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Abstract—Tool wear condition monitoring plays a crucial
role in intelligent manufacturing systems to enhance machining
quality and efficiency. The indirect methods employ various
sensor signals to monitor tool wear condition, attracting wide
attention in industrial applications. Multi-information fusion
technologies can promote tool wear monitoring results to be more
accurate and reliable. For improving the prediction accuracy and
ensuring the reliability of the indirect methods, this study pro-
poses a tool wear prediction method based on multi-information
fusion and genetic algorithm (GA)-optimized Gaussian process
regression (GPR). First, wavelet packet denoising (WPD)-based
signal processing is adopted to suppress the noise interfer-
ence of multisensor signals. Then, kernel principal component
analysis (KPCA)-based dimension reduction is employed to
mine the most sensitive features to flank wear from candidate
multidomain features. Next, a fusion model of GPR and GA
optimization is designed to establish a nonlinear mapping rela-
tionship between sensitive characteristics and flank wear width.
Finally, performance evaluations under three sets of milling
tests are carried out to validate the effectiveness of the pro-
posed method. Experimental results indicate that the proposed
method can lower prediction error and uncertainty of flank
wear width compared with other intelligent approaches, promot-
ing a successful application of indirect monitoring methods in
milling.

Index Terms— Gaussian process regression (GPR), genetic
algorithm (GA), milling, multi-information fusion, tool wear
monitoring.
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I. INTRODUCTION

UMERICAL control milling is frequently used in var-

ious industrial fields, such as automobile [1] and
aerospace [2]. The machining processes involve continuous
material removal, which increases tool wear and may even
result in cutting tool failure [3]. Tool wear condition directly
affects the surface quality of finished workpieces [4]. Further-
more, according to relevant statistics [5], cutting tool failures
account for about 20% of the machine downtime, and 3%—12%
of machining time is lost on tool replacement. Therefore, tool
wear monitoring has become increasingly critical to enhance
the workpiece surface quality, reduce maintenance downtime,
and improve production efficiency.

Many studies have been conducted throughout the years
to promote the development of tool wear monitoring tech-
niques, including direct and indirect measurement methods [6].
Measuring direct indicators (such as flank wear width or
area [7]) by a microscope [8] or camera [9], the direct
approach can reach high measurement precision. However, it is
often performed offline or interfered with by cutting chips and
coolant fluids, which are limited in industrial applications [10].
The indirect approach mines wear information from real-time
sensor signals (such as cutting force, vibration, acoustic emis-
sion (AE), spindle motor current or power, and cutting tem-
perature) [11], which can avoid interrupting continuous cutting
processes. Therefore, the indirect method is more suitable for
a practical application and has attracted wide attention and
research.

A. Limits of Prior Arts

Recently, due to the complementarity and fault tolerance
of different signals, multisensor fusion approaches enabled by
artificial intelligence technologies have been widely applied
in indirect tool wear monitoring [12], [13]. Among them,
artificial neural network (ANN)-based methods (especially
deep learning-based) have achieved outstanding performance
in tool wear monitoring, benefiting from their powerful feature
mining and data mapping abilities. However, their perfor-
mances heavily rely on massively available samples with wear
labels and a similar data distribution between testing and
training samples [14]. However, because of data collected cost
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and machining parameter variation, these two requirements are
difficult to be met in practical applications, resulting in their
performances deteriorating sharply. Moreover, these networks
are generally regarded as black boxes and trained based on an
empirical risk minimization principle, leading them to fall into
a local minimum easily, especially under small samples [15].

As another of the most frequently used algorithms in
tool wear monitoring, support vector regression (SVR) has
clear interpretability and takes a structural risk minimization
principle as an optimizing goal [16]. It holds excellent fitting
and generalization abilities under small samples. However, like
ANN-based approaches, SVR-based methods cannot provide
an uncertainty estimation of predicted results directly [17].
Besides, other intelligent algorithms, such as least squares
SVR (LSSVR) and random forest (RF), are also inconvenient
to give uncertainties of their predicted results in indirect tool
wear monitoring.

B. Research Motivation

The uncertainty analysis of predicted results is crucial to
improve the stability and reliability of indirect methods. As an
intelligent decision-making algorithm solved by Bayesian
inference, Gaussian process regression (GPR) can provide
uncertainty quantification of predicted results compared with
other algorithms [17], such as ANN, SVR, and LSSVR.
In addition, GPR holds better adaptability to deal with
complex problems of high dimension and small samples, ben-
efitting from its powerful nonlinear fitting ability and flexible
parameter-solving approach [18]. Thus, GPR can monitor tool
wear status more effectively and reliably under small samples.
However, GPR is generally trained by a conjugate gradient
algorithm, which makes its performance rely on the initial
value and is prone to falling into a local optimum [19].

As an effective global optimization algorithm, the genetic
algorithm (GA) is inspired by the natural selection and evo-
lution mechanism [20]. Since the optimizing process does not
depend on gradient computations, it has strong robustness and
global search ability [21], which can effectively optimize the
hyperparameters of GPR. However, the GA-optimized GPR
model is still developing in tool wear monitoring, especially
integrating into multisensor information fusion methods under
small samples and multiple milling parameters.

C. Main Contribution

To further improve the accuracy and reliability of indirect
methods under small samples, this study presents a tool wear
prediction method based on multi-information fusion and
GA-optimized GPR in milling operations. The major contri-
butions are summarized as follows.

1) An indirect tool wear prediction method is developed
to estimate flank wear width using multisensor signals,
which increases the monitoring accuracy of tool wear
conditions and reduces the prediction uncertainty of the
indirect approach.

2) A fusion model based on GPR and GA optimization is
designed to establish a nonlinear mapping between flank
wear width and its sensitive multidomain features. It can
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Fig. 1. Main steps of the indirect measurement approach.

achieve lower prediction error and provide uncertainty
quantification of the predicted results.

3) Milling tests under multiple operating parameters are
performed to verify the effectiveness of the proposed
method, which can obtain better performance than other
advanced approaches, promoting a successful practice
of the indirect measurement technique under small
samples.

The rest of this article is organized as follows. Section II
reviews related works about indirect tool wear monitoring. The
experimental setup, data acquisition, and the proposed method-
ology are described in Section III. Section IV elaborates on
and discusses model performances and comparative results.
The conclusion is drawn in Section V.

II. LITERATURE REVIEW

The indirect approach builds an intelligent prediction model
for tool wear monitoring based on massive data historically
collected from various sensors and then makes decisions
upon the real-time signals online [22]. As shown in Fig. 1,
it mainly consists of data acquisition, signal preprocessing,
feature extraction and selection, feature fusion, and predictive
model construction. It has received a lot of attention, and many
achievements have emerged over the years.

In terms of data acquisition, cutting force [23], vibra-
tion [24], AE [25], motor current [26] or power [27], and
cutting temperature [28] are the most frequent signals used
to monitor tool wear. Recently, taking advantage of the com-
plementarity and fault tolerance of various signals, multisensor
signal fusion can comprehensively monitor tool wear informa-
tion. It makes monitoring results more reliable and accurate
and has been widely used in tool wear condition monitor-
ing [13], [29]. Some relevant studies about tool wear prediction
using multisensor signals are listed in Table I. It can be found
that a combination of cutting force and vibration signals is
one of the most common multisensor fusion strategies used
for tool wear monitoring in machining processes. In addition,
the sensitivity of cutting force and vibration signal to tool
wear is different in the x-, y-, and z-directions [30]. Therefore,
this study collects 3-D cutting forces and vibration signals to
predict the flank wear width of milling cutters.

In terms of signal preprocessing, Kalman filtering [51],
median filtering [52], bandpass filtering [53], and Wiener
filtering [54] are usually used to alleviate the environmental
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TABLE I

INTELLIGENT MODELS APPLIED FOR TOOL WEAR
PREDICTION USING MULTISENSOR SIGNALS

Multi-sensor signals Literatures

Cutting force and vibration [301, [31], [32], [33], [34],
[35], [36]

Cutting force and spindle power [37]

Cutting force and AE [38]

Cutting force, vibration, and AE [39], [40], [41], [42], [43]

Cutting force, vibration, and current [44]

Cutting force, vibration, and [45]

temperature

Cutting force, vibration, AE, [46], [47]

temperature, and spindle current

Other fusion signals [48], [49], [50]

noise involved in multisensor signals. However, cutting force
and vibration signals collected during machining operations
are generally nonstationary and time-varying. The filtering
schemes cannot effectively remove the environmental noise.
Utilizing various basis functions and subdivided frequency
ranges, wavelet packet denoising (WPD) has an advantage
in effectively suppressing time-varying noise, thereby enhanc-
ing the signal-to-noise ratio of collected signals [55], [56].
Therefore, WPD-based signal preprocessing is employed
in this study to reduce the interference of environmental
noise.

In terms of feature extraction and selection, time, frequency,
and wavelet domain (WD) features are first extracted to
decrease the redundant information of multisensor signals.
Generally, time domain (TD) features include maximum,
peak-to-peak, variance, root mean square, skewness, kurtosis,
and so on [34]. The frequency spectrum and its statistics
are often utilized in the frequency domain (FD) [35]. Also,
wavelet energy is frequently adopted in the time—frequency
domain [36]. In this study, considering the complementar-
ity of different domain features, multidomain features are
extracted from multisensor signals. To further reduce the
redundant information contained in initial features, various
dimension reduction techniques have been applied for feature
selection and fusion, such as kernel principal component
analysis (KPCA) [30], [34], [57], minimum redundancy max-
imum relevance (MRMR) [58], and locally linear embedding
(LLE) [59]. Among them, KPCA can effectively fuse principal
components from numerous features, and it is a popular
technique for nonlinear dimensionality reduction in tool wear
monitoring [30], [34], [57]. Thus, in this study, the KPCA
algorithm is adopted to fuse candidate features and obtain the
most sensitive characteristics related to tool wear.

In terms of intelligent prediction models, ANN, SVR,
LSSVR, multiple linear regression (MLR), RF, and GPR are
commonly adopted to predict the flank wear of cutting tools,
which are listed in Table II. Among them, ANN is one of
the most frequently used intelligent models. Gao et al. [39]
employed a gated recurrent unit for multisensor fusion and
lowered the tool wear predicting error. He et al. [41] used
stacked sparse autoencoders to improve tool wear predic-
tion performance. Liu et al. [42] and Xu et al. [43] developed

Literatures

(321, [35], [39], [40], [41],
[42], [43], [44] , [45]

(311, [34], [36], [50], [62],
[63]

[30], [64], [65], [66]

Intelligent prediction models
Artificial neural network (ANN)

Support vector regression (SVR)

Least squares support vector

regression (LSSVR)

Multiple linear regression (MLR) [37], [67], [68]
Random forest (RF) [50], [69], [70]
Gaussian process regression (GPR)  [17], [19], [71]
Other models [38], [47], [48], [72]

deep learning networks to fuse multisensor features and low-
ered prediction errors of flank wear. Paul and Varadarajan [45]
proposed an ANN-based multisensor fusion model to predict
tool wear. Feng et al. [49] introduced an attention mecha-
nism to the convolutional neural network and improved the
monitoring accuracy of tool wear using multisensor features.
Although ANN-based methods (including deep learning meth-
ods) have achieved excellent performance in tool wear mon-
itoring, monitoring results heavily depend on the following
requirements. One is that mass training samples with wear
labels are available [60]. Another is that testing samples obey
the same data distribution as training samples [61]. However,
these requirements are hard to be met in industrial applications
due to the acquired and labeled costs of massive data and
parameter variations of machining operations [14]. Moreover,
ANN-based models are generally trained by an empirical risk
minimization principle and easily fall into a local minimum
under small samples [15].

In addition, taking advantage of clear interpretability and
structural risk minimization principle, SVR and its variants are
frequently used algorithms in tool wear monitoring [30], [34].
For example, Benkedjouh et al. [62] used SVR to predict life
prediction of cutting tools. Kong et al. [63] applied v-SVR
to learn the correlation between flank wear width and fused
features. Taking the squared error instead of tube error as the
objective function, LSSVR can reduce the calculative burden
and increase modeling accuracy. Zhang et al. [66] applied
LSSVR to predict the flank wear width of milling cutters
and improved the predicting accuracy. However, they cannot
give uncertainty quantification of tool wear monitoring results.
Wu et al. [69] and Bustillo et al. [70] utilized RF for wear-
modeling processes and obtained higher prediction accuracy
than ANN and SVR. Although these methods hold strong
fitting and generalization abilities for tool wear monitoring
under small samples, they still cannot provide an uncertainty
estimation of predicted results easily [17]. However, uncer-
tainty analysis is vital to ensure reliability and enhance the
applicability of indirect monitoring methods.

As a Bayesian inference-based intelligent algorithm, GPR
can offer an uncertainty quantification to analyze the reliability
of predicted results [71], [73]. Kong et al. [17] used GPR
to obtain better accuracy than ANN and SVR in tool wear
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Fig. 2. Tllustration of the data acquisition process.

prediction and analyzed a confidence interval (CI) under intrin-
sic parameters. Zhang et al. [19] and Li et al. [71] employed
GPR to predict tool wear and improved the prediction accuracy
and reliability. Although these methods have better adapt-
ability to deal with tool wear monitoring problems of high
dimensions and small samples, their performances are easily
affected by the intrinsic parameters. In addition, GPR is
generally trained by a conjugate gradient algorithm, making it
hard to obtain the global optimum [19], [74].

As a natural selection and evolution mechanism-inspired
probabilistic search algorithm, GA has strong robustness and
global search ability [20], [21], which provides a potential
solution to improve the performance of GPR. However, the
GA-enabled GPR model is rarely investigated for moni-
toring tool flank wear in milling operations. Furthermore,
the current studies scarcely combined them with the above-
mentioned WPD-based multisensor signal preprocessing and
KPCA-based multidomain feature fusion strategies. Therefore,
this study presents an indirect tool wear prediction method
based on multi-information fusion and GA-optimized GPR in
milling operations, which synthetically utilize these methods to
improve the predicting performance and quantitatively analyze
the reliability.

ITI. MATERIALS AND METHODS
A. Experimental Setup and Data Acquisition

The milling experiments of die steel with high-speed steel
cutters are implemented to validate the presented tool wear
prediction method in this study. The experimental setup and
data acquisition process are shown in Fig. 2. In the real-time
data acquisition process, a dynamometer of Kistler 9347C is
applied to monitor cutting forces, and an accelerometer of
Kistler 8763B is used to monitor cutting vibrations. Mean-
while, an NI-DAQ system is adopted to collect multisensor
signals at a sampling frequency of 2500 Hz. After finishing
each milling operation, an optical microscope of the Hirox
KH-7700 is adopted to offline measure the flank wear width
of milling cutters.

In addition, three sets of milling tests under different
machining conditions are carried out to verify the general-
ization ability of the proposed tool wear prediction method.
The milling parameters are shown in Table III. Each set of
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TABLE III
MACHINING PARAMETERS OF THREE SETS OF MILLING EXPERIMENTS

Spindle  Feed E"’Zd Aﬁil Rig‘;l Material
Group Cutter speed  speed cengage Cuting Cuting . ..\oval
(r/min) (mm/min) -ment  depth  depth rate
(mm/r) (mm) (mm)
1 01-15 2000 500 0.0625 6 0.10 5.0
2 16-30 2000 500  0.0625 6 0.15 7.5
3 3145 2000 500 0.0625 6 0.20 10.0
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Fig. 3. Overall flowchart of the proposed tool wear prediction method.

milling tests applies 15 milling cutters. Further details of the
experimental setup and data acquisition are available in the
previous study [30].

B. Proposed Tool Wear Prediction Method

To further improve the prediction accuracy of tool wear and
provide an uncertainty estimation of the indirect tool wear
monitoring methods in milling operations, this study presents
a tool wear prediction method based on multi-information
fusion and GA-optimized GPR. Its overall flowchart is shown
in Fig. 3.

As shown in Fig. 3, the proposed tool wear prediction
method consists of four modules: 1) WPD-based sensor signal
preprocessing; 2) KPCA-based multidomain feature fusion; 3)
GA-GPR-based predictive model building; and 4) performance
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evaluation and wear prediction. Each module is elaborated on
in the following.

C. WPD-Based Sensor Signal Preprocessing

During the milling operations, the raw collected signals usu-
ally include noise information, and thus, signal preprocessing
is crucial to enhance the signal-to-noise ratio of the monitoring
signals. As one of the most effective time—frequency analysis
approaches, WPD can be adopted to suppress the noise portion
and enhance the characteristic component of the monitoring
signals [75]. Thus, the WPD-based sensor signal preprocessing
is performed on the collected signals.

As shown in Fig. 3, the cutting signals are first segmented
from the raw collected signals to eliminate the interference of
the noncutting phase. Then, for the segmented cutting signals,
the outliers are detected and removed to control the unexpected
disturbance from the data acquisition system. The outliers are
defined as the sampling points above the mean plus or minus
three times the standard deviation during a sampling period.
Also, each outlier is replaced by the mean of 100 sampling
points adjacent to it, considering the time-varying character-
istics of the collected signals. In addition, the WPD approach
is adopted to suppress the environmental noise contained in
the cutting signals. Also, its main steps are summarized as
follows.

Step 1-1: The four-level wavelet packet decomposition is
carried out on the input time-varying and nonstationary cutting
signals after selecting a “db8” wavelet with orthogonality and
discreteness.

Step 1-2: The optimal wavelet tree is calculated to determine
the optimal wavelet packet basis according to the given entropy
criterion.

Step 1-3: The soft thresholding is selected to quantize
each decomposed coefficient, considering the continuity and
smoothness of the output signals.

Step 1-4: The denoising signal is obtained based on wavelet
packet reconstruction using the processed coefficients.

Finally, after performing sensor signal preprocessing based
on WPD, the preprocessed signals are utilized to predict the
flank wear width of the milling cutter. Correspondingly, taking
vibration signals in the z-direction collected from Group 2 as
an example, its WPD-based signal preprocessing procedure is
given in Fig. 4.

D. KPCA-Based Multidomain Feature Fusion

For the preprocessed signals, TD, FD, and WD features
are first extracted to reduce the information redundancy [34].
As listed in Table IV, maximum, peak-to-peak, variance, root
mean square, skewness, and kurtosis are adopted in the TD.
Spectral skewness and spectral kurtosis are picked in the FD.
A wavelet energy feature is chosen in the wavelet (time—
frequency) domain. Thus, nine features are extracted from each
channel signal within one second, and 54 candidate features
are obtained for each milling feed.

Then, the candidate features are normalized to eliminate the
effects of the physical unit in each domain, which is calculated
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Fig. 4. Example of WPD-based signal preprocessing step using vibration
signal from Group 2. (a) Online collected signals. (b) Segmented cutting
signals. (c) Outlier removed signals. (d) Wavelet packet denoised signals.

TABLE IV

NINE MULTIDOMAIN FEATURES EXTRACTED
FROM THE PREPROCESSED SIGNALS

Feature Expression

Maximum F| = max(x)

Peak-to-peak F, = max(x) —min(x)

Variance

F :Zi,(xz—fi)z/]\’

Fo=>" ()N

E[((x—y)/a)q

Root mean square

Skewness F

Kurtosis F, = E[((x —u)/ 0')4:|

Spectral skewness

E :zzﬁl % S(fz)

Spectral kurtosis

K :Zj\il % S(f,)

Wavelet energy

=3 wi; (i)/N

as follows:

X = (xc - xlcnin)/(xfnax - xfnin) (D
where x¢ represents candidate features extracted from multi-
sensor signals.

In addition, an example of multidomain feature extraction
and normalization is shown in Fig. 5. It can be seen that not
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Fig. 5. Multidomain feature extraction and normalization of preprocessed

signals from Group 2.

all candidate features are obviously sensitive to the tool wear
process. Therefore, the feature selection is significant to obtain
the most principal features [34].

As a widely used nonlinear dimensionality reduction
approach, the KPCA can effectively solve the most principal
components without performing the explicit calculation of the
nonlinear mapping [76]. Thus, this study employs it to fuse
the most sensitive features and further reduce the dimension
of the candidate features. The algorithm of KPCA is briefly
introduced in the following.

Step 2-1: The kernel matrix K is computed according to the
selected kernel function K (-), which is expressed as follows:

K ={Kijlaxn. Kij=K(xi, xj)=(px),dx)) (2

where n represents the number of the input samples, x; and x ;
are the samples of input space, and ¢ (-) denotes the nonlinear
mapping from input space to feature space.

Step 2-2: Centralization of the kernel matrix K is carried
out as follows:

K=K—-IK - KI+IKI 3)

where I denotes a n x n matrix consisting of the element 1/n.
Step 2-3: The eigenvalues of the centralized kernel matrix

K is decomposed and computed by solving the following
expression:

Ko = nia (€]

where a = (a1, an, ..., ozn)T represents the eigenvectors and
nA denotes the corresponding eigenvalues.
In particular, the above equation can be derived by

= iP(x;)
v Zaqﬁx 5)
i=1,2,...,n

C=- Z¢(x)¢(x)
e v> (¢ (xi). Cv),

where C represents the covariance matrix of the mapping data
and v denotes its eigenvector.

Step 2-4: The projection of mapping data ¢(x;) into the
eigenvectors v is implemented to obtain the principal compo-
nent x! as follows:

1 n
x! = (), v) = ;Z;ocj (@(xi), p(x))
=
_1 S K (XX 6
_;gla] (xi,xj). (6)
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Note that the number of the principal components is deter-
mined by the accumulation variance percentage, which is
expressed as follows:

k n
Z%‘/Z%‘ >A. @)
i=1 i=1

In addition, the radial basis function (RBF) is selected as
the kernel function, and the expression is given as follows:

K (xi, x) =exp (—|x; —x||2/20k2). 3

After finishing multidomain feature fusion based on KPCA,
the principal features related to tool wear are obtained, which
are utilized to establish a predictive model for the flank wear
width of the milling cutter.

E. GA-GPR-Based Predictive Model Building

1) GPR-Based Initial Model Building: As one of the most
efficient regression methods, GPR has good adaptability and
generalization ability to deal with complex nonlinear problems
of high dimensions and small samples [17], [19]. Moreover,
as a Bayesian inference-based algorithm, GPR can offer an
uncertainty quantification to analyze the reliability of predicted
results. Thus, this study adopts GPR to build the initial
model of tool wear prediction. The details of its modeling
are introduced as follows.

In general, GPR is the kernel-based nonparametric modeling
based on Gaussian distribution. For a given training dataset
D = {x;, yi}7_,, where x; represents the ith input sample and
y; denotes the corresponding observation value, the Gaussian
process can be defined as follows:

f) ~ GP(m(x), k(x, x") 9

where m(x) and k(x, x’) are the mean function and kernel
function, respectively, which are expressed as follows:

m(x) =E[f(x)]
k(x,x") =E[(f(x) —m@x)(f(x") —m(x"))].

Considering the noise in the data acquisition, a general GPR
model can be given as follows:

=f(x)+e (11

where ¢ ~ N(0, 0,12) represents the independent and iden-
tically distributed Gaussian noise with a mean of 0 and a
standard variance of o;,.

For any finite number of the observation values, y is also
an individual Gaussian process, which can be expressed as

¥~ GP(m(x). k(x. x') + 028;)) (12)

(10)

where §;; is the Kronecker delta function.

In general, GPR first learns a prior function using the
training dataset X and then predicts a posterior function
value y, of the test dataset X,. Also, the joint distribution
of the observed values y and predicted values y, can be

expressed as

y ] K(X,X)+021,
[&*] N(O’[ KXo X) KX X))
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where y = [yl,yz,...,yn]T’ X =[x;,x2,...,%,], and I,
represents an n X n identity matrix.
According to the Bayesian theory, the posterior distribution

is calculated as

_9*|X, y’X* NN(m(&*),COV(j’*))

where m(y,) and cov(y,) are the mean and variance of y,
respectively, their mathematical expression is given as follows:

(14)

m(3y) = m(X.) + K (X, X)
x[K(X, X) +021,]"' (y — m(X))

cov(y,) = K (Xs, X2) — K(X, X)
x[K(X, X) +021,] 'K (X, X.).

15)

In practice, the performance of GPR model is affected by
the kernel function. The squared exponential function has been
widely used in GPR modeling and obtained more satisfactory
prediction results [17], [19]. Therefore, it is selected as the
kernel function of GPR model in this study. Also, its expres-
sion is shown as follows:

k(x,x") = o2 exp (—x — x'||/21%) (16)

where oy represents the standard deviation of the observation
signal and [/ denotes the characteristic length scale.

It can be seen that § = {l, oy, 0,,} is a key hyperparameter in
the GPR model. Generally, the GPR model is trained using the
conjugate gradient algorithm, but it is susceptible to the initial
value and is difficult to converge to the global optimum [74].
In order to address these limitations, this study adopts an
optimization algorithm to solve the hyperparameters.

2) GA-Based Parameter Optimization: GA is a global
optimization probabilistic search algorithm inspired by the
natural selection and evolution mechanism [20]. Since the
optimization process does not depend on the gradient, it has
strong robustness and global search ability [21]. Thus, the
hyperparameters of the GPR model are optimized using GA.
As shown in Fig. 3, the main steps of the GA optimization
are briefly explained as follows.

Step 3-1 (Objective Function Construction): In this study,
the expression is defined as follows:

min |y, —y,| st 69 <6 <o (17)
where 8¢ and 0" are the upper and lower bounds of the search
interval for 8, respectively.

Step 3-2 (Parameters Initialization): There are the maxi-
mum evolutionary epoch T, maximum population size M,
individual length L, search interval [0d, 0“], and initial
population P(0). The tth epoch population P(¢) is defined

as

P)y={X|X(g)=ara --- ar, gq=1,2,...,M} (18)

where X (gq) represents the gth individual of the rth epoch
population P(¢) and aj ap --- ar denotes the coded value of
the individual X (¢q).

Step 3-3 (Individual Evaluation): Calculate the fitness value
of each individual according to the fitness function, which is
the same as the objective function.
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Step 3-4 (Selection Operation): Based on the fitness eval-
uation of individuals, the selection operation is to inherit the
optimized individuals to the next generation.

Step 3-5 (Crossover Operation): The crossover operator
reorganizes the optimized individuals and gradually abandons
the relatively inferior ones.

Step 3-6 (Mutation Operation): The individual value is
mutated by changing some gene values of individual coding in
the population. After implementing selection, crossover, and
mutation operations, the updated population P (¢ + 1) can be
obtained.

Step 3-7 (Termination Condition Judgment): After complet-
ing T iterations, the individual with the best fitness value
obtained in the process of evolution is taken as the optimal
solution of hyperparameters in the GPR model.

Finally, the optimal parameters of the GPR model are
obtained using GA optimization to establish a predictive model
for the flank wear width of milling cutters.

F. Performance Evaluation and Wear Prediction

To validate the performance and effectiveness of the pro-
posed tool wear prediction method, four evaluation criteria
are utilized in this study, which includes Pearson correlation
coefficient (PCC), mean absolute percentage error (MAPE),
mean absolute error (MAE), and root-mean-squared error
(RMSE) [34]. The expressions are given as follows:

ZlNzl (y*i - 5’*)(&*1 - ;*)
I 0w = 5022 G — 5,02

N A
1 - ,
MAPE — _Z |y>kl y*z|
N i—=1 Vi

PPC =

19)

N
I — .
MAE = — > |5 = y.il

i=1
N
| RMSE = \/ % D Gui =302
where y,; represents the flank wear width measured by an
optical microscope and y,; denotes the predicted flank wear
width using the proposed tool wear prediction method.

In addition, a 95% CI of predicted results from the GA-GPR
model is given by ¥, & 2 x (cov(J,))'/%. To quantitatively
analyze the reliability and stability of the proposed tool wear
prediction method, CI average width (CIAW) and CI standard
deviation (CISD) are utilized [17], which are expressed as
follows:

N
1 / -
CIAW = N El 4 x (Jcov(y,;)
1=
1 N - 2
CISD = \/ﬁ E - (4 X y/cov(Y,;) — CIAW)

where 4 x (cov(J,;))!/? is the width of the 95% CI at the
testing sample x,;.

Among these evaluation criteria, the larger the PPC value
and the less the MAE/RMSE/MAPE value, the higher the
predicted accuracy. Besides, the lower the CIAW/CISD value,

(20)
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Fig. 6. Performance evaluation of tool wear prediction using different input
signals.
TABLE V

OVERALL PERFORMANCE OF TOOL WEAR PREDICTION
USING DIFFERENT SIGNALS

. MAE RMSE CIAW CISD
Signal PCC ~ MAPE (um) (um) (um) (um)
Ax 0.9710+ 0.0541+ 16.8931+ 22.9615+ 124.7838+ 6.2023+

0.0151 0.0135 4.4284  5.6315 35.5869  3.6575
Ay 0.9880+ 0.0390+ 11.9336+ 14.5173+ 133.0251+ 3.0530+
0.0059 0.0093 2.0938  2.6277 27.4982  1.4029
Az 0.9550+ 0.0630+ 20.2237+ 27.8209+ 138.3177+ 6.5005+
0.0408 0.0230 8.6965 13.5348  62.6537  0.3499
Fx 0.9935+ 0.0285+ 8.9421+ 11.3360+ 130.4226+ 2.7420+
0.0036 0.0073 2.4923  3.4824 859869  2.2106
Fy 0.9955+ 0.0258+ 7.9504+ 10.3227+ 60.3874+ 4.0131+
0.0008 0.0032 0.3157  0.5250 14.9503  1.2888
Fy 0.9830+ 0.0406+ 13.0284+ 18.2628+ 143.7790+ 5.3649+
0.0096 0.0141 53712  7.7053 56.3796  4.4399
ALl 0.9976+ 0.0179+ 5.4832+ 6.8212+  37.7894+ 2.7339+
0.0007 0.0032 0.5128  0.9225 8.6803 0.7318
All 0.9986+ 0.0153+ 4.7295+ 5.9631+  30.5832+ 2.1118+
0.0003 0.0016 0.1186  0.3965 5.1792 0.5292

the more reliable and stable of prediction wear results. Finally,
after implementing performance evaluation in prediction accu-
racy and reliability, the predictive tool wear prediction model
with excellent performance is obtained, which is utilized to
predict the flank wear width using in-process multisensor
signals.

IV. RESULTS AND DISCUSSION
A. Multi-Information Fusion Analysis

1) Multisensor Signal Fusion Analysis: First, comparative
experiments of the proposed tool wear prediction method using
different signals are conducted to analyze the necessity of
multisensor signal fusion. Also, evaluation results under dif-
ferent machining parameters are shown in Fig. 6, where “All”
denotes a combination of vibration signals and cutting forces
in x-, y-, and z-directions. In addition, overall performances
of tool wear prediction using different signals are summarized
in Table V, where “All*” represents no WPD-based signal
denoising for multisensor signals. Note that quantitative results
are given by “mean value + standard deviation.”

As shown in Fig. 6 and Table V, different signals are
discrepant in the predicted results of tool flank wear. The
evaluation criteria (including MAPE, MAE, RMSE, and CISD)
of predicted wear adopting cutting forces are lower than that
using vibration signals, which indicates that cutting forces are
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Predicted results of tool flank wear using different input signals

more accurate in tool wear prediction than vibration signals.
Besides, cutting forces or vibration signals in the y-direction
obtain the lowest prediction error compared to other directions.
However, all the single signals are significantly inferior to
multisensor signal fusion in the performance of tool wear
prediction. Finally, benefitting from the complementarity and
fault tolerance of different signals, multisensor signal fusion
lowers by 60.78%, 60.37%, 58.92%, 77.01%, and 30.83% of
the mean of MAPE, MAE, RMSE, CIAW, and CISD compared
to the best performance obtained by the vibration signals,
respectively. Therefore, multisensor signal fusion is necessary
and effective for tool wear prediction. In addition, predicted
results under 95% CI of tool flank wear are shown in Fig. 7.

It can be seen from Fig. 7 that a 95% CI width of predicted
results using vibration signals in the y-direction is significantly
larger than that using cutting forces in the y-direction. Also, a
95% CI width of predicted results using multisenor signals
is less than that using cutting forces in the y-direction.
Besides, predicted wear using multisensor signals is closer
to the measured wear than the single signals. Concretely,
as shown in Table V, compared with the best performance of
the force signals, predicted results of multisensor signals lower
by 40.61%, 40.51%, and 42.23% in the mean value of MAPE,
MAE, and RMSE. It also reduces by 49.36% and 47.38% in
the mean value of CIAW and CISD, respectively. Therefore,
these results display that multisenor signals are more accurate
and reliable than the single signal in tool wear prediction.

In addition, as shown in Fig. 8, the WPD-based signal
processing can overall lower the predicted error of tool flank
wear when using multisensor signals. Correspondingly, pre-
dicted results under 95% CI of tool flank wear are drawn in
Fig. 9. It can be found from Fig. 9 that a 95% CI width of
predicted results without WPD is larger than that with WPD
when using multisenor signals. Quantitatively, as shown in
Table V, compared with no wavelet packet denoising (NWPD)
for multisensor signals, predicted results based on WPD lower
by 14.26%, 13.75%, 12.58%, 19.07%, and 22.75% in the mean
value of MAPE, MAE, RMSE, CIAW, and CISD, respec-
tively. Therefore, WPD-based signal processing can improve
the accuracy and reliability of tool wear prediction using
multisensor signals.

2) Multidomain Feature Fusion Analysis: Next, compar-
ative experiments of tool wear prediction based on hybrid
features extracted from different domains are carried out to
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Fig. 10.  Performance evaluation of tool wear prediction using different
domain features.

analyze the necessity of multidomain feature fusion. In the
experiments, all candidate features used in different domains
are listed in Table IV. The evaluation results of these exper-
iments are shown in Fig. 10. Besides, quantitative perfor-
mances of tool wear prediction are given under different
criteria in Table VL

As shown in Fig. 10 and Table VI, a combination of
two domains (i.e. TD + FD, TD + WD, and FD + WD)
can lower the MAPE, MAE, and RMSE of predicted wear
compared with the single domain (i.e., TD, FD, and WD),
improving the prediction accuracy of tool flank wear. Also,
it can lessen the CIAW and CISD of predicted wear, which
enhances the reliability of tool wear prediction compared with
the single domain feature. Moreover, fusion features from MD
(i.e., TD + FD + WD) can further improve the accuracy and
stability of predicted wear compared with combined features
from the two domains. Also, a 95% CI width of predicted wear

Fig. 11.
(95% CI).

Predicted results of tool flank wear using different domain features

using MD features is obviously less than the single domain
features, which is shown in Fig. 11.

Specifically, compared with TD features that obtain the
best performance in the single domain, predicted results using
MD features lower by 31.06%, 30.34%, 24.63%, 20.07%, and
38.58% in the mean value of MAPE, MAE, RMSE, CIAW,
and CISD, respectively. In addition, compared with combined
features from two domains (i.e., TD + WD) that obtain the
lowest error in two domains, predicted results by MD features
lessen by 15.69%, 16.19%, and 12.64% in the mean value
of MAPE, MAE, and RMSE, respectively. Also, it reduces
by 12.06% and 28.47% in the mean value of CIAW and
CISD, respectively, compared with combined features from
two domains (i.e., TD + FD) that obtain the best reliability in
the two domains. In conclusion, multidomain feature fusion
not only can reduce the predicted wear of tool flank wear
but also enhance the reliability and stability of tool wear
prediction.

B. Comparisons With Other Methods

1) Comparisons With Other Signal Fusion Methods: In
order to evaluate the effectiveness and advancement, the
proposed tool wear prediction method is compared with
other schemes in each critical process. First, performance
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Fig. 12. Performance comparison of tool wear prediction between different
signal fusion methods.

TABLE VII

OVERALL PERFORMANCE OF TOOL WEAR PREDICTION
USING DIFFERENT SIGNAL FUSION METHODS

Method PCC MAPE MAE RMSE CIAW CISD
(um) (um) (um) (um)
Ave 0.9810+ 0.0418+ 13.1619+ 17.5369+ 121.7859+ 4.6460+
0.0076 0.0071 2.9206 4.0204 35.5963 1.6070
Vot 0.9805+ 0.0350+ 10.9279+ 13.8491+ 104.1957+ 3.2900+
0.0080 0.0060 2.1405 2.9206 31.1963 1.4647
Min 0.9964+ 0.0227+ 7.0966+ 9.2764+ 62.9299+ 2.8952+
0.0012 0.0024 1.0029 1.6450 122771 2.0965
AA 0.9937+ 0.0275+ 8.5211+ 12.0589+ 72.5487+ 4.1006+
0.0013 0.0017 0.2993 1.4734 349949 2.2055
AF 0.9976+ 0.0189+ 5.8850+ 7.6557+ 59.7143+ 3.3027+
0.0009 0.0008 0.4355 1.1732 223072 1.2430
All 0.9986+ 0.0153+ 4.7295+ 5.9631+ 30.5832+ 2.1118+
0.0003 0.0016 0.1186 0.3965 5.1792 0.5292

comparisons between different signal fusion strategies are
implemented to validate the effectiveness of the multisensor
signal fusion scheme employed in the proposed method.
The comparative results of these experiments are drawn
in Fig. 12, where the Avg, Vot, and Min represent the
average, voting, and minimum schemes of all the sin-
gle input signals, respectively. Among them, the average
scheme takes the same weight for different single signals,
the voting scheme adopts different weights according to
predicted error, and the minimum scheme utilizes the low-
est predicted error of the single signal under each machin-
ing parameter. Besides, all accelerations (AA) denotes a
fusion of all vibration acceleration signals in the x-, y-, and
z-directions, and AF represents a fusion of all cutting forces in
three directions. Correspondingly, the quantitative results are
summarized in Table VII.

It can be found from Fig. 12 and Table VII that the predicted
error of the voting scheme is less than the average strategy
due to considering the sensitivity of different single signals.
The minimum scheme can lower predicted error using the
most sensitive signal in different machining parameters. When
combining cutting forces in the x-, y-, and z-directions, the
AF strategy can reduce predicted error compared with the
average, voting, and minimum schemes of a single signal to a
certain extent. However, its predicted accuracy and reliability
are limited to the information limitation of single-type signal,
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Fig. 13. Predicted results of tool flank wear using different signal fusion
methods (95% CI).

TABLE VIII

OVERALL PERFORMANCE OF TOOL WEAR PREDICTION USING
DIFFERENT FEATURE FUSION METHODS

MAE RMSE CIAW CISD
MAPE (um) (um) (um) (um)
0.9985+ 0.0177+ 5.4740+ 7.2224+ 43.7768+ 4.9008+
0.0003 0.0013 0.2121 0.8475 16.5006 2.0019
MRMR 0.9982+ 0.0160+ 4.9554+ 6.0871+ 50.6828+ 3.6159+
0.0004 0.0014 0.0344 0.4093 324517 1.1806
0.9980+ 0.0161+ 4.9619+ 6.3533+ 51.0089+ 2.9275+
0.0003 0.0017 0.1980 0.2185 17.1694 1.1368
0.9986+ 0.0153+ 4.7295+ 5.9631+ 30.5832+ 2.1118+

KPCA 0.0003 0.0016 0.1186 0.3965 5.1792 0.5292

Method PCC

NES

LLE

and the predicted error is still less than the multisensor signal
fusion used in the proposed method. Concretely, as shown in
Table VII, the predicted wear of multisensor signal fusion is
lower by 19.06%, 19.63%, and 22.11% in the mean value of
MAPE, MAE, and RMSE, respectively. In addition, as shown
in Fig. 13, a 95% CI width of predicted wear applying the
all forces (AF) strategy is obviously larger than multisensor
signal fusion. Overall, the predicted wear of multisensor signal
fusion is lower by 48.78% and 36.06% in the mean value
of CIAW and CISD, respectively. Therefore, the multisensor
signal fusion employed in the proposed method can improve
the prediction accuracy and reliability compared with other
signal fusion schemes.

2) Comparisons With Other Feature Fusion Methods: Then,
to evaluate the effectiveness of multidomain feature fusion,
the KPCA technique is compared with other feature fusion
strategies, such as no feature selection (NFS) scheme, MRMR,
and LLE. These methods are conducted on the presented
GA-GPR prediction model using multisenor signals. Also, the
performance comparison of these methods is shown in Fig. 14.
Correspondingly, the overall results are quantitatively listed
in Table VIIL.

As shown in Fig. 14 and Table VIII, the feature selection
strategies based on MRMR and LLE technique can achieve
a lower predicted error (such as MPAE, MAE, and RMSE)
than the NFS scheme that used all candidate multidomain
features. However, these two techniques have a larger CIAW
of the predicted wear compared with the NFS scheme, which
reduces the reliability of tool wear prediction. Fortunately,
the KPCA-based scheme can reduce a predicted error and
improve the reliability of predicted results, which is shown
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Fig. 14. Performance comparison of tool wear prediction between different
feature fusion methods.
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Fig. 15. Predicted results of tool flank wear using different feature fusion

methods (95% CI).

in Table VIII and Fig. 15. Concretely, compared with NFS,
MRMR, and LLE schemes, the KPCA-based strategy lowers
by 13.60%, 4.56%, and 4.68% in the mean value of MAE,
and it also reduces by 17.44%, 2.04%, and 6.14% in the
mean value of RMSE. Furthermore, the KPCA-based scheme
lowers by 30.14%, 39.66%, and 40.04% in the mean value of
CIAW, and it reduces by 56.91%, 41.60%, and 27.86% in the
mean value of CISD compared with other feature selection
schemes. Consequently, the KPCA-based multidomain feature
fusion scheme can reduce a predicted error of tool flank wear
and enhance the reliability of tool wear prediction.

3) Comparisons With Other Prediction Methods: Next,
to demonstrate the effectiveness of the predictive model, the
presented GA-GPR model is compared with other intelligent
models, including MLR, BP, RBF, SVR, LSSVR, and RF.
These models are also optimized by GA. Besides, all the com-
pared models adopted the WPD-based signal preprocessing
and KPCA-based feature fusion scheme same as the GA-GPR
model. The performance evaluations under different machining
parameters are shown in Fig. 16, and the overall performances
under different evaluation criteria are quantitatively summa-
rized in Table IX.

It can be found from Fig. 16 and Table IX that the GA-GPR
model achieves the best performance of tool wear prediction
among the compared methods. Compared with the GA-LSSVR
model obtained the lowest error of other compared methods,
the GA-GPR model lowers by 14.11%, 14.17%, and 11.38% in
the mean value of MAPE, MAE, and RMSE, respectively, and
it also reduces by 9.70%, 40.65%, and 18.17% in the standard
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Fig. 16. Performance comparison of tool wear prediction between different
prediction models.

TABLE IX

OVERALL PERFORMANCE OF TOOL WEAR PREDICTION
BETWEEN DIFFERENT PREDICTION MODELS

Model PCC  MaApg MAE  RMSE  CIAW  CISD
(um) (um) (um) (um)

MLR  0-9913+0.0322+ 103596+ 1312514 226.4290+ 35889+
0.0020 0.0007 0.6964 02508 70.6067 1.1321

B8P 0.9963= 0.0225+ 7.0078+ 8.6730+ )
0.0018 0.0018 0.5904  0.7492

RRE 09954+ 0.02424 74980+ 94679+ )
0.0025 0.0054 1.5810 1.9847

Gur 0996900202+ 62448+ 79576+ )
0.0003 0.0021 03371 0.4136
0.9984+ 0.0178+ 5.5106+ 6.7287+

LSSVR 0.0005 0.0018 0.1998 0.4845 )

RF 0.9966:+ 0.0204+ 63388+ 8.5112+ )
0.0007 0.0010 0.5185 0.2856

Gpr 09986+ 00153+ 4.7205+ 59631+ 30.5832+ 2.1118%
0.0003 0.0016 0.1186 03965 5.1792  0.5292

variance of MAPE, MAE, and RMSE, respectively. Besides,
the GA-GPR model can offer an uncertainty estimation to
quantify the reliability of predicted results compared with BP,
RBF, SVR, LSSVR, and RF models based on GA. Although
the MLP model can provide a confidence interval of predicted
results, the CIAW and CISD values are significantly larger
than the GPR model. Thus, the GA-GPR model can make tool
wear prediction more accurate and reliable than other models,
benefitting from a combination of the GA optimization and
the GPR prediction model.

4) Comparisons With Other Optimization Methods: In addi-
tion, comparison experiments of predictive models under grid
search (GS)- and GA-based optimizing schemes are conducted
to validate the effectiveness of the model parameter optimiza-
tion. Correspondingly, the overall performance of these opti-
mized prediction models under different machining parameters
is shown in Fig. 17.

It can be seen from Fig. 17 that the GA-optimized prediction
models have a larger PPC and lower MAPE, MAE, and RMSE
than GS-based models as a whole. Also, whether using GS- or
GA-based model parameter optimization, GPR achieves higher
correlation and lower error of tool wear prediction among
other compared methods. Furthermore, as shown in Fig. 18,
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Fig. 17. Overall performance of tool wear prediction under different

optimization methods.

TABLE X
PERFORMANCE COMPARISONS OF TOOL WEAR PREDICTION

BETWEEN MAIN ABLATION METHODS

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

MAE CIAW  CISD alpha- Optimizing
Methods (um) (um) (um) lambda time (s)
NWPD+KPCA 54832+ 37.7894+ 2.7339+ 0.6889+ 268.4948+
+GA-GPR  0.5128 8.6803  0.7318 0.0314 4.1025
WPD+NFS 54740+ 43.7768+ 4.9008+ 0.6889+ 280.3854+
+GA-GPR  0.2121 16.5006 2.0019 0.0629 3.9929
WPD+KPCA  5.7777+ 38.8818+ 2.6313+ 0.7111+ 968.7865+
+GS-GPR 02899 5.1291  0.6100 0.0629 59.0117
WPD+KPCA  4.7295+ 30.5832+ 2.1118+ 0.8000+ 269.6667+
+GA-GPR  0.1186 5.1792  0.5292 0.0544 1.5771
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Fig. 18. Predicted results of tool flank wear using different optimization
methods (95% CI).

a 95% CI width of predicted wear employing the
GA-optimized GPR model is smaller than that using the
GS-optimized GPR model.

The GA-GPR model reduces by 21.34% and 29.45% in the
mean value of CIAW and CISD, respectively, which enhances
the reliability of tool wear prediction compared with the
GS-GPR model. Also, the GA-GPR model also lowers by
18.03%, 18.14%, and 14.54% in the mean value of MAPE,
MAE, and RMSE, respectively, which improves the prediction
accuracy of tool flank wear. Ultimately, the proposed tool
wear prediction method achieves better performance than other
methods in each critical process, including compared multi-
sensor fusion schemes, multidomain feature fusion techniques,
and intelligent prediction models.

C. Discussion

The indirect methods have been widely applied for tool
wear monitoring integrated into intelligent manufacturing sys-
tems. When the training samples with labeled information
are inadequate or the data distribution between training and
testing samples is different, the monitoring accuracy of those
data-driven indirect methods reduces significantly. In addition
to the monitoring accuracy, the stability and reliability of
indirect methods are also critical to integrated manufacturing
systems. In order to improve the monitoring accuracy as
well as provide the prediction reliability under small sam-
ples, this study investigates an indirect tool wear prediction
method using multi-information fusion technologies and a
GA-optimized GPR model synthetically.

The main innovation of the developed tool wear monitoring
method relies on the integration of the following technologies.
First, the 3-D cutting forces and vibration signals provide
multidimensional information for tool wear monitoring. Then,
the WPD-based signal preprocessing can enhance the signal-
to-noise ratio of the collected multisensor signals. Next, the
multidomain features are extracted from the preprocessed
signals to supply the comprehensive wear characteristics, and
the KPCA technology is employed to fuse the principal
features related to tool wear. Finally, the GPR-based prediction
model can balance the monitoring accuracy and reliability,
and the GA-optimized model can enhance the monitoring
performance.

Intuitively, the main ablation methods are implemented to
demonstrate the effectiveness of each technology integrated
into the proposed method. In addition to the evaluation metrics,
including MAE, CIAW, and CISD, the relevant research has
shown that some advanced metrics such as alpha-lambda
(o — A), prognostic horizon, and prediction distribution can
be used to verify the accuracy and reliability of prognostic
methodologies effectively [77]. Considering the consistency of
these metrics displayed in the previous study [78], the & — A
metric is adopted to further highlight the contribution of each
module. The & — A metric is defined as follows:

a—l:[l’
O»

where A* and A, denote the ground truth and the predicted
value, respectively, and o represents an arbitrary error of the
prediction model.

Also, the @ — A metric is averaged over the whole testing
samples. The lower « and the larger o — A, the higher the
accuracy and the better the reliability of the prediction method.
To highlight the prediction performance of the proposed
method, this study specifies 5% to be a chosen value for «.
Besides, the optimizing time is also adopted to validate the
ablation methods. The performance comparisons between the
ablation methods are quantitatively summarized in Table X.

It can be found that compared with the ablation method
(NWPD + KPCA + GA-GPR), the proposed method (WPD +
KPCA + GA-GPR) can obviously reduce MAE, CIAW,
and CISD and increase @ — A with almost no increment
in optimizing time. The ablation method (WPD + NFS +
GA-GPR) has higher MAE, CIAW, and CISD and lower

if(1—a)A" <A, <(A+a)A”

21
otherwise @h
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TABLE XI

COMPARISON FOR @ — A AND TIME CONSUMPTIONS
BETWEEN DIFFERENT PREDICTION MODELS

MAE  alpha-  Optimizing Training Testing
Methods (um)  lambda time(s) time(s) time (s)
WPD+KPCA 10.3596+ 0.2444+ 0.2240+ 0.0635+
+MLR 0.6964 0.1663 0.0655 0.0118
WPD+KPCA 7.0078+ 0.6000+ 533.3802+ 0.5469+ 0.0208+
+GA-BP 0.5904 0.0544  72.4053 0.0996  0.0074
WPD+KPCA 7.4980+ 0.6222+ 504.7083+ 0.4427+ 0.0365+
+ GA-RBF 1.5810 0.1370  39.1026 0.1595  0.0074
WPD+KPCA 6.2448+ 0.6444+ 355.4948+ 0.0781+ 0.0208+
+GA-SVR 03371 0.1257 4.8246 0.0221  0.0074
WPD+KPCA 5.5106+ 0.7556+ 261.8594+ 0.0990+ 0.0208+
+GA-LSSVR 0.1998 0.0314 2.2186 0.0266  0.0074
WPD+KPCA 63388+ 0.6889+ 257.5052+ 0.1583+ 0.0260+
+ GA-RF 0.5185 0.0831 2.7453 0.0829  0.0074
WPD+KPCA  4.7295+ 0.8000+ 269.6667+ 0.1021x 0.0208+
+GA-GPR  0.1186 0.0544 1.5771 0.0517  0.0074

@ — A, and increases the optimizing time than the pro-
posed method. Moreover, compared with the ablation method
(WPD + KPCA + GS-GPR), the proposed method can sig-
nificantly reduce the optimizing time and prediction error and
increase & — A. Therefore, the proposed method can balance
the prediction accuracy and reliability of tool wear prediction,
combined with the WPD-based multisensor signal processing,
KPCA-based multidomain feature fusion, and GA-optimized
GPR prediction model.

In addition, to further demonstrate the superiority of the
proposed method, this study implements comprehensive com-
parisons of @ — A and time consumption with other advanced
methods. Specifically, the comparative results are listed in
Table XI. It is easily found that compared with other advanced
methods, the proposed method obviously lowers the prediction
error and improves the « — A metric. Although the optimiz-
ing time of the proposed method is slightly more than the
WPD + KPCA + GA-LSSVR method, their training and
testing times are basically equal. Besides, the optimizing time
of the WPD + KPCA + GA-RF method is slightly shorter
than that of the proposed method, but the proposed method
has an advantage in training and testing time. For the WPD +
KPCA + GA-BP and WPD + KPCA + GA-RBF methods,
the optimizing and training times are significantly longer than
the proposed method. The WPD + KPCA + MLR method
has a little time-consuming, but its prediction accuracy and
reliability are not enough for effective tool wear prediction.

Consequently, when using multisensor signals for tool wear
prediction, the proposed method (WPD 4 KPCA + GA-GPR)
not only can prove higher prediction accuracy and reliability
but also take less training and testing times, which has great
utilization potentiality in online tool wear monitoring.

V. CONCLUSION

In this study, a tool wear prediction method based on
multi-information fusion and GA-optimized GPR is proposed
for indirectly measuring the flank wear width in milling. The
multi-information fusion analysis and comprehensive compar-
isons with other advanced and ablation methods are carried
out to verify the effectiveness of the proposed method under
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different milling parameters. The main works are summarized
as follows.

1) The proposed indirect method can improve the accuracy
and reliability of tool wear prediction using multi-
sensor signals, benefiting from the integration of the
WPD-based signal preprocessing, the KPCA-based mul-
tidomain feature fusion, and the GA-optimized GPR
prediction model.

2) The WPD-based signal preprocessing strategy lowers
by 14.26%, 13.75%, 12.58%, 19.07%, and 22.75%
of MAPE, MAE, RMSE, CIAW, and CISD than the
NWPD-based approach without almost no increment in
optimizing time, restraining the interference of environ-
mental noise.

3) Compared with the NFS, MRMR, and LLE schemes,
the KPCA-based feature fusion method reduces MAE
(13.60%, 4.56%, and 4.68%), RMSE (17.44%, 2.04%,
and 6.14%), CIAW (30.14%, 39.66%, and 40.04%),
and CISD (56.91%, 41.60%, and 27.86%), mining more
sensitive characteristics of tool wear and thereby helping
improve the prediction performance.

4) The GPR model surpasses the BP, RBF, SVR, LSSVR,
and RF models in the accuracy of tool wear predic-
tion and additionally provides an uncertainty estimation
interval to quantify the reliability of the predicted results.
Furthermore, the GA-GPR model obviously improves
the prediction accuracy and reliability and significantly
reduces the optimizing time compared with the GS-GPR
model.

Comparison results demonstrate that the proposed tool wear
prediction method achieves accurate and reliable monitoring
of the flank wear width, promoting a successful application
of indirect methods in milling operations. The study can also
provide some beneficial suggestions for indirectly measuring
tool flank wear in other machining operations (such as turning
and drilling). For future research, the proposed method will
be expanded to more processing parameters and machining
operations, further enhancing its generalization ability. In addi-
tion, multi-information fusion methods based on other feature
fusion technologies and intelligent prediction models will
be developed to tool wear prediction, further improving the
prediction accuracy and reliability.
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