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Abstract— Inertial motion analysis is having a growing interest
during the last decades due to its advantages over classical
optical systems. The technological solution based on inertial
measurement units allows the measurement of movements in
daily living environments, such as in everyday life, which is
key for a realistic assessment and understanding of movements.
This is why research in this field is still developing and different
approaches are proposed. This presents a systematic review of
the different proposals for inertial motion analysis found in the
literature. The search strategy has been carried out on eight
different platforms, including journal articles and conference
proceedings, which are written in English and published until
August 2022. The results are analyzed in terms of the publishers,
the sensors used, the applications, the monitored units, the
algorithms of use, the participants of the studies, and the
validation systems employed. In addition, we delve deeply into
the machine learning techniques proposed in recent years and
in the approaches to reduce the estimation error. In this way,
we show an overview of the research carried out in this field,
going into more detail in recent years, and providing some
research directions for future work.

Index Terms— Human motion, inertial measurement units
(IMUs), inertial sensors, kinematic analysis, motion analysis.

I. INTRODUCTION

UMAN motion analysis is an essential support tool for
the assessment of the parameters of movements, which
is especially important in the evaluation of workout routines,
clinical rehabilitation, and preventive treatments [1]. It is also
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becoming very popular for physical activity monitoring in the
elderly. Indeed, as the population of developed countries ages,
the demand for home-based rehabilitation and the need to
obtain quantitative exercise data remotely will increase [2].

Optical methods are considered the gold standard in the
motion analysis field because of their accurate measurements
of kinematic and spatiotemporal parameters [3]. However,
these systems entail several disadvantages, such as the high
cost of equipment, the need for trained personnel to use the
equipment, the required large spaces for installation, and their
restricted margin of maneuverability, which limits their use in
controlled indoor environments.

The inertial motion analysis has emerged as a promising
alternative to optical methods attracting great scientific
interest. Inertial systems are portable and can be used
everywhere, which means an advantage to the optical systems,
which are commonly constraint to a limited space. That
makes the inertial measurement units (IMUs) an affordable
and friendly use alternative for the estimation of human
kinematics. These devices allow continuous monitoring of
human motions in daily environments, which is crucial in
order to obtain more reliable information than the obtained
in sporadic laboratory tests. For these reasons, the use of
IMUs has increased in the last few decades for continuous
monitoring of human motions, as reported in [4].

Previous works extensively review the use of portable
sensors. A recent review analyzes the integration of portable
sensors in clothes to obtain physiological and motion
information [5]. However, inertial sensors are not considered
in the analysis, in spite of their frequent use in this field.
Reviews that take into account the use of inertial sensors are
focused on applications, such as sign languages or motion
analysis [3], [6]. Works about the inertial motion analysis,
as in [3], address the motion monitoring and kinematic feature
extraction, but only considering the specific area of sport-
related exercises evaluation and their analysis is up to April
2017. A lower limb-focused study is carried out in [7], but
it does not provide a complete overview of the literature on
inertial motion analysis. To the best of our knowledge, the
last in-depth and generic systematic review on inertial sensors
for human motion analysis is reported in [4], published in
2016. Since the number of publications about human motion
analysis increases over time, as shown in Fig. 1, we consider
that there is a need to update the literature review on this topic.
According to Fig. 1, the number of existing publications on
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Fig. 1. Number of publications focused on the inertial motion analysis,
referred to obtaining kinematic parameters by using portable inertial sensors,
found in the literature.

2020

the inertial motion analysis field has considerably increased
since the previous review was published [4].

Furthermore, during the last years, machine learning (ML)
methods have arisen, and they have been applied to inertial
motion analysis. Consequently, it is required an update to
provide an overview of the algorithms analyzed in [4], such
as the Kalman filters (KFs), complementary filters (CFs),
integration, and vector observation, but in combination with
the novel ML-based approaches.

For these reasons, the main aim of this work is to review
the current state of inertial sensors for human monitoring,
especially considering the occurrence and evolution of ML
methods for this research field. Another objective of this
work is to analyze the current trends and provide insights
into inertial motion analysis. To do so, we review the
published works on human motion analysis using IMUs and
analyze the selected ones in terms of: 1) publisher and
years; 2) sensors used; 3) type of estimations referred to
the dimensions of the estimated magnitudes; 4) the aimed
applications of the proposals; 5) the monitored motion units;
6) the algorithmic approaches, with an in-depth analysis
of sensor fusion filters, data science algorithms, and the
approaches for error reduction; 7) the study participants; and
8) the validation systems (VSs) and metrics. Finally, on the
basis of the findings, we suggest future research directions.

The rest of this document is structured as follows. Section II
describes the search strategy and the eligibility criteria applied
in this work; Section III details and analyzes the findings
according to the terms explained earlier. Section IV discusses
the general trends of the studied works and analyzes the
future directions. Finally, Section V summarizes the main
contributions of this work.

II. MATERIALS AND METHODS

In this section, we describe the workflow to search and
select the works in the state of the art included in this review.
We describe this article’s screening process and analyze the
common publishers of this field. Finally, we detail the data
extracted from them for further analysis.

A. Eligibility Criteria
This review focuses on peer-reviewed articles, book

chapters, and conference papers. Papers are required to be
published in English and describe the methodology employed
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TABLE 1
DATABASES CONSULTED IN THE LITERATURE SEARCH
Database Source # papers
ACM Digital Library dl.acm.org 17
IEEE Xplore ieeexplore.ieee.org 145
PubMed www.ncbi.nlm.nih.gov/pubmed 188
ScienceDirect www.sciencedirect.com 115
Scopus Www.scopus.com/ 1434
Taylor & Francis Online ~ www.tandfonline.com 2
Web of Science webofknowledge.com 326
Wiley Online Library onlinelibrary.wiley.com 21

to obtain human kinematic parameters using only IMUs.
Sensor fusion with other devices is not considered. This review
only includes those papers that validate their results using a
reference system. If a journal article is an extended version of
a conference one, only the journal article is included.

B. Literature Search Strategy

Considering the eligibility criteria, we select eight databases
(ACM Digital Library, IEEE Xplore, PubMed, Science Direct,
Scopus, Taylor & Francis Online, Web of Science, and Wiley
Online Library) for the search of related papers (see Table I).
Following the strategy of the previous review [4] about this
topic, we use the same search command, which consists of:

(“human motion” OR “human movement”) AND (“wearable
sensors” OR “inertial sensors” OR “wearable system”)

considering their presence in the title, abstract, or keywords.
The search includes journals, book chapters, or conference
proceedings. This article abstract is required to be available
during this search. No restriction was imposed on the date of
publication.

The initial search on the databases in Table I leads to a
review of 2 248 papers. The papers found in this search do not
include important references from the state of the art, such
as [8] or [9], so we expand the search. The new search is
only performed on the Scopus website since it is the largest
database of all those evaluated (see Table I). In this case,
we use the following command, which is less restrictive than
the previous one:

[(“human motion” OR “human movement” OR “joint
kinematics” OR “body tracking” OR kinematic* OR “joint
angle*” OR “joint angle velocity” OR “joint angle
acceleration”) AND (IMU OR “inertial sensors” OR
“inertial measurement unit” OR accelerometer OR
gyroscope OR magnetometer)].

The search criteria are to find these key phrases in the title,
abstract, or keywords of articles. This second search adds
1882 documents, so we finally obtain 4130 papers to review.

Starting from the results of this search, we carry out a
Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) screening process [10] to determine the
documents included in this study. Fig. 2 depicts the processes
of identification and screening to determine the works included
in this review.

After excluding duplicated citations, the number of
documents to screen is reduced to 3775 papers. The results of
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Fig. 2. PRISMA search strategy flowchart.

this search include works in the field of human motion analysis
with IMUs. However, this IMU-based motion analysis covers
a wide range of topics, such as the estimation of kinematic
and spatiotemporal parameters or the motion-based evaluation
of health, as depicted in Fig. 3.

The topics of kinematic and spatiotemporal parameters refer
to the analysis of different motion magnitudes, such as joint
angles, trajectory, or speed, whereas human body calibration
includes the location of joints or the estimation of segment
lengths. The last two topics, human monitoring and motion-
based evaluation, are focused on qualitative analysis, such
as recognizing types of motions or activities and identifying
behavior patterns. Our study is focused on wearable inertial
sensors and kinematic parameters as joint rotation angles,
so we discard by abstract reading those works that are focused
on any other topic. In this way, we exclude 3262 papers for
not being related to the topic of this review.

We found 513 potentially relevant studies of this topic for
quality assessment. To consider a study in this review, we set
the inclusion criteria detailed in Fig. 2, which are referred
to the proposed or applied algorithm, its validation, and the
sensor system used. Finally, 147 studies meet the inclusion
criteria and are analyzed in this review.

C. Publisher and Years

Most reviewed works are journal articles (72.1%) [see
Fig. 4 (top)]. These works are published in 42 journals.
56.7% of them appear in sevenjournals (each of them with
at least four papers), as shown in Fig. 4 (bottom). The
journals that appear with the highest frequency in this search
are Sensors, IEEE SENSORS JOURNAL (IEEE SJ), IEEE
TRANSACTIONS ON BIOMEDICAL ENGINEERING (IEEE
TBE), Journal of Biomechanics (JBiomech), Gait & Posture
(G&P), IEEE TRANSACTIONS ON INSTRUMENTATION AND
MEASUREMENT (IEEE TIM), and IEEE JOURNAL OF
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BIOMEDICAL AND HEALTH INFORMATICS (IEEE JBHI). The
remaining 43.3% of works are distributed in 35 journals.

There is a clear increasing interest in the research field
of inertial motion capture (see Fig. 1). This review is not
restricted to any date in order to analyze all the works related
to this topic and provide a general overview and its evolution.
Fig. 1 shows the number of papers published during the five-
year periods from 1991 to August 2022. Only twoworks are
dated on the first studied decade, 21 works on the second
one, and 98 works on the third one. There are also 27 works
published in the period 2021-2022, the last years studied in
this review.

Since 2016, the last year studied in [4], the number of
publications has highly (see Fig. 5). These figures support the
need for an update of a systematic review on the research topic
of human motion analysis by using IMUs.

D. Data Extraction, Analysis, and Examination

We categorize the selected papers in terms of a set of
relevant details. We classify them into two groups in order
to ease the study and its reading. First, we evaluate the details
related to the implemented algorithms, the sensors in use, and
the estimations. Second, we study the specific anatomic part
of the human body studied in each work, the VS and metrics
used, and the information related to the validation subjects.

Regarding the first set of details, we analyze the following
parameters: the fusion algorithm (FA) implemented for the
motion analysis, which indicates with “SF” if the work
uses sensor fusion approaches, “ML” the application of
ML techniques, and “OA” any other proposal; the use of
biomechanical constraints (BCs) and their related requirements
of anatomical information (ANT) as the segment lengths
or the joint location with respect to the IMU sensors; the
implementation of other corrections (OCs); the type of sensor
used to measure the motions (GS: gyroscope sensor, AS:
accelerometer sensor, and MS: magnetometer sensor) and the
use of external sensors to train ML-based algorithms, but not
in the motion prediction (OS); the type of estimation (EST),
considering the possible planar (2-D) or 3-D estimations; and
the measured magnitude (ANG: angle or DIS: displacement
referred to the change in the position of the corresponding
point, i.e., the sensor or the monitoring joint) and the
monitored motion unit (JNT: joint or SGM: segment). These
details are shown in Table III in Appendix A for the selected
papers.

With respect to the human body part, we study the
lower group (LG) or upper group (UG) of segments and
joints. We also report the VS used as ground truth in the
studied works and the metrics (RMSE: root mean square
error; nRMSE: normalized RMSE; %RMSE: percentage of
RMSE; MAE: mean absolute error; AE: average error; CFC:
correlation coefficient; LAMs: limits of agreement; MV:
maximum variation; accuracy; and error rate), labeled as M1
and M2 in Table IV in Appendix A, employed in the proposed
methods. Finally, we provide the number of subjects (NS)
studied if this population considered presents a motor-related
disease (DSS). Table IV in Appendix A includes the details
of these parameters explained earlier in the selected papers.
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III. REVIEW FINDINGS

Based on the categorization of the papers with respect to
their relevant characteristics, as presented in Tables III and IV
in Appendix A, in this section, we describe the main findings.

A. Sensors

IMUs contain triaxial gyroscopes, accelerometers, and,
commonly, magnetometers. The information from these
sensors is used separately through the observation of vectors,
as gravity in the accelerometer data or the magnetic field
in magnetometers, or by integration of the gyroscope data.
Another approach is to gather their measurements in different
combinations of two or three sensors with different algorithms,
such as sensor fusion filters or ML methods. In order to

60
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Fig. 5. Year of publication of the reviewed papers. Top: trend from the
first motion analysis-related work until nowadays. Bottom: distribution of
publications in the last five-year period.

Fig. 6.  Sensor type and combination used in the analyzed works (AS:
accelerometer sensor; GS: gyroscope sensor; and MS: magnetometer sensor).

illustrate the proportion of their utilization, separately or
fused, Fig. 6 shows the percentage of use of each sensor or
combination.

The integration of the turn rate alone entails inherent errors.
In the estimations of kinematic parameters, the turn rate
integration results in an accumulated error from the gyroscope
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bias. For that reason, only 4.8% of studies use this sensor
alone [11], [12], [13], [14], [15], [16], [17].

Accelerometers are more frequently used separately (8.8%).
Their measurement of specific force allows us to obtain a
direct observation of the gravity vector, used as orientation
reference [18], [19], [20], [21], [22], [23], [24], [25], [26],
[271, [28], [29], [30]. However, the direct observation of the
gravity vector is only possible when accelerometers are static,
as in gait strides during the stance phase.

Magnetometers are the most limited sensor analyzed
because of their sensitivity to magnetic disturbances in the
environment. As a consequence, only 1.4% of studies use this
sensor independently [31], [32].

Sensor fusion techniques are useful methods to overcome
the individual limitations of each of them separately. Most
of studies that fuse data from various sensors combine
gyroscopes and accelerometers [8], [33], [34], [35], [36],
(371, [38], [39], [40], [41], [42], [43], [44], [45]. [46],
[47], [48], [49], [501, [51], [52], [53], [54], [55], [56], [571,
[58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68],
(691, [70], [71], [72], [73], [74], [75], [76], [77], [78], [79],
[801, [811], [82], [83], [84], [85], [86], [87], [88], [89], [90],
[O1], [92], [93], [94], [95], [96], [97], [98], [99], [100],
[101], [102], [103], [104], [105], [106], [107], [108], [109],
[110], [111], [112], [113], [114], [115] or both sensors with
magnetometers [116], [117], [118], [119], [120], [121], [122],
[123], [124], [125], [126], [127], [128], [129], [130], [131],
[132], [133], [134], [135], [136], [137], [138], [139], [140],
[141], [142], [143], [144], [145], [146], [147], [148], [149],
[150], [151], [152]. Few studies join the accelerometer and
magnetometer data [153], [154], and only one uses the
gyroscope and magnetometer data [155].

The 3-D position of devices can be inferred from the
IMU sensor information. The combination of the three
sensors, gyroscope, magnetometer, and accelerometer includes
information on the angular rate of motion and the references
of the vector gravity and Earth’s magnetic field references.
However, these 3-D positions can also be estimated by sensor
fusion techniques using different combinations of the three
sensors in IMUs. Most studies give 3-D estimations (71.4%),
as shown in Fig. 7. Conversely, only 1.4% of works use
accelerometers and magnetometers, and 25.2% of works use
both sensors complemented with gyroscopes (see Fig. 6). This
fact is noticeable because the combination of the first two
sensors is required to obtain the references to overcome the
gyroscope drift and get accurate 3-D estimations. It implies
that the majority of algorithms that offer 3-D space predictions
propose methods for error reduction, which do not rely on
vector references. In this way, the magnetic disturbances that
cause errors in the magnetic field measurements are avoided.

The 2-D estimations include kinematic parameters in any
plane perpendicular to the floor and the two angles with respect
to the horizontal plane, in the frontal and sagittal planes.
No doubt that the 3-D estimations are more complete since
they provide information about the whole motion, even if it is
mostly performed in one plane. That is the reason why only
27.9% of studies focus on obtaining estimations in the 2-D
space.

4006439

Fig. 7. Type of estimations in terms of their dimensionality, divided between
2-D and 3-D estimations.

Only one study adapts the estimation to 3-D or 2-D spaces
according to the motions [41]. In this proposal, the method
gives 2-D estimations based on the accelerometer data when
the motion is mostly performed in one plane. If deviations
from this plane are detected, the method integrates the
gyroscope data in order to provide 3-D estimations.

B. Application

Healthcare applications are the most common ones (95.2%)
in the inertial motion analysis field (see Fig. 8). These
applications include motion capture or analysis, gait and
clinical assessment, or rehabilitation. The aim of 33.5% of
studies is to motion capture to obtain information about human
kinematics for motion analysis or find possible diseases. Gait
is the second most common application (19.1%) due to its
relationship with cognitive impairments. The prevalence of use
for the specific clinical assessment is similar, being the aim of
the 14.5% of works. Rehabilitation and sports are also worth
mentioning because they are very motivating in research works
(19.6% of studies).

C. Monitored Motion Unit

We analyze the anatomical unit measured in the reviewed
works. In this work, the anatomical units are called
monitored motion units following the nomenclature of
previous studies [4]. We divide these monitored motion units
into two groups: segments and joints. Segments usually
correspond to elements of the skeletal system, such as thighs
(femur), and are modeled as rigid-solid bodies. Joints are the
unions between segments. The objective of 64.6% of studies is
to measure the motion of joints, whereas 27.2% of proposals
focus on tracking segments, and the remaining 8.2% combine
the monitoring of both monitored motions, segments, and
joints, as shown in Fig. 9 (top).

Studies focus more frequently on the lower half (61.2%) of
the body than on than upper half (34.7%). Compared to the
outcomes in the review of Lopez-Nava et al. [4], this trend
is in the most recent works different than in the previous
ones. We found that recent research, dated the last three years,
extends motion analysis to full-body monitoring, which is an
important difference from the findings of previous studies [4].
We consider full body if both upper and lower halves are
monitored, which is made in the 4.1% of studies. Fig. 10 (left)
depicts the percentage of works that monitor each body half
or the full body.
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Fig. 9.  Monitored motion units and the obtained measurement. Top:
percentage of studies that measure each motion unit or their combination.
Bottom: type of measurement, orientation, and location.

We study the groups of segments or joints included in each
body half for a deeper analysis. We define the groups as sets of
monitoring units. We consider that studies focus on one of the
groups if they estimate the orientation or location of one of the
included monitored units. For example, one study that tracks
the motion of wrists is included in the hand group since we
establish that the hand group includes the wrist among other
motion units.

With respect to the upper half of the body, we divide
it into the hand (hand, wrist, and fingers), arm segments
(arm and forearm), arm joints (shoulder, elbow, and forearm
twist), trunk (back, trunk, and torso), and head and upper
back (head/neck/scapula). The upper half groups (51 works)
are named follows: arm segments (U1), trunk (U2), arm joints
and hand (U3), head and upper back, trunk, arm segments and
arm joints (U4), arm joints (US), head and upper back (U6),
arm segments and joints (U7), trunk, arm joints and hand (US),
head and upper arm, trunk and arm (U9), head and upper arm
and arm joints (U10), head and upper back and trunk (Ul1),
head and upper back and arm segments (U12), and head and

upper back alone (U13). Fig. 10 (right) shows the presence of
the combination of these groups in the studied works.

The arm joints group, U5, is the one on which most
works are focused (12/51 studies), followed by the trunk
(9/51 studies), U2. The next three frequent groups are the
arm segments (7/51 studies), U1, the combination of arm and
hand joints (7/51 studies), U3, and the head and upper back
(6/51 studies), U6. The rest of the groups are only monitored
in 1/51 or 2/51 studies according to the case. In this way,
research works commonly focus on the study of the arms more
than the other upper half body structures.

With regard to the lower half, we divide it into the pelvis,
leg segments (thigh and shin), leg joints (hip/knee/ankle), and
feet. The names of the groups of their combinations are the
following: leg segments and feet (L1), leg joints (L2), leg
segments (L3), leg joints and feet (L4), feet (L5), pelvis, leg
segments and leg joints (L6), leg segments and joints (L7),
pelvis and leg joints (L8), and pelvis (L9). Fig. 10 (right)
shows the number of works focused on each of these groups
(the total number of works is 90).

In the lower half body, it is noticeable that most of
the works focus on the leg joints, L2, which is the object
of monitoring most works (63/90 studies). These joints are
commonly studied in multiple applications, being the most
important the gait analysis because of their relevance in health
assessment. It is worth mentioning the contrast of the number
of studies about the L2 group in comparison with the L4 group,
which combines the leg joints with the feet, meaning that the
motion of foot joints is commonly discarded in the studies
focused on the lower limb joints. Besides the leg joints, the
following most studied groups that are also focused on legs are
leg segments, L3 (8/90studies), leg segments and joints, L7
(7/90 studies), and leg segments and feet, L1 (5/90 studies).
The rest of the groups, which include leg joints and feet (L4),
feet (LS), pelvis, leg segments and leg joints (L6), and pelvis
(L9), are studied in few works (2/90 studies).

The monitored units in these groups are measured regarding
their orientation or location. Orientation refers to the rotation
angles, which are commonly presented as Euler angles
or quaternions. Locations refer to the spatial coordinates,
so they are a measurement of distance. Most studies estimate
the orientation of monitored units (81.6%), 15.6% give a
combination of orientation and location of units, and only
2.7% are focused only on providing locations. Fig. 9 shows
the distribution of the measured magnitudes.
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of segments and/or joints monitored.

D. Adopted Algorithms

The algorithms used in the estimation of the kinematic
parameters can be separated into five different groups: integra-
tion, vector observation, sensor fusion filters, ML techniques,
and other methods.

1) Sensor Fusion Filters: Sensor fusion filters (SF in
Table IIT in Appendix A), including KFs, particle filters (PFs),
and CFs, are the algorithms most frequently used. Specifically,
KFs are still the algorithms that are employed the most in
the inertial human motion analysis field, following the trend
reported in previous studies [4].

The problem formulation of Bayesian filters consists of the
identification of the desirable estimations using a series of
measurements observed over time containing statistical noise
and different inaccuracies [156]. The inputs and observations
form the knowledge of the system’s behavior both convey
errors and uncertainties, namely, the measurement noise and
the system errors. These filters fuse the information of
sensors with the knowledge of the system in two stages: the
estimation stage and the update stage. The initial stage uses
the information of the previous time instant to estimate the
current state of the state vector. The second stage updates these
estimations using the measurements from the sensors.

The motion analysis includes proposals with extended
KF (EKF), KF, and unscented KF (UKF) in descending
order of frequency of use. KF is a sensor fusion technique
that estimates the states of a linear system through the
minimization of the variance of the estimation error [156]. KFs
use a series of measurements observed over time and their
statistical noise to produce estimates of unknown variables.
EKFs appeared because KFs are limited to linear systems,
being their generalization to nonlinear systems. EKFs assume
that the nonlinearities in the dynamic and the observation
model are smooth, so they expand the state and observation
functions in the Taylor series and approximate, in this way, the
next estimate of the state vector. However, this approximation
can introduce large errors in the true posterior mean and
covariance of the variables, which may lead to the divergence
of the filter. One of the possible solutions is the use of UKFs,
whose distribution of their state vector is a set of sample
points called sigma points. Sigma points capture the actual

mean and covariance of the Gaussian random variables and are
obtained though the unscented transformation (UT). The UT
is a method for calculating the statistics of a random variable
that suffers a nonlinear transformation. UKFs are an extension
of UTs to the recursive estimation where the UT is applied to
the augmented state vector.

EKFs are the KF variation that most frequently appears
in motion analysis. EKFs are used for the sensor fusion
of gyroscopes and accelerometers in order to estimate the
joint orientation [8], [38], [66], [70], [72], [92], [96], joint
orientation and location [55], [76], [79], [88], [108], and
segment orientation [77], [78]. Researchers also use EKFs
to fuse gyroscope and accelerometer data with magnetometer
measurements to estimate the orientation of joints [138], [142]
or segments [117], [118], [135], [140], [145]. EKFs are
also combined with the Gauss—Newton algorithm to fuse the
information of gyroscopes and accelerometers, and estimate
the orientation of joints [64].

Classical KFs are normally used for the sensor fusion of
gyroscope and accelerometer data to estimate the segment
orientation [33], [40], [43], [50], [52], [57], [97], [139], the
joint orientation [44], [82], [85], [95], [98], the segment
location [74], and all of them, the segment and joint orientation
and location [42]. KFs have also been used in the fusion of
gyroscope, accelerometer, and magnetometer data to estimate
segment orientation and location [136], [152].

UKFs appear less frequently in the literature. UKFs
are commonly used for the sensor fusion of gyroscopes,
accelerometers, and magnetometers to estimate the joint
location [137], or orientation [130], [149], the orientation of
joints and segments [131], and the orientation and location of
both elements, joints and segments [121]. Some works do not
use the magnetometer information and only fuse the gyroscope
and accelerometer data to estimate joint orientation [99], [106].

PFs are another modification of KFs for their use in
nonlinear systems [156]. PFs are close in functioning to
UKFs but with a set of differences that approximate PFs to
a generalization of UKFs. PFs update the estimations with a
randomly generated noise according to the prior knowledge of
the process noise probability density function (pdf) instead of
the update of the UKF that is deterministic. Another difference
with UKFs is that the number of particles in PFs is not related
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to the length of the state vector. Finally, PFs estimate the pdf of
the state instead of the mean and covariance, and it converges
to the actual pdf as the number of particles increases.

PFs are less popular than any other kind of KFs. PFs
are applied to fuse the measurements from gyroscopes,
accelerometers, and magnetometers to estimate the orientation
of segments and joints [125]. PFs are combined with other
KFs, such as EKFs, for the fusion of gyroscope and
accelerometer measurements to estimate the orientation of
segments [94].

CFs combine the information from different sensors
by minimizing the mean square error instead of the error
covariance, which is minimized in KFs [157]. CFs are used
to fuse the measurements of gyroscopes, accelerometers,
and magnetometers to estimate the orientation of joints
[123], [126], [133], their orientation and location
[119], [144], and their orientation together with the segments
orientation [143]. They are also used to estimate the joint
either by combining the information of the gyroscope and the
accelerometer orientation [45], [47], [62], [65], [101], [109],
or just only with the gyroscope [11].

Another alternative to KFs is the weighted Fourier linear
combiner (WFLC) filter, which is a model-based adaptive
filter. WFLCs exploit the prior knowledge of the signal shape
and evolution over time, in those occasions when the motion
performed is given [93]. These filters are especially effective
in periodic signals but adapt to variations between repetitions.
Their applications to the human motion analysis include the
use of the turn rate measurements to estimate the segment
orientation [14] and the combination of these data from the
gyroscope with the accelerometer measurements to estimate
the orientation of joints [93].

2) Data Science Algorithms: ML techniques represent the
second group of algorithms that are applied most frequently for
the estimation of human kinematics. Furthermore, supervised
learning algorithms are the most widespread in recent years.
Supervised learning is one of the most employed learning
paradigms, which tries to discover the unknown function
f(x, w) that relates the input space X C R" (which, in this
work, are the inertial measurements), with the output space
Y C R (which describes the motion kinematics). Each pair
(x;, y;) is composed of the value of a set of n predictive
variables x;, = (xy,...,x,); € R" of the input space,
which is measured by the IMUs, and its corresponding
output value y; € R, which are the target value of joint or
segment orientation and location. During the process called
training, supervised algorithms retrieve the map f € F
from the provided training dataset D, typically establishing
an optimization problem that minimizes a loss function L.
Different parametric function spaces F with different learning
methods correspond to the existent variety of supervised
methods, as described in depth in Table II.

Gaussian processes (GPs) are kernel-based probabilistic ML
models. The GP is a kind of continuous random process f(¢)
such that every finite set of random variables has a multivariate
Gaussian distribution [158]. The GP method estimates the
output y by introducing a set of latent variables {f(#%)};_,
from a GP and explicit link functions, g(-). GP latent variable
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(GPLV) models are used with the gyroscope and accelerometer
data to estimate the segment positions [58].

Other classical ML methods are decision trees (DTs)
and support vector machines (SVMs). A DT is a classical
ML method that builds a tree, a particular graph without
cycles, by branching decision paths for each considered input
variable to make the final classification [159]. During the
training process, databases are used to compute thresholds (the
parameters in DTs) that better branch the input variable for
optimizing a criterion, usually the best gain of information
possible in the current node (optimizing the entropy), for a
better prediction of the output variable.

SVM is one of the most used ML methods for
classification [160], [161]. It establishes an optimization
problem to find the so-called support vectors, those training
data that are close to the separation hyperplane, and maximize
the soft margin. Frequently, this method uses the kernel
trick that consists of choosing an appropriate nonlinear
mapping ¢ that maps input samples into a higher dimensional
space where they are likely to be linearly separable.
In regression problems, the support vectors are used to
provide a continuous value through a link function instead of
classes.

However, these classical ML methods are less promising
than artificial neural networks (ANNs) in the human motion
analysis field, as proved in [109] for the correction of the
joint angles initially obtained from sensor fusion filters.
ANNs consist of a set of connected base units known as
artificial neurons that emulate the biological neurons of animal
brains [162]. ANNs are usually organized in layers, which
interconnect themselves to create a huge variety of networks
that try to represent the functional relation between the input
and output variables. ANNs have revolutionized the ML
field due to their ability to model very complex nonlinear
input—output relations and their capacity to learn them from
a huge amount of data. The single-multilayer perceptrons
(MLPs) were the first ANNSs.

In the inertial motion capture field, ANNs use the
accelerometer data as inputs to estimate the segments’
orientation and location [27], combine the gyroscope and
accelerometer data to estimate joint orientations [68], [71],
[84], [91], or fuse the information of the three sensors
integrated into IMUs to estimate the segment angles [147].
Other specific types of ANNs merge the estimation of joint
angles with gyroscopes and accelerometers, such as the general
regression NNs [49], [90] or the Elman neural networks [115].

Deep neural networks (DNNs) arise later than ANNs and
encompass a huge amount of modern network architectures
with a high number of interconnected layers [163]. The current
technology allows massive computation during the training
process and, hence, a new variety of interconnections and
predictions in real time. DNNs start with the convolutional
neural networks (CNNs), a large sequence of convolutional
layers configured in a cascade where each layer computes
the convolution operation (see [164]) from the previous
one. They are able to extract intrinsic local features, called
deep features, which surpass the results of the classical ML
methods. VGG [165] and residual networks (RESNETS) [166]
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are famous CNNs included in this category. Most of the
DNNs including CNNs are feedforward networks, which
means that the information flows forward, and they do
not include cycles. However, DNNs also include recurrent
networks, which memorize internal states, frequently exploited
for temporal sequences, such as the improved recurrent neural
network (RNN) [167], which evolved to the novel long
short-term memory (LSTM) [168], the gate recurrent unit
(GRU) [169], and the nonlinear autoregressive neural network
with exogenous inputs (NARX) [170].

Among the deep learning algorithms, LSTMs are the most
utilized. LSTMs are made by a sequence of cells capable
to keep previous states and specifically keep two kinds of
temporal information and the LSTM. They have replaced
the RNNs that suffer from the vanishing gradient problem
during the training and include forget gates to quickly adapt
to the new changes of data. These DNNs can use just the
information of accelerometers and the orientation of a set
of body segments to estimate the whole-body posture [29]
or fuse the information of specific force with the turn rate
to estimate the joint angles [53], [69], [86], [103]. A less
common approach includes the fusion of gyroscopes and
magnetometers to estimate the joint angles [155]. LSTMs can
also be used to estimate the orientation of the whole-body
joints using the orientation obtained with sparse commercial
sensors [148]. In [69], LSTMs are combined with CNN to
estimate the joint angles. CNNs are also used to obtain
the joint angles only using the accelerometer data [21] or
fusing the gyroscope and accelerometer data [56], [111], [114].
Mundt et al. [34] made a comparison of these previous
methods, CNNs and LSTMs, together with MLPs for the
estimation of joint orientation. Using the information from
gyroscopes and accelerometers, CNNs provided the most
favorable metrics. Other RNNs are also used to estimate joint
orientation. To estimate the joint angles from gyroscopes and
accelerometers, Tham et al. [54] propose an NARX; Conte
Alcaraz et al. [134] also include the magnetometer data with
NARX and LSTMs.

The ML-based algorithms that are used for human motion
analysis are supervised methods. These methods need training
data, which must include reference data of the parameter to
estimate, i.e., the joint or segment orientation or location.
In this review, we found 26 works that use reference data,
which can be obtained from a stereophotogrammetric system
(17/26) [21], [27], [341, [49], [53], [54], [56], [58], [68], [69],
[86], [90], [91], [103], [111], [114], [115], electrogoniometer
and encoders (2/26) [71], [84], or inertial sensors (7/26) [29],
[100], [109], [134], [147], [148], [155]. Fig. 11 shows the
percentage of use of the different external sensors for obtaining
reference data.

The use of optical systems also allows data generation in
order to have data for the training and testing of the algorithms
and to increase the available data to train the models. These
tasks can be performed with simulation software, e.g., Open-
Sim [171], as in [86], [103], and [148], by applying kinematic
relationships from the stereophotogrammetric measurements,
as in [19], [53], [56], [68], [69], [91], and [103], or with data
augmentation techniques [68].
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Fig. 11. External sensors used to obtain the reference measurements for the
training and testing stages of the ML algorithms.

3) Other Algorithms: Over the years of research on motion
analysis with inertial sensors, proposals have been based on
various algorithms other than sensory fusion filters and data
science methods. These proposals cover the integration of the
gyroscope data to estimate the joint orientation [12], [15],
[16], [17], [41] to its combination with the direct use of
the data from accelerometers to estimate the orientation of
joints [80], [104], [105] and segments [59], [60], [63], [81],
and to estimate the orientation and location of segments [110],
[112]. The measurements from gyroscopes and accelerometers
are also used directly to obtain the orientation and location of
joints [35] and segments [46], and to estimate the orientation
of both joints and segments [48], [51], [113]. The information
of the three sensors in the IMU is also directly used for the
estimation of the segments orientation [141].

Different works exploit the observation of the gravity vector
by the accelerometer for the estimation of the orientation of
joints [18], [22], [24], [30], [61], segments [28], or both [20].
Other works also use the data of the magnetometer to
estimate the joint orientation and location [31] or combine
this information with the measurements of accelerometers
to obtain the joint orientation [153]. The gravity vector can
also be observed by eliminating the linear acceleration of
the motions, which can be estimated from the turn rate
measurements [73].

Besides the gyroscope integration and the direct observation
of vectors, the measurements from IMU sensors can be
combined through the use of virtual sensors. The use of
virtual sensors consists of the estimation of the measurements
that a sensor would obtain if it was located in the joint.
This measurement projection is commonly performed because
it is not possible to place the sensors in the joints. This
is commonly used to simulate the measurements in joints,
whereas the IMUs are placed in segments. This approach is
used to combine the gyroscope and accelerometer measure-
ments to estimate only the joint orientation [37], [46], [83]
or both the joint orientation and location [89]. Another
application of virtual sensors is to combine the turn rate,
specific force, and magnetic field to obtain these magnitudes
in joints to estimate their orientation [129], [132], [150], [151]
and also not considering the measurements from gyroscope for
the joint orientation estimation [154].

Another common method used is the gradient descent.
Gradient descent is applied to obtain the joint orientation by
using the measurements from gyroscopes [13] and combined
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TABLE I

OUTCOMES OF THE ANALYSIS OF INPUTS USED IN THE ML ALGORITHMS, ALGORITHMS APPLIED IN EACH WORK, AND OUTPUTS AIMED AS TARGETS
WITH THE CAPTURE SYSTEM EMPLOYED. SF: SPECIFIC FORCE; TR: TURN RATE; OR: ORIENTATION; CAP.: CAPTURE; SNN: SHALLOW NEURAL

NETWORK; DNN: DEEP NEURAL NETWORK; AND VS.: VERSUS

Inputs . . . . Outputs
Work SF T TR | OR Specifications of inputs Algorithm Magnitudes Cap. system
o v v | | Timeinstant | GRNN _ | Joint angle | Optical
49 v v Time instant GRNN Joint angl Optical
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84 | v | v | [ Tmeinstame ______________ |- ANN ) Jointangle | Other
B8 L v oL v | [ SpaseIMUs | GPLVM_ | Whole-body posture | Optical _
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YL LY | ssamples 0.555) windows | SNN & DN _| Whole-body poswre | "l
NN (vs.)
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DT
77777 7 " 7" " 7| Simulated inertialdata ~ ~ ~ "~~~ |~~~ T T T T T T
[53] v v Different IMU combination + PCA LSTM Joint angle Optical
From 100 to 1000 time-steps
I VI R R A e T O I o
CBUL YL L | sparse IMUs for leg kinematies | ORI B Jomtangle ] opteal
. . . Joint angle
(56] v v Expe_rlmental and simulated c_iata combined CNN Joint moment Optical
100 time-steps for each walking cycle GRF
77777 - r-- 171 -"""""""~"""“""~“"“""“""“"“""“"""”" """/ "/ " "\ """ " " "|oitangle ~ |~~~ 7~
[27] v v Time instant ANN Joint moment Optical
,,,,, | _____|G6RE_
Simulation of IMUs
Data augmentation Joint angle .
[68] v v 10 frames windows ANN Joint moment Optical
Full gait cycles
T |~ " 7,7 [~ 7 | Simulatedinertial data ~ ~ ~ ~ ~ ~ " " " T 7|7 T T T T T Joint angle” ~ ~ ~ | T T o
B LY L | Scgmentation into gaiteyeles | ANN Joint moment_ | Opcal
Sparse IMUs .
SV | Window of S0samples =0.50s | ™M Whole-body posture | Tnerdal
ggﬁllilrztt?gnmfz?zﬁligsrfem ID-CNN (vs.) Joint angle
[69] v v . . LSTM . ; Optical
Marker trajectories filtered . time series
: & Optimizer
,,,,, | _ L _ | __|1ls&2swindows | | ____.
. CNN Joint angle .
S LY el QO windows | LSTM _ | time series | _ opteal
Experimentally measured IMU data,
Simulated inertial data Joint angle .
[103] v v 200 time-steps LST™M time series Optical
77777 | _ _ L _ _| _ _ | Time wrapping of strides as inputs | |\ |
Sparse IMUs Joint angle
[155] v v Synthetic and experimental data LSTM time series Inertial
300 frames windows Whole-body posture
77777 |~ 7"~ 7 7 " ] Koutputs as iRNN fnputs ~ ~ ~ ~ ~ ~ ~ "~ " | T T oo oo oo T
+Joint parmeter .
[148] v Sparse IMUs LSTM Whole-body posture Inertial
,,,,, | _ _ | _ _|. _ _] 300time-steps windows _ _ _ _ _ _ _ _ _ _ _ _ | _ _ _ _ _|_________|______.
Experimental and simulated data MLP Joint angle
53 | v | v P . LSTM : & Optical
101 frames windows time series
,,,,, L L o eww
.. Joint angle
B S T T it M B Walking speed __ | _ oner
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I |~ [ 77" 7,7 | Sparse IMUs for leg kinematics | NARX ~ =~ | T T T T T T
[134] v v v Gait cycle segmentation LSTM Joint angle Inertial
I =" 7,7~ " | Sparse IMUs for knee angle ~ ~ ~ ~ ~ ~ " | .~ | T T T T T
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with the specific force measurements [39], [64], [102]. This
approach also allows the gathering of the measurements of the
three sensors to estimate the segment orientation [116].

The remaining proposals use a wide variety of methods
and approaches to monitor the measurement units. These
methods include probabilistic graphical models [122], which
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Fig. 12. Scheme of the BCs commonly implemented in the kinematic models
for the inertial motion analysis. It includes the geometrical model with a
reduced number of DOF in the knee and ankle joints, and the limitations
with respect to the ROM using the knee as an example. The lengths and the
IMU-joint vector used in the soft constraints are labeled as dg, dr, and r;
with i =0, 1, 2, respectively.

are employed with the gyroscope, accelerometer, and mag-
netometer measurements to estimate the orientation of joints,
smoothing algorithms [36], bidirectional low-pass filters [19],
least squares [75], [87], optimization techniques [25], [67],
[107], and modified iterative algorithms [23]. The latest worth
mentioning approach consists of the double-sensor difference-
based algorithm [26], which combines the measurements from
two accelerometers placed on the same segment with the
knowledge of their positions with respect to the joint.

4) Approaches for Error Reduction: This section describes
the main approaches found in the literature in order to reduce
the errors in the estimation of kinematic parameters. First,
we focus on the explanation of the proposals based on BCs,
and then, we summarize the approaches for error reduction
based on the properties of the inertial sensors and their
motions.

BC is a promising resource to improve inertial human
motion analysis. A common approach is to model the rotations
of different joints with different degrees of freedom (DOF),
which are depicted with cylinders in the geometrical model in
Fig. 12. The three rotational DOFs recorded by IMUs can be
modeled as one or two DOF joints, according to the possible
anatomical motions.

In the literature, the knee is assumed to be a hinge joint with
just one DOF (flex-extension; see Fig. 12) [8], [39], [45], [55],
[62], [71], [80], [87], [88], [96], [101], [130], [135], [136],
[151] because its internal rotation allows a negligible range of
motion (ROM). Some works also consider the knee’s internal
rotation together with its flex-extension, so the modeled joint
presents two DOFs [82]. The same approach can be used to
simplify the ankle orientation estimation, using only the knee-
flex extension rotation, so one DOF [136], or also including
the internal rotation, resulting in two DOFs [55], as depicted in
Fig. 12. Despite being less commonly used due to its actual
DOF and complexity, hips are modeled as joints with two
DOFs [101], [151].
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This DOF reduction can be also applied to upper limbs.
Elbows can be assumed to have only two DOFs, gathering the
elbow flex-extension rotation and the forearm internal—external
rotation [13], [55], [98], [99], [106], [121], [122], [143], [149],
[150] or considering only the elbow flex-extension [125]. The
wrist can be also modeled as one DOF joint [121], [122] or
allowing a second rotation with two DOFs [150].

Another approach related to the simplification of motions
to a lower amount of DOF is to model the motions as if they
occur in one or two planes. This approach reduces the 3-D
space in, at least, one dimension. Different motions, such as
gait or squats, can be approximated as 2-D in the sagittal
plane [105], [109], [134] or with the combination of the
sagittal and coronal planes [52], [97].

The separation of motions in the DOF available for the joints
allows another restriction based on the joint anatomical ROM.
This constraint is based on the correction of the estimations
that are not consistent with the anatomically possible ROM per
DOF of joints. As depicted in Fig. 12, the ROM of a joint,
in this case, the knee, includes the consistent estimations and
the estimations on the limit of the ROM. The values of angles
outside this range are wrong estimations of the algorithm, and
the objective is to detect and correct them. This approach can
be found in several proposals in the literature [59], [79], [87],
[120], [136], [143].

Another common approach for the error reduction in most of
the biomechanical models is to take into account the anatomic
parameters, such as the joints location with respect to the
sensors or the segments length [8], [17], [19], [20], [23], [24],
[25], [26], [35], [37], [38], [46], [46], [64], [73], [76], [77],
[781, [791, [83], [87], [88], [891], [91], [92], [93], [94], [95],
[96], [98], [99], [105], [106], [107], [108], [119], [129], [132],
[137], [138], [143], [150], [151], [154]. Fig. 12 shows these
parameters, labeled as r;, where i = 0,1,2, dg, and dr,
respectively. The IMU-joint vector and the segment length are
used to impose that the relationship between magnitudes has to
be consistent with the anatomy of participants and the location
of sensors on the body. These constraints can be applied by the
relationship between the velocity in the common joint between
two segments and the turn rate measured by the gyroscopes
of the corresponding IMUs using (1) (see Fig. 12)

Vinee = Wimy, X ' = @y, X Fa. (1

An alternative approach is to relate the linear acceleration
suffered by the IMUs with the linear acceleration in the
common joint between segments. This approach requires
the consideration of the gravity influence from the specific
force measured by accelerometers. If the gravity influence is
eliminated, (2) can be applied with the derivation of the turn
rate

Qpnee = apqu, + Oy, X 1+ @mu, X (wIMUl X "1)

= amu, + @mu, X r2+ Oy, X (@mu, X r2). (2)

The IMU-joint vectors combined with the segment lengths
or the joint—joint vectors are commonly used to estimate the
kinematic of chains of segments. This is frequently performed
with the Denavit—Hartenberg (D-H) notation, which uses four
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angular and distance parameters to relate reference frames with
the links of spatial kinematic chains [172]. In order to apply
the D-H convention, one reference frame is defined for each
DOF included in the biomechanical model. The axes of the
consecutive reference frames, i — 1 and i, must follow two
rules: the x;-axis must be perpendicular to z;_;, and the x;-
axis must intersect with z;_;. In this way, the transformation
matrix 7;_; ; detailed in (3) defines the transformation between
consecutive frames

cosf; —cosB; sinf; sinf; sinf; r; cosb;
sinf; cosf; cosf; —sinf; cosO; r;sinb;
T = . 3)
’ 0 sin B; cos B; d;
0 0 0 1

where 6; is the angle between the x;_;- and x;-axes, about the
z;i—1-axis, and B; is the angle between the z;_;- and z;-axes,
about the x;-axis. This transformation of consecutive frames
allows the estimation of the forward kinematics of a chain of
joints by using (1) and (2), as performed in [74], [79], [87],
[121], and [122].

The location of joints and the segment lengths are not
imposed as the limitation of DOF or ROM, which directly
models or corrects the estimations. However, they are used
to impose constraints on the measured magnitudes. For that
reason, the restrictions forced through these conditions are
commonly known as soft constraints. It is worth mentioning
that the errors in the estimation of the IMU-joint vector
directly influence the estimation of joint angles that use these
soft constraints [87].

OCs found in the literature that are not related with
biomechanical properties include the following: modeling the
bias of sensors or including them in the state vector [13],
[19], [301, [33], [36], [44], [46], [52], [57], [60], [61], [62],
[63], [70], [751, [82], [83], [95], [117], [118], [119], [123],
[125], [139], [153], [173]; calibrating this bias [30], [44],
[46], [97], [104], [105], [121], [124], [133], [150]; low-pass
filtering the recorded signals [11], [14], [37], [41], [45], [63],
[71], [143], [145]; or optimizing them [67], updating the
estimations when a direct observation of gravity is available
or with its dynamic compensation [35], [43], [48], [51],
[59], [81], [140], [141], [174] or the zero-angle during
the zero-turn rate time instants [11], [47], [48]; modeling
the disturbances in the magnetometer and gyroscope [31],
[118]; using virtual sensors, discriminating the quasi-static
and dynamic motions [41]; eliminating the errors from the
soft tissue artifacts [44], [127]; and, in the case of KFs, the
optimization of the Kalman parameters [33], [50], [79].

E. Farticipants of the Study

This work also analyzes the NS that participate in the studies
to validate the methods. Fig. 13 (top) shows the boxplot of the
distribution of subjects in the studies analyzed in this work
(147). The boxplot presents the first, second, third, and fourth
quartiles of the studied subjects together with the outliers.
In this work, the outliers represent the punctual studies that
test their proposals in more than 18 subjects (8/147 studies).
According to Fig. 13 (top), most results provided in the
studies correspond to a population of fewer than ten subjects.
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Fig. 13.  Characteristics of the population of study in the human motion
analysis literature. Top: percentage of works that evaluate their proposal in
each number of participants. Bottom: percentage of works that consider a
population with (diseased vols.) or without (healthy vols.) disease.

It is worth mentioning that the median is 3 subjects per
study, which makes the results hardly generalizable to all
populations. Furthermore, more than one-third of studies test
their proposals with only one person (34.7%).

The studies that validate their proposal with the highest
amount of volunteers commonly test ML-based algorithms.
This amount of volunteers is required by these algorithms
because they work with a high amount of data in order
to develop generalizable models. However, 65.4% of these
studies use the data from the optical systems to generate
simulated inertial data, as shown in Fig. 11.

Studies analyze volunteers with or without diseases related
to the motor system. We assume that, if there is no statement
about whether unhealthy people are included, the studied
population is healthy or with no illness that affects the
performance of motions. In this way, only a small percentage
(8.2%) of proposals are tested on population with these motor
limitations [see Fig. 13 (bottom)]. This is remarkable since
most proposals claim healthcare applications among their
possible uses, as seen in Section III-B (95.2%).

F. Validation Systems and Evaluation Metrics

For the validation of the reviewed works, researchers use
different systems, as shown in Fig. 14. The gold standard
is the 3-D optical motion capture system, such as the
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Fig. 14. VS used to assess the proposals. Force platforms and simulations
are abbreviated as force plat. and simul., respectively.

commercial Vicon [175] or Optitrack [176], being the most
widely employed. This system is commonly used for the
validation of proposals (68.0%) and, sometimes, (4.8%), in the
combination of force platforms or with simulation software
(0.7%). 2-D optical systems that can obtain a reference in
the image plane are also used (4.8% of the works). In some
works, the 2-D optical systems are combined with depth
sensors (0.7%).

Another approach to validate the algorithms that is worth
mentioning is the use of output values of commercial inertial
systems that provide highly accurate measurements, as done in
the 6.8% of studies. IMUs of the Xsens commercial brand are
the most frequently used for the validation of proposals [177].
Four of the eleven works that validate their algorithms against
inertial sensors outputs use these sensors [109], [110], [147],
[148], whereas the remaining seven works use IMUs of seven
different brands.

A less common solution includes the wuse of
analog and electronic goniometers (8.2%). Other VSs,
which, in combination, sum 6.8% of works, include
different programs of motion simulation, encoders, and
potentiometers.

The accuracy metric reported most frequently for the
validation of proposals is the RMSE. In some works, the
CFC or the MAE is also provided. For the case of angles
measurement, the studied works report an RMSE between
2.59° and 7.67°. Even if, on average, most of the studies
provide similar metrics, it is worth mentioning that the RMSE
range of ML methods is between 2.48° and 5.70°, whereas
the RMSE provided by the classical methods is between 2.24°
and 7.80°. These results prove that ML methods are promising
approaches in the human motion analysis field in spite of their
limitations related to data availability.

IV. DISCUSSION

After the previous in-depth study, we discuss the review
findings in terms of the general trends and the future guidelines
in the inertial motion monitoring field.

A. General Trends

This article analyzes the current state and the research
trends in the inertial motion analysis field. The analyzed
works show interest in developing an alternative to the gold
standard system, based on cameras, due to their high cost
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and the required space of use. As a consequence, the research
focused on developing an IMU-based system for human
motion analysis has increased over the last years, as seen
in Fig. 5.

The sensors integrated into IMUs, accelerometer, gyroscope,
and magnetometer are fused in different ways in the analyzed
works, as shown in Fig. 6. The fusion of gyroscopes
and accelerometers is more common than the use of
magnetometers, being one of the main differences with
respect to the findings in previous reviews [4]. However,
the use of magnetometers is spreading during the last
year with ten works. Bayesian filters and trigonometric
approaches are the ones that most frequently employ the
data from the magnetometer. ML proposals barely rely on
the measurements of the magnetic field and only use them
in the training step of the algorithms. In this way, the
works focused on ML proposals are not limited by magnetic
disturbances.

The common objective in 72.4% of studies (see Fig. 7) is
to obtain 3-D kinematic parameters. The 2-D estimations are
useful in human motion analysis because some movements can
be simplified as motions in one plane, e.g., knee or elbow flex
extension or even gait and squats. However, these estimations
can miss relevant information in motions, about correctness
or symptoms of motion-related diseases. Obtaining complete
kinematic information is especially important in healthcare
applications, which is considered in the 95.2% of works
(see Fig. 8).

Most of the analyzed works (33.5%, as shown in Fig. 8)
mention the generic motion capture field for human motion
analysis, closely followed by the gait evaluation, as aimed
applications for their work. That reflects the interest in
developing more affordable and user-friendly alternatives to
optical systems, as previously discussed. Consequently, the
analyzed works propose algorithms to monitor frequently
the orientation of joints, which is commonly measured
by stereophotogrammetric systems, such as Vicon [175].
64.6% of works focus on joints and 81.6% on the
estimation of the orientation. These percentages imply a
great advance in the direction of inertial solutions for
human motion analysis, especially compared to the trends
reported in [4], where most works studied the orientation of
segments.

Another interesting analysis is focused on the distribution
of works with respect to the analyzed body part, divided into
the upper and lower halves. 61.2% of works (see Fig. 10)
study the lower half of the body, and most of them focus
on the leg joints, which is also consistent with the trend of
gait evaluation besides the motion analysis. Conversely, only
34.7% (see Fig. 10) study the upper half, which includes
arms and trunk, which are difficult to monitor due to the
DOF and the complexity of joints as shoulders or neck. The
results in Fig. 10 mean that, during the last years, the research
has been focused mostly on the lower half of the body, the
opposite of what happened in [4], and most of the reviewed
works analyzed upper limbs. However, monitoring this upper
half of the body is crucial for the evaluation of motions,
being especially important in the rehabilitation of cognitive
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alterations or illnesses, such as strokes. The remaining 4.1%
(see Fig. 10) of proposals are aimed at monitoring the whole-
body posture, which is the most complete approach for the
human monitoring. Even though the gait analysis is commonly
performed by monitoring the lower limbs, the upper limbs
are also important to study relevant features, such as balance,
in clinical assessments. The rising interest in considering the
full body is also another noteworthy difference compared to
previous findings.

For full-body monitoring, ML methods are especially
attractive. Sensor FAs use one IMU per segment to monitor
the whole-body posture or model biomechanical relationships
between segments to reduce this number with different
constraints. Conversely, the approach in ML-based proposals
focused on the whole-body posture is the optimization of the
number of devices with the use of the so-called sparse IMUs,
as in [29], [58], [147], [148], and [155]. This approach is
also used to monitor specific limbs, such as legs, reducing the
number of sensors [21], [100], [134].

The biomechanical approaches for error reduction can
restrict motions and might not be generalized for populations
with motor-related diseases. For instance, the ROM of joints
can be different in people with anomalous physical abilities.
Likewise, the assumption of a number of DOF can miss
relevant information about motions out of the main directions.
Also, the knowledge of the segment length or the location of
the sensors on the body is not always available in practical
applications. Different IMU-joint calibration methods have
been proposed to address this limitation. The first approach
is to obtain an average location of joints with respect to
the sensors, which has been validated for the upper and
lower limbs [178], [179], respectively, but requires specific
calibration motions. The second method consists of estimating
an adaptive position vector, considering the changes in the
location of IMUs due to soft tissue artifacts [180], [181], [182],
[183], which has been validated for the calibration of hips
performing leg circles [182]. These proposals assume that the
joints are fixed, but it is not the case in all the activities in
daily living. In [184], the calibration of moving joints with
soft tissue artifacts is addressed.

As in previous findings [4], the sensor FAs are employed
more commonly than other approaches. However, their use
during the last decade remains stable (around 24 papers),
whereas the use of ML techniques has increased from four
papers to 18 papers. These ML techniques provide a slight
improvement in the accuracy metrics, referred to as a reduction
of the maximum RMSE in 2° in angle measurements.
However, none study analyzed in this work includes research
that makes a fair comparison using common data to test both
approaches.

Sensor fusion filters and data science algorithms differ
in terms of their computational costs. Computational time
varies among the different methods depending on their
implementations. Sensor fusion filters are faster than data
science methods, which require more calculations, especially
DNN-based ones whose number of parameters is superior.
Also, ML- and DNN-based methods usually demand more
memory than the sensor fusion solutions, especially in
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their training stage, making their implementations more
expensive.

ML algorithms are more robust to variation in the intrinsic
noise of the sensors with which they are trained. In addition,
their robustness can increase by generating synthetic data to
which more noise models are added. Conversely, the sensor
FAs include parameter tuning to adapt them to the sensors
used, e.g., the covariance matrix of KFs. Thus, sensor FAs
would require a previous study to estimate these sensor-
dependent matrices.

ML methods require a high amount of reference data to
be trained. Two alternative trends are followed in order to
generate reference data: 1) to simulate the inertial data from
the optical data to use them as inputs or 2) to use the
orientation data obtained by commercial systems as reference.
In the first case, the simulation of inertial data might not
present the intrinsic errors of IMUs, whereas, by using inertial
data as reference, it presents an error around 0.5° depending
on the commercial brand, which is less accurate than optical
systems.

With regard to the validation, new reference systems have
appeared during the last few years. Among them, we find
2-D visual systems, encoders, and computational models.
The 3-D optical systems are still the ones most frequently
used (68.0% of studies; see Fig. 14). However, the use of
this VS entails the limitation of testing the proposals in
daily activities and alternative validation methods should be
investigated [7].

The reviewed studies generally analyze a low amount of
participants for the validation of the algorithms. This limitation
was detected in [4] and still remains in recent works. Most
studies test their results only on one volunteer, and the average
of study subjects is four participants. It makes the proposals
hard to generalize for the whole population. In those studies
in that more participants are involved, the inertial data are
simulated from the optical data, or their reference consists of
the orientation outputs obtained from the IMUs, including the
errors previously indicated.

Most studies analyze healthy participants. That is noticeable
since most studies consider healthcare applications as possible
uses of their proposals. However, only a few of them
(8.2%) test their proposals on subjects with motor-related
diseases.

B. Future Advancements and Developments

This review highlights a set of clear trends. The studies
describe the motions in the 3-D space more frequently than
reducing them to planar motions. This is crucial to describe
complex motions that can be performed during daily life, so it
is required for an out-of-the-lab analysis. Furthermore, the
reduction of the gait or simpler motions, such as knee flex-
extension to a plane, eliminates relevant information about
these motions.

The reviewed works focus on the lower limbs, specifically
on the orientation of the hip, knee, and ankle. Future research
should include upper limbs or even focus on the development
of whole-body posture monitoring for a complete description
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of motions. In this line of work, the proposal of sparse-IMU
utilization is promising to decrease the number of sensors in
use, which is required for motion analysis in all environments.
Moreover, the monitoring of complex joints, such as
shoulders or hips, which are usually modeled as 3-DOF
joints, should include all their DOF for a proper kinematic
analysis.

With regard to the algorithms in use, the current trend
moves from the Bayesian filters, which we consider the
classical ones, to ML algorithms, especially deep learning
algorithms. For the development of these novel proposals,
more data with an accurate reference are required, as described
in [185] and [186], in order to avoid the use of data from
IMUs and simulations from the optical systems as ground
truth. One of the main limitations of the BCs found in
the literature is their generalization of use in wide and
varied populations, where the constraints based on ROM and
DOF exclude people with motor diseases. In this way, new
proposals should be adaptable to the populations under study.
Also, alternatives to obtain the IMU-joint vector based on
inertial devices are needed in order to make suitable proposals
that exploit the biomechanical relationships in out-of-the-lab
environments.

Common data with inertial measurements and its reference
are needed in order to obtain a fair comparison of the existent
and new proposals. In that line of research, future proposals
are required to be validated on a larger number of volunteers
than in the current case. This also should ensure the variability
of motions and not be focused on the gait.

V. CONCLUSION

This work has reviewed the studies focused on human
motion analysis based on IMUs. The date of publication of
the reviewed papers is not limited, so we provide an overview
of the proposals from the first study to the current date.
This overview summarizes the algorithms, the combination
of sensors, the anatomical units monitored, the subjects of
study, and the validation approaches in the research of inertial
monitoring. The review also focuses on the studies of the
last decade, so we analyze the last trends in this research
field. Most of the analyzed works focus on obtaining the 3-D
estimation of the kinematics of lower limb joints, presenting
a lack of studies of the upper half of the body. The Bayesian
filters are still the most used methods, but their trend is
to be applied less frequently, whereas the ML algorithms
are being used now with a higher incidence. This review
includes a description of the main algorithms used with their
inputs and outputs for a better understanding of the existent
methods. In this way, we show that, nowadays, these groups
of algorithms present also differences in the selected sensors:
Bayesian filters tend to use more the magnetometer and try to
compensate for its limitations, but ML algorithms commonly
rely only on gyroscopes and accelerometers. Both groups of
algorithms present also differences in the range of accuracy,
obtaining slightly lower maximum errors by using ML
methods. This work also analyzes the proposed approaches for
error reduction, highlighting the need for proposals suitable for
all the population and IMU-joint calibration methods. Finally,

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

this work remarks the requirement of testing future proposals
on a highly NS, which helps to create common databases that
allow the comparison among the existent and new proposals.

APPENDIX A
TABLES OF THE DATA EXTRACTED

See Tables III and IV.
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