case where m = 0, (57) simplifies
to

βn,0(χc) =
π

2
∂n

∂χn
c

(
χc√

1 + χ2
c

)
. (58)

APPENDIX D
SOLVING THE ELLIPSES HARMONIC WEIGHTING

FUNCTION

Here, we obtain the complete class of integrals

γ−

2(ν+µ),2µ(χc, ψc)

= (−1)ν+µ ×

∫
∞

0
dk k2(ν+µ) J2µ(kψc) sin(kχc)K ′

2µ(k) (59)

γ−

2(ν+µ)−1,2µ−1(χc, ψc)

= (−1)ν+µ ×

∫
∞

0
dk k2(ν+µ)−1 J2µ−1(kψc) cos(kχc)K ′

2µ−1(k)

(60)

which we refer to as the even and odd degree antisymmetric
cases, respectively, and

γ+

2(ν+µ)+1,2µ(χc, ψc) =
∂γ−

2(ν+µ),2µ(χc, ψc)

∂χc
(61)

γ+

2(ν+µ),2µ−1(χc, ψc) =
∂γ−

2(ν+µ)−1,2µ−1(χc, ψc)

∂χc
(62)

which we refer to as the even and odd degree symmetric cases,
respectively, for 0 < ψc < χc, ν ∈ Z0+, and µ ∈ Z+. Here,
we define

Sm(χc, ψc) = im S̃m(χc, ψc) (63)

where

S̃m(χc, ψc) =

∫
∞

0
dk Jm(kψc) cos(kχc)Km(k). (64)

Equation (64) has the known solution [59]

S̃m(χc, ψc) =
(1 − i)

2im
√

2ψc
Qm−1/2

(
i
ψ2

c − χ2
c − 1

2ψc

)
(65)

where Qm−1/2(z) is a Legendre polynomial of the second kind
of half-integer order, m − 1/2, for m ∈ Z+.

Now, let us integrate the right-hand side of (64) by parts∫
∞

0
dk Jm(kψc) cos(kχc)km Km(k)

= −
ψc

χc

∫
∞

0
dk Jm−1(kψc) sin(kχc)km Km(k)

−
1
χc

∫
∞

0
dk Jm(kψc) sin(kχc)km K ′

m(k). (66)

We shall use a standard formula for the derivative of the Bessel
function of the first kind [46]

Jm−1(kψc) =
1
k

[
∂ Jm(kψc)

∂ψc
+

m
ψc

Jm(kψc)

]
. (67)

We substitute (67) into (66) and rearrange to find∫
∞

0
dk Jm(kψc) sin(kχc)km K ′

m(k)

=

[
−χc

∫
∞

0
dk Jm(kψc) cos(kχc)km Km(k)

− m
∫

∞

0
dk Jm(kψc) sin(kχc)km−1 Km(k)

−ψc
∂

∂ψc

(∫
∞

0
dk Jm(kψc) sin(kχc)km−1 Km(k)

)]
.

(68)

Now, substituting m = 2µ into (63) and (64), we can perform
derivatives with respect to χc, 2µ, and (2µ− 1) times, to find

∂2µSm(χc, ψc)

∂χ
2µ
c

=

∫
∞

0
dk k2µ J2µ(kψc) cos(kχc)K2µ(k) (69)

and
∂2µ−1Sm(χc, ψc)

∂χ
2µ−1
c

=

∫
∞

0
dk k2µ−1 J2µ(kψc) sin(kχc)K2µ(k)

(70)

respectively. Then, substituting (69) and (70) into (68), for
m = 2µ, we find∫

∞

0
dk J2µ(kψc) sin(kχc)k2µK ′

2µ(k)

=

[
−χc

∂2µSm(χc, ψc)

∂χ
2µ
c

− 2µ
∂2µ−1Sm(χc, ψc)

∂χ
2µ−1
c

−ψc
∂2µSm(χc, ψc)

∂χ
2µ−1
c ∂ψc

]
. (71)

We can follow the same steps as applied to (66) with the
integral: ∫

∞

0
dk Jm(kψc) sin(kχc)km Km(k) (72)

for m = 2µ− 1, to find∫
∞

0
dk J2µ−1(kψc) cos(kχc)k2µ−1 K ′

2µ−1(k)

= i

[
−χc

∂2µ−1Sm(χc, ψc)

∂χ
2µ−1
c

− (2µ− 1)
∂2(µ−1)Sm(χc, ψc)

∂χ
2(µ−1)
c

−ψc
∂2µ−1Sm(χc, ψc)

∂χ
2(µ−1)
c ∂ψc

]
. (73)

Then, we can finally generalize all cases in (71) and (73) where
the degree is even or odd and perform derivatives with respect
to χc, to find

γn+m,m(χc, ψc)

= (−1)m+1 ∂
n

∂χn
c

[
χc
∂m S̃m(χc, ψc)

∂χm
c

+m
∂m−1 S̃m(χc, ψc)

∂χm−1
c

+ ψc
∂m S̃m(χc, ψc)

∂χm−1
c ∂ψc

]
(74)

where n = 2ν + 1 in the symmetric cases and n = 2ν in the
antisymmetric cases.
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Fig. 13. Schematics of Nloops axially symmetric loop pairs (red arrows
indicate current flow direction) of radius ρc at axial positions z′

= ±dci for
i ∈

[
1:Nloops

]
. (a) Nloops = 2 pairs of loops with dci = [0.4537, 0.9454]ρc

and turn ratios 3:1 (black, blue, respectively, with higher turn ratios in bold
lines) (b) Nloops = 2 pairs of loops with dci = [0.3775, 0.9020]ρc and turn
ratios −1:2, labeled as (a).

Fig. 14. Magnitude of the normalized axial magnetic field (color scales right),
Bz = Bz/B0, where B0 is the magnetic field strength specified in Table II,
in the xz plane generated by the coils in Fig. 13(a) and (b), corresponding to (a)
and (b), respectively, where the coils are of radius ρc . White contours enclose
the regions where (a) Bz and (b) d2 Bz/dz2 deviate from perfect uniformity
and curvature, respectively, by less than 1% and 10%, respectively (dot-dashed
curves).

TABLE II
PROPERTIES OF THE OPTIMIZED COILS IN FIG. 13, HERE GIVEN FOR

A COIL RADIUS OF ρc = 10 cm AND LABELED AS TABLE I. THE
MAGNETIC FIELD STRENGTH, B0 , IS THE VALUE OF Bz FOR B1,0

AND d2 Bz/dz2 FOR B3,0 AND IS EVALUATED AT THE CENTER OF
THE COIL PER UNIT CURRENT, I

APPENDIX E
SUPPLEMENTARY COIL DESIGNS

Sets of symmetric loops are presented in Fig. 13 which
are optimized to generate the B1,0 and B3,0 field harmonics,
displayed in (6) and

B3,0(x, y, z)=
3
4

√
7
π

(
−2xz x̂ − 2yz ŷ +

(
−x2

− y2
+ 2z2) ẑ).

(75)

These designs are optimized using our Mathematica program
stored in the repository listed in [47]. The magnetic fields
generated by the coils are displayed in Fig. 14 and their
properties are summarized in Table II.
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