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Abstract— Two-way fiber-optic time transfer (TWFTT) is a
promising precise time synchronization technique with sub-
nanosecond stability. However, the asymmetric delay attack is
a severe threat, which can deteriorate the performance of the
TWFTT system. In this article, a clock model-based scheme
is used to defend the subnanosecond asymmetric delay attack.
For the scheme, a security threshold is set according to a
two-state clock model, and the estimated frequency difference
is excluded from the measured time difference to detect the
subnanosecond asymmetric delay attack. Systematic detection
and mitigation scheme for asymmetric delay attack is devel-
oped in this article. Theoretical simulation and experimental
demonstration are implemented to explore the feasibility of the
method. A TWFTT system of time stability with 24.5, 3.98, and
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2.95 ps at average times of 1, 10, and 100 s is shown under
subnanosecond asymmetric time delay attack experimentally for
the first time. The proposed method provides a promising secure
subnanosecond precise time synchronization technique against
asymmetric delay attacks.

Index Terms— Delay attack, security, synchronization.

I. INTRODUCTION

PRECISE time synchronization has become increasingly
important for transportation [1], smart grid [2], contem-

porary space geodesy [3], high-resolution radio astronomy [4],
and modern particle physics [5]. Among various kinds of time
transfer techniques, the two-way time transfer technique is
a promising one that transmits time signals symmetrically
in both directions to cancel the time jitter for one-way
transfer [6].

Two-way satellite time transfer has achieved nanosecond
accuracy [7] and a time stability of 200 ps [8]. Due to widely
installed optical fiber infrastructure, two-way fiber-optic time
transfer (TWFTT) [3], [9] has attracted much attention in
recent years with the advantage of low cost. Based on directly
measuring arrival times of pulses, a time stability as low as
picosecond level has been reported [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18]. Recently, in order to improve
the performance of the time transfer, some technologies are
developed, such as joint time and frequency transfer [15],
[16], phase modulation technique [15], [17], λ-swapping tech-
nique [18]. Although the performance of the time transfer is
improved by these technologies, there are security threads for
TWFTT, which can deteriorate the performance significantly.
Security strategy based on encryption is proposed in [19].
However, there is a threat called asymmetric delay attack
which can not be protected by encryption.

For TWFTT technology, there are two kinds of asymmetric
time delay, intrinsic and extra. The intrinsic asymmetric time
delay is caused by the nature of the fiber. In order to gain
subnanosecond accuracy for TWFTT, the bidirectional signals
are transferred in the same fiber to restrict the intrinsic asym-
metric time delay. However, the residual asymmetric delay
induced by the fiber characteristic, such as the fiber chromatic
dispersion with unequal wavelength and the polarization mode
dispersion (PMD) [9], is inevitable, which is related to the
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TABLE I
COMPARISON TABLE

lower bound of the performance of the TWFTT system.
Except for the intrinsic asymmetric delay, the adversary can
introduce extra asymmetric time delay, and it is unknown to
the synchronization parties. So, if there is no secure measure,
the extra asymmetric delay can deteriorate the performance
of the TWFTT system significantly, which have been shown
experimentally [20], [21]. However, to the best of our knowl-
edge, the method to detect and mitigate the asymmetric delay
attack of TWFTT has not been studied experimentally.

Similar asymmetric delay attacks and solutions have been
studied for other time synchronization protocols like NTP and
PTP [22], [23], [24], [25], [26], [27], [28], [29], [30], [31],
[32], [33]. In [22], several security methods are proposed,
such as round-trip time (RTT) monitor, multiple clocks, and
multiple paths. However, no quantitative analysis on the coun-
termeasure is provided. In [23], requirements for secure two-
way protocol, such as PTP, are proposed, and RTT is proposed
to detect the delay attack. However, the influence of fixed
frequency difference between the two parties is not excluded
from the adversary detection. In [24], a game theoretic analysis
of delay attacks is studied, and a multiple paths strategy is pro-
posed to mitigate delay attacks. However, this method needs
multiple paths between the master and slave clocks. By using
the information of multiple paths, different lower bounds on
the best achievable performance are derived in the presence
of asymmetric delay by using expectation-maximization (EM)
algorithm [25] or space alternating generalized-maximization
(SAGE) algorithm [26]. In [27], a new delay attack detection
method is proposed by comparing the network clocks with
each other. However, multiple clocks are needed for this
method. In [28], an external reference clock called network
time reference (NTR) with very high accuracy is used to detect
cyber-attacks. However, external reference clock with very
high accuracy is needed. In [29], the proposed model relies on
a monitor unit called the trust supervisor node (TSN), which

is able to compare clock offsets/delay measurements provided
by a large number of slave devices. In [30], model-based and
data-based methods are proposed as a countermeasure for time
attacks. However, extra information from phase measurement
unit (PMU) is needed and mitigation is not included in the
method. In [31], polar coding is proposed as a security strategy.
The channel polarization caused by polar coding is utilized to
construct secure channel for timestamps. In [32], a detection
and mitigation method based on probabilistic model checker
for delay attack is studied theoretically and experimentally.
However, only 100-µs level synchronization error is achieved
by the method. In [33], an improved method is proposed
by introducing an observation task and analytically deriving
attack parameters of the time delay attack. However, only µs
level synchronization error is achieved by the method. A com-
parison is given in Table I.

In all, due to the high precision for TWFTT which can
provide sub-ns level time synchronization, sub-ns delay attack
can still influence the performance significantly. However,
a real-time detection and mitigation method for subnanosecond
asymmetric delay attacks is still an open question for TWFTT
system.

In this article, we investigate the method to protect TWFTT
from subnanosecond asymmetric time delay attacks. By ana-
lyzing the mechanism of asymmetric time delay attack,
a defense scheme based on the clock dynamics is proposed.
In this article, systematic method is proposed to detect and
mitigate asymmetric delay attack, without extra information,
such as multiple paths, multiple master clocks, or information
from PMU. Then theoretical simulations and experimental
demonstrations are implemented to explore the feasibility
of this method. A TWFTT system of time stability with
26.4, 6.82, and 3.58 ps under subnanosecond equal interval
asymmetric time delay attacks and with 24.5, 3.98, and 2.95 ps
under subnanosecond random interval asymmetric time delay
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Fig. 1. Schematic of TWFTT system. DWDM: dense wavelength division
multiplexing, TIC: time interval counter.

attacks at average times of 1, 10, and 100 s is shown. The
experimental results show that almost all the asymmetric
delay attacks with subnanosecond delay can be detected and
mitigated by this scheme, no matter whether the attacks happen
in an equal interval or randomly. To the best of our knowledge,
it is the first time to demonstrate secure time transfer against
sub-ns asymmetric delay attack for TWFTT. It provides an
efficient method to protect TWFTT from the asymmetric time
delay attack.

II. SCHEMATIC DESCRIPTION

A. TWFTT Scheme

We consider a general scheme of the TWFTT system
(as shown in Fig. 1). It consists of two parties, A and B,
interconnected by an optical fiber channel. At each of the
parties, the time scales (one pulse per second, 1PPS) are
transmitted to each other through a bidirectional optical fiber
link. The 1PPS signals are detected by the receiver. The time
difference between the received 1PPS and the sent 1PPS is
measured by the time interval counter (TIC) at each part,
named 1TA and 1TB . So

1TA = (TB + 1τB A) − TA (1)
1TB = (TA + 1τAB) − TB (2)

where 1τB A is the propagation time from B to A, and 1τAB

in the other direction. According to (1) and (2), the time offset
between A and B is derived by

1T = TA − TB =
1
2
(1TB − 1TA) +

1
2
(1τB A − 1τAB).

(3)

Assuming a symmetrical propagation delay, 1τB A = 1τAB ,
the time offset between A and B is given by

1T =
1
2
(1TB − 1TA). (4)

For TWFTT system, one party is called the remote site and
the other is called the local site. The measured time offset is
used by the local site to correct its clock to synchronize with
the remote clock. In this article, B is used as the local site,
and A is used as the remote site.

B. Asymmetric Delay Attack

Unknown asymmetric delay in the channel will lead to
synchronization errors in TWFTT system. There are two kinds
of asymmetric time delay, intrinsic and extra. The intrinsic

asymmetric time delay is caused by the nature of the fiber.
In order to gain subnanosecond accuracy for TWFTT, the
bidirectional signals are transferred in the same fiber to restrict
the intrinsic asymmetric time delay. However, an adversary can
deteriorate the performance of TWFTT system by introducing
extra asymmetric time delays which are unknown to the
synchronization parties. This attack is called the asymmetric
delay attack.

The impact of the asymmetric delay attack is analyzed
quantitatively. Specifically, if the adversary delays the 1PPS
from B to A by 1τattack, the actual time offset between A
and B is given by

1Tactual =
1
2
(1TB − 1TA) +

1
2
1τattack. (5)

Comparing (4) and (5), if no secure method is adopted,
the adversary introduces a time synchronization error with
1τerror = (1/2)1τattack.

C. Countermeasure

In order to detect the asymmetric delay attack, a clock
dynamic model is built for the time offset between A and B.
An adversary detector function with the measured time offset
and the estimated time offset from the dynamic model as
variables are built. By setting a security threshold, if the value
of the detector exceeds the threshold, a potential attack is
detected, and a special time offset correction scheme is chosen.
And if the value of the detector does not exceed the threshold,
a normal time offset correction scheme is chosen.

In this article, a two-state clock model is employed [31].
Equations describing the clock dynamics are{

dθ(t) = γ (t)dt + dωθ (t)
dγ (t) = dωγ (t)

(6)

where s and γ (t) = flocal − fremote are time offset and
frequency difference between the local clock and the remote
clock, ωθ (t) and ωγ (t) relate to random-walk phase noise
and random-walk frequency noise, respectively, which are
independent 1-D zero-mean Wiener processes with variances
equal to σ 2

θ and σ 2
γ , respectively.

For TWFTT system, the local clock is updated periodically,
and time offset correction, uθ (tn), is applied to the local clock
to synchronize with the remote clock at the nth synchroniza-
tion instant tn = n · τ . So, (6) can be rewritten as difference
equations [32]{

θ(tn) = θ(tn−1) + uθ (tn−1) + γ (tn−1) · τ + ωθ (tn)
γ (tn) = γ (tn−1) + ωγ (tn).

(7)

For TWFTT system, the measured time offset, which is
rewritten as θM(tn) = 1T (tn), can be used to correct the local
clock. Correction strategy influences the performance of the
TWFTT system and adversary detection effect. In this article,
the direct correction strategy is chosen to compare with the
attack detection strategy.

For direct correction strategy, the measured time offset is
used to correct the local clock directly. That means, after
the measurement of the time offset between the local clock
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and the remote clock, the update value of the local clock is
given by the measured time offset uθ (tn) = θM(tn). Then
uθ (tn) is used to correct the local clock. For the TWFTT
system, the measured time offset is given by θM(tn) =

1T (tn) = (1/2)(1TB(tn) − 1TA(tn)), where 1TB and 1TA

are the measured time intervals at local site and remote site,
as described in II-A.

Algorithm Direct Correction Strategy
1. Calculate measured time offset, θM(tn) = 1T (tn) =
1
2 (1TB(tn) − 1TA(tn)).
2. Calculate the update value of the local clock, uθ (tn) =

θM(tn).

For the attack detection strategy, in order to detect the
subnanosecond asymmetric delay attack, the frequency dif-
ference between the local clock and remote is supposed to be
relatively stable, and excluded to construct the attack detector.
Specifically, the frequency difference is estimated according
to the clock model. And the attack index is defined as the
absolute value of the measured time offset minus the time
offset induced by the estimated frequency difference. A secure
threshold is set for attack detection. If the attack index exceeds
the threshold, a potential attack is detected, and a special time
offset correction scheme is chosen. Otherwise, a normal time
offset correction scheme is chosen. More details are shown
below.

Algorithm Asymmetric Time Delay Attack Detection
1. Calculate the measured time offset, θM(tn) = 1T (tn) =
1
2 (1TB(tn) − 1TA(tn)).
2. Calculate the estimated frequency difference.

If no attack is detected at tn−1, then the measured fre-
quency difference at tn is given by γM(tn) = (θM(tn) −

θM(tn−1)+ uθ (tn−1))/τ , and the estimated frequency differ-
ence is given by γ̂ E (tn) = γM(tn).

Else, the estimated frequency difference is given by
γ̂ E (tn) = γbest (tn−1).
3. Calculate the fixed time offset induced by frequency
difference, of f set F(tn) = γbest (tn−1) · τ .
4. Calculate the attack index, Iattack =

|θM(tn) − of f set F(tn)|, where θM(tn) is the measured time
offset at tn .
5. Make a judgment whether an attack happens at tn , and
calculate the update value of the local clock and the best
frequency difference estimation.

If Iattack > Ithrehold , then uθ (tn) = of f set F(tn), and
γbest (tn) = γbest (tn−1).

Else, uθ (tn) = θM(tn), γbest (tn) = w · γM(tn) + (1 − w) ·

γbest (tn), 0 ≤ w ≤ 1.

The estimated frequency difference is very important for
the proposed algorithm. The measured frequency difference
γM(tn) = (θM(tn) − θM(tn−1) + uθ (tn−1))/τ fluctuates due to
the measurement noise. In order to reduce the influence of the
measurement noise, a smoothing method is introduced with a
smoothing factor as w, as shown in step 5 of the algorithm.

Fig. 2. Logical structure of the simulation. (a) Direct correction strategy.
(b) Attack detection strategy.

D. Metric

On the one hand, in order to analyze the effect of the attack
detection algorithm quantitatively, two performance metrics
are introduced which are precision and recall. Precision is
defined as the number of detected actual attack events over the
total number of detected attack events, while recall is defined
as the number of detected actual attack events over the total
number of actual attack events.

On the other hand, in order to analyze the influence of
the attack detection strategy on the performance of the time
synchronization system, time deviation error variance (TDEV)
and maximum time interval error (MTIE) are introduced
as [33]

TDEV(τ = n ∗ τ0)

=

√√√√√ 1
6n2(N − 3n + 1)

N−3n∑
j=0

n+ j−1∑
i= j

(xi+2n − 2xi+n + xi )

2

(8)
MTIE(τ = n ∗ τ0)

=
N−n−1
max
i=0

{
k=n
max
k=1

[|x(i + k) − x(i)|]
}
. (9)

III. THEORETICAL SIMULATION

In this section, theoretical simulation is implemented to
explore the feasibility of the attack detection strategy proposed
in this article.

Two strategies are compared in this article, which are
direct correction strategy and attack detection strategy. First,
as shown in Fig. 2, a free-running local clock module is
applied to produce the time difference θ(tn) at the nth synchro-
nization instant tn = n·τ . In this module, ωθ (tn) and ωγ (tn) are
the random-walk phase noise, random-walk frequency noise
and transmission noise during the period between tn−1 and tn ,
which are independent 1-D zero-mean Wiener processes with
standard deviation equal to σθ and σγ , respectively. After
the free-running local clock module, a transmission module
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TABLE II
SIMULATION PARAMETERS

is applied, where ωd(tn) is the transmission noise, which is
an independent 1-D zero-mean Wiener process with standard
deviation equal to σd . A conditional delay attack is applied to
modify the time difference with the value of (1/2)1τattack,
as explained in (5). Then, a measurement noise ωm(tn) is
added, which is an independent 1-D zero-mean Wiener process
with standard deviation equal to σm . After the measurement
module, the measured time offset θM(tn) is produced.

For direct correction strategy, the update value of the local
clock is calculated as uθ (tn) = θM(tn). For attack detection
strategy, the frequency difference estimation unit is applied to
calculate the estimated frequency difference γ̂ E (tn), and the
details are shown in step 3 of the algorithm. Then, the attack
index is calculated, and the details are shown in step 4 of
the algorithm. Attack judgment unit is applied to calculate the
update value of the local clock uθ (tn) and the best estimation
of the frequency difference γbest(tn) according to whether an
attack happens during the period between tn−1 and tn , and the
details are shown in step 5 of the algorithm.

After the strategies module, the calculated update value
of the local clock uθ (tn) is added to the actual time dif-
ference θ(tn) to get the final time difference after the
nth synchronization.

First, the performance of TWFTT system under no attack
events with a direct correction strategy and attack detection
strategy is compared by simulation. In the simulation, two
extra independent 1-D zero-mean Wiener processes with vari-
ances σ 2

m and σ 2
d are introduced for the measurement noise and

transmission noise. Without loss of generality, all the values of
the noises in the simulation are chosen as in Table II. As shown
in Fig. 3, the time synchronization error (time offset) is just
around zero for both cases where the fluctuation is caused
by measurement noise, transmission noise, and random-walk
noise.

Second, the influences of delay attacks on time synchroniza-
tion are studied. In the simulation, a delay attack happens once
every 50 s. Two cases are compared, where direct correction
strategy is adopted for the first case and attack detection
strategy is adopted for the second one.

In order to evaluate the influence of the attack detection
algorithm on the performance of time synchronization quan-
titatively, we studied the TDEV and MTIE for both cases.
As shown in Fig. 4, time stabilities with metrics TDEV and
MTIE are almost the same for the two cases. The results show

Fig. 3. Simulation of TWFTT’s time difference without attack. (a) Direct
correction strategy. (b) Attack detection strategy.

Fig. 4. Simulation of TWFTT’s TDEV and MTIE without attack. (a) TDEV.
(b) MTIE (red solid line: attack detection strategy; black dashed line: direct
correction strategy).

Fig. 5. Simulation of TWFTT’s time difference under asymmetric time delay
attack with time errors. (a) 1 ns with direct correction strategy. (b) 0.5 ns
with direct correction strategy. (c) 0.2 ns with direct correction strategy.
(d) 1 ns with attack detection strategy. (e) 0.5 ns with attack detection strategy.
(f) 0.2 ns with attack detection strategy.

that the attack detection algorithm does not deteriorate the
performance of the time synchronization if no attack exists.

For the case of the direct correction strategy, since no
attack detection is adopted, the time delay attack brings in
synchronization errors [see Fig. 5(a)–(c)]. By the theoretical
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TABLE III
PERFORMANCE METRIC UNDER ASYMMETRIC TIME DELAY ATTACK

analysis, as explained in (4) and (5), the direct correction
algorithm does not recognize the time delay introduced by
the adversary, the update value of the local clock is given
by uθ (tn) = θM(tn) = θ(tn) + ωd + ωm + (1/2)1τattack,
where θ(tn) is the actual time offset of the local clock and
the remote clock, ωd and ωm is the noise introduced by the
transmission and measurement, and (1/2)1τattack is introduced
by the delay attack. That means a time synchronization error
with (1/2)1τattack is included in the update value. In the
simulation, three cases are studied, where the values of delay
attack 1τattack are given by 2, 1, and 0.4 ns every 50 s.
The theoretical analysis shows the time synchronization error
introduced by the delay attack should be 1, 0.5, and 0.2 ns.
As shown in Fig. 5(a)–(c), the actual synchronization error is
around 1, 0.5, and 0.2 ns every 50 s. The fluctuation is caused
by noises, such as measurement noise, transmission noise, and
random-walk noise. So, the simulation results match with the
theoretical analysis.

For the case of attack detection strategy, all the actual
attack events are detected by the algorithm, and no event
which is not attack event is recognized as an attack event. So,
precision and recall for the simulation are both 100%. From
Fig. 5(d)–(f), we can see that the actual time offset is around
zero, and the influence of the delay attack is eliminated by the
attack detection algorithm. In order to evaluate the influence
quantitatively, TDEV and MTIE curves are drawn (see Fig. 6).
By comparing the direct strategy without attack and with
attack, the results show that the delay attack brings a serious
influence on the performance of the time synchronization.
By comparing the attack detection strategy without attack and
with attack, the results show that the influence of the delay

Fig. 6. Simulation of TWFTT’s TDEV and MTIE under asymmetric time
delay attack. (a) TDEV under 1-ns attack. (b) TDEV under 0.5-ns attack.
(c) TDEV under 0.2-ns attack. (d) MTIE under 1-ns attack. (e) MTIE under
0.5-ns attack. (f) MTIE under 0.2-ns attack (red solid line: direct correction
strategy without attack; blue dashed line: attack detection strategy with attack;
black dotted line: direct correction strategy with attack).

attack can be effectively eliminated by the attack detection
strategy. As shown in Table III, TDEVs and MTIEs at average
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TABLE IV
PERFORMANCE METRIC WITHOUT ATTACK

times of 1, 10, and 100 s are compared. By comparing
cases of attack detection strategy without attack, and with
1-, 0.5-, and 0.2-ns attacks, respectively, it shows that the
proposed attack detection algorithm can distinguish effectively
the attack events and the normal events. That means the
values of precision and recall are all 100% for attack detection
strategy. And all the TDEVs and MTIEs at different average
times are almost the same. For TDEV@1 s, TDEV@10 s,
TDEV@100 s, MTIE@1 s, MTIE@10 s, and MTIE@100 s,
all the cases are around 25, 8.7, 1.3, 106, 125, and 145 ps,
respectively. By comparing cases of direct correction strategy
and cases of attack detection strategy with 1, 0.5, and 0.2 ns
attacks, it shows that the asymmetric time delay attack brings
a serious influence on the performance of the time synchro-
nization. Counter-intuitively, TDEV@100 s is seemed to not
be influenced by the attack. It is caused by the definition of
TDEV. According to (8), when τ = 100, xi+2n − 2xi+n + xi

equals to xi+200−2xi+100+xi . Since the interval of attack event
in the simulation is 50 s, when i is an integral multiple of 50,
the same time error is induced by the attack for xi+200, xi+100,

and xi , so the effects are counteracted, and when i is not an
integral multiple of 50, no time error is induced by the attack
for xi+200, xi+100, and xi . So, the TDEV curve of the direct
correction strategy and the TDEV curve of no attack case meet
when τ = 100, as shown in Fig. 5, and the TDEVs@100 s are
almost the same for the cases of attack detection strategy and

the cases of direct correction strategy as shown in Table III.
In this article, scientific notation is adapted in Tables III–VI,
where nEm presents n × 10m .

IV. EXPERIMENTAL DEMONSTRATION

In this section, an experimental TWFTT system is set up in
the laboratory, and demonstrations are implemented to explore
the feasibility of the attack detection strategy proposed in this
article.

The experimental setup of TWFTT system with adversary
simulator is shown in Fig. 7. On the remote/local site, the
digital delay generator (DDG, SRS DG645) generates 1PPS
electric signal. 1PPS from one output port of DDG drives an
electrooptic modulator (EOM, AX-0S5-10-PFA-PFA-UL) to
modulate the CW laser to generate 1PPS optic signal. The
same 1PPS from another output port of DDG is sent to the
start trigger port of a TIC. The 1PPS optic signal is coupled to
channel 35 of DWDM, and transmitted to the local site through
the fiber channel. The photodetector on the local/remote site
detects the 1PPS optical signal and the generated electric
signal is sent to the stop trigger port of the TIC on the
local/remote site. The time difference recorded by

TIC on the remote site is sent to the local site. By (4), the
measured time offset is calculated on the local site. According
to the adversary detection strategy and correction strategy, the
delay correction value is calculated on the computer of the
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TABLE V
PERFORMANCE METRIC UNDER EQUAL INTERVAL ATTACK

Fig. 7. Experimental setup of TWFTT system with adversary simulator. AC: atomic clock, TIC: time interval counter, DDG: digital delay generator, EOM:
electrooptic modulator, PD: photodetector, DWDM: dense wavelength division multiplexing.

local site and sent to DDG on the local site to modify the
time delay. In order to evaluate the strategy, an extra TIC is
added to measure the actual time errors between the remote
clock and the local clock.

An adversary simulator is installed in the fiber channel,
which can simulate the asymmetry delay attack launched by
the adversary. Similar to [21], the adversary simulator consists
of a 1 × 4 optical switch. When the optical switch is set to
path 1, no asymmetry delay is added to the channel. When the
optical switch is set to path 2–4, 0.296, 0.83 s, and 1.25-ns
asymmetry delay is added to the channel, respectively.

Before studying the influence of the attack on the TWFTT
system, we first compare the attack detection strategy and
direct correction strategy without attack. For each strategy,

Fig. 8. TWFTT’s time difference without attack. (a) Direct correction
strategy. (b) Attack detection strategy.

600-s data of evaluation TIC are recorded, and the TDEV and
MTIE are calculated, as shown in Figs. 8 and 9. Different from
the simulation case, the values of TDEV and MTIE between
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TABLE VI
PERFORMANCE METRIC UNDER RANDOM INTERVAL ATTACK

Fig. 9. TWFTT’s TDEV and MTIE without attack (red solid line: attack
detection strategy; black dashed line: direct correction strategy). (a) TDEV.
(b) MTIE.

the attack detection strategy and direction correction strategy
are not the same. Because in the simulation, the measurement
noise, transmission noise, and process noise are the same for
the two strategies, and in the experiment, these noises are
different for the two strategies. However, although the values
of TDEV and MITE are not exactly the same for the two
strategies, the values are very close. Many experiments are
done to confirm that the differences between the two strategies
are induced by random noises.

As shown in Table IV, TDEVs and MTIEs at average times
of 1, 10, and 100 s are compared for attack detection strategy

and direct correction strategy without attack. Different from
the simulation results, the TDEVs and MTIEs are not the same
for the two strategies, which are due to the random factors,
such as the measurement noise, transmission noise, random-
walk phase noise, and frequency noise, in the experiment.

On the one hand, theoretically, the attack detection strategy
is degraded to a simple form which is the same as the
direct correction strategy. So, the difference between the two
strategies in the experimental demonstration without attack is
due to the random factors.

On the other hand, it is impossible to compare the direct
correction strategy and the attack correction strategy in the
same experiment with identical noise. So, in order to compare
the direct correction strategy and the attack detection strategy,
experiments are done with the same experimental parameters
for the two strategies. However, the noise in the experiment
is random process. Although the noises follow the same
probability distribution, the actual noises are different for the
experiment of the direction strategy and the experiment of the
attack correction. So, although the two algorithms are the same
when there is no attack, the calculated TDEVs and MTIEs are
not the same. The experiments are implemented three times
for each strategy, as shown in Table IV.
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Fig. 10. TWFTT’s time difference under asymmetric time delay attack with
time errors. (a) 1.25 ns with direct correction strategy. (b) 0.83 ns with direct
correction strategy. (c) 0. 296 ns with direct correction strategy. (d) 1.25 ns
with attack detection strategy. (e) 0.83 ns with attack detection strategy.
(f) 0. 296 ns with attack detection strategy.

Then, two kinds of asymmetry delay attacks are studied, the
equal interval attack and the random interval attack.

A. Equal Interval Attack

For equal interval attack, the adversary launched asymmetry
delay attack once at set intervals. Without loss of generality,
we set 50 s as the interval. Three kinds of asymmetry
delay attacks with 0.296, 0.83, and 1.25 ns, respectively, are
studied.

As shown in Fig. 10(a)–(c), when no attack detection
strategy is applied, the TWFTT system can not recognize the
attacks, and large synchronization errors are brought by the
asymmetry delay attacks. In order to evaluate the influence
quantitatively, TDEV and MTIE curves are drawn, as shown
in Fig. 11. The results show that the equal interval attack
brings a serious influence on the performance of the time
synchronization, and the influence of the delay attacks is
eliminated by the attack detection strategy.

As shown in Table V, TDEVs and MTIEs at average times
of 1, 10, and 100 s are compared. By comparing cases of
attack detection strategy without attack, with 1.25-ns attack,
with 0.83-ns attack, and with 0.296-ns attack, it shows that
the attack detection algorithm proposed in this article can
distinguish the attack events and the normal events. That
means the values of precision and recall are all 100% for
attack detection strategy under equal interval attacks. The

Fig. 11. TWFTT’s TDEV and MTIE under asymmetric time delay attack.
(a) TDEV under 1.25-ns attack. (b) TDEV under 0.83-ns attack. (c) TDEV
under 0.296-ns attack. (d) MTIE under 1.25-ns attack. (e) MTIE under 0.83-ns
attack. (f) MTIE under 0.296-ns attack (red solid line: direct correction
strategy without attack; blue dashed line: attack detection strategy with attack;
black dotted line: direct correction strategy with attack).

differences between TDEVs and MTIE are caused by the
difference in the noises. The smallest TDEVs at average times
of 1, 10, and 100 s are 26.4, 6.82, and 3.58 ps, and the
smallest MTIEs at average times of 1, 10, and 100 s are 122.1,
136.7, and 151.4 ps, under nanosecond and subnanosecond
equal interval attacks. By comparing cases of direct correction
strategy and cases of attack detection strategy with 1.25-,
0.83-, and 0.296-ns attack, it shows that the asymmetric time
delay attack brings a serious influence on the performance of
the time synchronization. Counter-intuitively, TDEV@100 s
is seemed to be not influenced by the attack. It is caused by
the definition of TDEV. According to (8), when τ = 100,
xi+2n − 2xi+n + xi equals to xi+200 − 2xi+100 + xi . Since the
interval of attack event in the simulation is 50 s, when i is an
integral multiple of 50, the same time error is induced by the
attack for xi+200, xi+100, and xi , so the effects are counteracted,
and when i is not an integral multiple of 50, no time error is
induced by the attack for xi+200, xi+100, and xi . So, the TDEV
value of the direct correction strategy approaches the TDEV
value without attack, as shown in Fig. 11.

B. Random Interval Attack

For random interval attack, the adversary launched asym-
metry delay attack randomly. So, the attack can hap-
pen consecutively. The probability of the attack is a key
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Fig. 12. TWFTT’s time difference under asymmetric time delay attack with
time errors. (a) pno = 0.8, p0.83 ns = 0.2 with direct correction strategy.
(b) pno = 0.8, p0.296 ns = 0.2 with direct correction strategy. (c) pno = 0.7,
p0.83 ns = 0.15, p0.296 ns = 0.15 with direct correction strategy. (d) pno = 0.8,
p0.83 ns = 0.2 with attack detection strategy. (e) pno = 0.8, p0.296 ns = 0.2 with
attack detection strategy. (f) pno = 0.7, p0.83 ns = 0.15, p0.296 ns = 0.15 with
attack detection strategy.

parameter. Without loss of generality, three kinds of ran-
dom interval attacks are studied. The first kind is a 0.83-ns
delay random interval attack with probabilities pno = 0.8,
p0.83 ns = 0.2. The second kind is a 0.296-ns delay random
interval attack with probabilities pno = 0.8, p0.296 ns = 0.2.
The third kind is mixed 0.83- and 0.296-ns delay random
interval attack with probabilities pno = 0.7, p0.83 ns = 0.15,
P0.296 ns = 0.15.

As shown in Figs. 12 and 13, the attack detection strategy
can detect and mitigate the random interval attacks. As shown
in Table VI, TDEVs and MTIEs at average times of 1, 10, and
100 s are compared. By comparing cases of attack detection
strategy without attack, with 0.83-ns attack, with 0.296-ns
attack, and mixed attack, it shows that the attack detection
algorithm proposed in this article can distinguish the attack
events and the normal events. The differences between TDEVs
and MTIE are caused by the difference in the noises. The
smallest TDEVs at average times of 1, 10, and 100 s are 24.5,
3.98, and 2.95 ps, and the smallest MTIEs at average times
of 1, 10, and 100 s are 122.1, 136.7, and 151.4 ps, under
subnanosecond random interval attacks. By comparing cases
of attack detection strategy with cases of direct correction
strategy, it shows that, different from the equal interval attack,
the TDEVs of the direct correction strategy does not approach
the TDEV value without attack when τ = 100 since the
interval of the attack event is random.

Fig. 13. TWFTT’s TDEV and MTIE under asymmetric time delay attack.
(a) TDEV under pno = 0.8, p0.83 ns = 0.2. (b) TDEV under pno = 0.8,
p0.296 ns = 0.2. (c) TDEV under pno = 0.7, p0.83 ns = 0.15, p0.296 ns = 0.15.
(d) MTIE under pno = 0.8, p0.83 ns = 0.2. (e) MTIE under pno = 0.8,
p0.296 ns = 0.2. (f) MTIE under pno = 0.7, p0.83 ns = 0.15, p0.296 ns = 0.15
(red solid line: direct correction strategy without attack; blue dashed line:
attack detection strategy with attack; black dotted line: direct correction
strategy with attack).

V. DISCUSSION AND CONCLUSION

In this article, we propose a model-based method to protect
the TWFTT system from subnanosecond asymmetric delay
attacks. The theoretical simulation shows that the method is
effective to protect the TWFTT system. Then, the method is
tested under two kinds of attacks, equal interval attack and
random interval attack for an experimental TWFTT system.
The results show that the effect of the attack is eliminated by
the method for the real TWFTT system. In order to measure
the performance, TDEV and MTIE are calculated. With this
method, an experimental TWFTT system of time stability
with 26.4, 6.82, and 3.58 ps under subnanosecond equal
interval asymmetric time delay attacks and with 24.5, 3.98,
and 2.95 ps under subnanosecond random interval asymmetric
time delay attacks at average times of 1, 10, and 100 s is
shown. The proposed method can detect the attack in real time,
and its computation complexity is low. So, this method can
easily be integrated in the TWFTT system to provide secure
sub-ns precise time synchronization under asymmetric delay
attack.

Many interesting problems still remain. On the one hand,
for longer transmission distances, such as 100-km fiber link,
erbium-doped optical fiber amplifiers are integrated with the
link as a repeater, which distorts the waveform. Part of
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the distortion is fixed, and the other part is random. So,
optimization of the delay attack detection method for longer
transmission is an interesting problem. On the other hand, the
network of TWFTT has attracted much attention in recent
years. For the network, a node may be an intersection of
multiple TWFTT paths. Except for the information from the
suspected path, additional information can be provided from
other paths for attack detection. So, the systematic delay attack
detection method in networks is an interesting open question.
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