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Abstract— This article describes a method to model the
impedance of a Haddad-type resistor over a frequency inter-
val ranging from 10 to 200 MHz, hereafter defined as low
frequency–radio frequency (LF–RF) range. To this end, novel
resistor standards, of 1 k� and 100 �, have been designed
and manufactured with the aim of sharply identifying the nodes
that define the impedance. Resistor modeling is divided into two
main parts: the first one, describing the central coaxial core
and the second part, describing the connectors through physical
simulations and a subsequent analytical approach. The results
show a remarkable good agreement between measured and
modeled impedance over the whole considered frequency range.
Uncertainty values allow for the traceability of the resistors up to
high frequencies and for the calibration of commercial impedance
analyzers within the LF–RF range.

Index Terms— Frequency gap, Haddad resistor standard, imp-
edance comparison, impedance modeling, physical simulations.

I. INTRODUCTION

OVER the years, National Metrology Institutes (NMIs)
have developed refined techniques to realize the

impedance for the low frequencies (LFs) [1], which roughly
range up to several kHz, as well as for the radio frequency
(RF) range [2]. Such techniques are based on two distinct
measurement methodologies, each exploiting to its advantage
the physical laws deriving from frequency values in the con-
sidered range to determine the impedance. In the LF range, the
impedance is basically defined as the complex ratio between
the voltage applied at two terminals of the measured element
and the current flowing through it. The definition of the
impedance for RF is instead related to the scattering of an
incident electromagnetic (EM) wave on a specific surface
(e.g., coaxial port) of the measured element. In this context, the
transformer-based coaxial bridge allows to perform impedance
measurements with a relative accuracy below the µ�/� level
for the LF range, whereas the RF range is well covered by the
vector network analyzer (VNA), whose accuracy is rather of
order of percent fraction.

Finding a method that guarantees traceability of impedance
for the gap that can be defined between the LF and RF
ranges is still an open issue in electrical metrology. In the
past, different approaches have been developed with the aim
of reducing the uncertainty of impedance measurements in
this challenging frequency range [3], [4]. In particular, some
methods attempt to extend the LF limit of the calculable
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impedance standards [5], [6], [7], [8], [9], [10]. Other tech-
niques aim to reduce the frequency gap by improving the
accuracy from the RF side [11], [12], or by determining,
through resonant frequencies measured with VNA, the ele-
ments of the equivalent circuit associated with the impedance
standards [13], [14], [15], [16].

In a previous article [17], we have presented two different
modeling methods, respectively based on physical simula-
tions and resolution of differential equations, to realize the
impedance within the LF–RF range, whose limits were fixed
at 1 and 100 MHz. In both approaches, the resulting impedance
was assumed to be continuous along this interval and the
values at the border matched the high accuracy measurements
that can be performed for high- and LF ranges. In this context,
the accuracy level for the LF–RF impedance realized with
a Haddad-type resistor [18] covers a range from 6 ppm
to 7%. The noticeable increment of the uncertainty value
in the high-frequency range is attributable to the fact that
the resistor was originally designed to work at LFs. This is
mainly due to the difficulty of reproducing with an analytical
model the geometric structure of its connective part, where
the coarse soldering points prevented to accurately determine
their intersection with the inner conductor.

In this article, we propose a novel architecture for resistor
standard belonging to the Haddad typology, which can be
flexibly described by a simple analytical model. Measurements
have been performed with four standards each having the
impedance value of 100 � and 1 k�, respectively. The new
standards have been entirely designed and manufactured at the
Swiss Federal Institute of Metrology (METAS). The geometry
of these resistors provides improvements especially in the
area dedicated to the connectors, allowing for locating with
a considerably better resolution than their previous versions,
the nodes defining the impedance.

A finite element analysis, performed with COMSOL® mul-
tiphysics simulation software [19], shows how the Haddad
resistors can be modeled with great precision by decoupling
the connectors from the central coaxial line. An analytical
model describing the totality of the resistor (i.e., central and
connective part together) with associated uncertainty values
can finally be developed on the basis of the well-known
transmission line equations (TLEs). With this approach, it is
possible to guarantee the traceability of the 1 k� and 100 �

resistor standards up to 200 MHz with an uncertainty of
0.4% and 2.4%, respectively. Taking these results into con-
sideration, therefore, it is possible to set up a calibration
system for some commercial impedance analyzers that work
on a frequency band ranging from a few tens to a few
hundred MHz.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4060-0134
https://orcid.org/0000-0001-8122-7765
https://orcid.org/0000-0002-6845-3132


1501510 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

Fig. 1. Design of the 4TP resistor standard: (a) biplanar 3-D drawing cutting;
(b) enlargement of the connectors area showing the connector types C1
and C2; and (c) schematic representation showing the impedance of interest
between nodes A and B.

The article is organized as follows. In Section II, we present
the design of the resistor standards. Section III gives
some details about their measurements with the VNA.
The impedance model is described in Section IV, whereas
the uncertainty budget is computed in Section V. Finally,
Section VI provides some closing remarks and outlines the
future stages of the research activity.

II. DESIGN OF THE RESISTOR STANDARD

In this section, a new design for Haddad resistor standards
is presented. What differentiates them from the previously
used version [17], which were made for working within the
kHz frequency range, is mainly a more refined structure at
the points where the connective parts cross the coaxial inner
conductor. This simple solution allows to sharply realize the
impedance also for frequencies up to few hundreds of MHz,
as explained in more detail in the following.

As can be seen from the picture in Fig. 1(a), these resistor
types are characterized by a relatively simple geometry. The
central part (between the nodes A and B) forms basically a
coaxial line in which a resistive central wire (of radius rw)
acts as an inner conductor, while the outer metal tube (inner
radius ri and outer radius ro) serves as an outer conductor.
At either end of the coaxial part, there are two connector
blocks each made up of two connector types hereafter referred
to as C1 and C2. The two connectors C1 are axially aligned
with the resistive wire, while the two connectors C2 are
arranged orthogonally to the wire’s axis.

As shown in the enlargement of the connectors block in
Fig. 1(b), both C1 and C2 are composed of two principal parts.
The first one, common to both connector types, is formed by

TABLE I
GEOMETRICAL AND MATERIAL PARAMETERS

OF THE HADDAD-TYPE RESISTORS

the subminiature version A (SMA) coaxial connector, which
provides the connection of the resistor with the external world.
The second part, instead, ensures the electrical contact between
the SMA connector and the node A (respectively B) where
the resistive wire is soldered on. It consists in a cylindrical
rod, inserted between the SMA inner conductor, and a support
lying on a printed circuit board (PCB) track. In this part
of the circuit, however, the two connector types present an
asymmetry. While for C2 the node A (respectively B) is
situated at the end of the PCB track, for C1 this is connected
with its PCB track through a short piece of resistive wire. This
way of joining wire and connectors leads to a sharp definition
of the impedance because the contact resistance between wire
and connectors is part of the connector’s resistance self and
not part of the impedance ZA–B.

Since both connector blocks have been designed to be
identical and symmetric, we can define C1 and C2 to be
the connector types associated with the ports P1, respectively
P2 connected to node A and, symmetrically, to the ports P4,
respectively P3 connected to the node B. In the modeling of the
standard described in Section IV, such symmetries are taken
into account.

The impedance measurements presented in this article have
been performed on four resistors manufactured for this purpose
at METAS. Two of these have a nominal impedance value
of 100 �, while the other two have a nominal value of 1 k�.
The only difference between the two sets of resistors is
represented by the length ℓA–B, the radius and the material of
the resistive wire (costantan and evanhom, respectively), while
the outer shielding is made of a copper tube for all four resis-
tors. Geometrical and material parameters, with corresponding
uncertainty, of the Haddad resistors are summarized in Table I.

Fig. 1(c) illustrates a schematic representation of the
four-terminal pair (4TP) resistor. The impedance of such
standard, defined between nodes A and B, can be obtained
by applying the four terminal-pair definition [20] widely
used in impedance metrology. To this end, the resistor ports
are associated with the following labels: HC, LC, HP, and
LP identifying the procedure, whereby current and voltage,
respectively, are set or measured. At one side of the resistor,
a current is injected into one port, labeled HC, while a voltage
is measured at the other port, indicated with HP, by keeping
the current equal to 0. On the other side of the resistor, the
output current is measured at one port, labeled LC, whereas
to the other port, indicated with LP, current and voltage are
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TABLE II
PORT CONFIGURATIONS DEFINING FOUR

TERMINAL-PAIR MEASUREMENTS

set to 0. Finally, the impedance can be computed as a ratio
between voltage V measured at HP and current I , measured
at LC as follows:

Z4TP =
VHP

ILC

∣∣∣∣ILP=0,VLP=0
IHP=0.

. (1)

While in LF range (typically below few kHz), the value of the
four terminal-pair impedance barely depends on the choice of
the connectors used to measure the voltage V and current I ,
the situation is different at higher frequency (above 100 MHz)
because the effect of the connectors on the four terminal pair
impedance becomes significant. In this case, the choice of the
connectors becomes critical.

Table II lists all the combinations whereby HP and LC can
be configured over the four resistor ports. By definition, the
configurations k and 9 − k (for k = 1 to 4) are equivalent.
Moreover, due to the fact that ports P1 and P4, and the
ports P2 and P3, present the same connector type, namely C1
and respectively C2, the configurations 1 and 4 are also
equivalent. Therefore, over the eight configurations presented
in Table II, only three configurations lead to distinct 4TP
impedance values at high frequencies, namely Z#1

4TP, Z#2
4TP,

and Z#3
4TP. At LF, the values of the three different impedances

converge to the same dc resistance.

III. VNA MEASUREMENTS

The new Haddad resistor standards have been measured,
for frequencies ranging from 9 kHz to 3 GHz, with a com-
mercial four-port VNA from Keysight, model ENA E5080A.
The open/short/load calibration procedure has been performed
before measurements and uncertainty calculation has been
applied according to [2] using dedicated software VNA tools.
The picture in Fig. 2 illustrates the measurement setup used for
the VNA measurements of the four terminal-pair standard. For
each frequency, the instrument returns a scattering parameter
matrix S which fully characterizes the electrical behavior of
the multiport device. The components Si j of such a matrix,
which in the case of a four-port standard has 4 × 4 size, are
the results of the complex ratio bi/a j , where a j is the incident
wave at the port j and bi is the reflected wave at the port i .

Once the scattering matrix S is obtained through VNA
measurements, the 4TP impedance for the configuration #1
can be computed according (1) as follows:

Z#1
4TP =

Z21 Z34

Z31
− Z24. (2)

The terms Z i j , which are the results of the ratio between
voltages V measured at the port i and currents I measured at

Fig. 2. Measurement setup used for the VNA measurements.

Fig. 3. Impedance modulus |Z | versus frequency f (in log–log scale) of a
1 k� resistor calculated, according to configuration #2 (solid symbols with
dotted line) and #3 (open symbols with dotted line), from values measured of
the four-port standard with the VNA. The calculated impedance ZA–B (solid
line) is also represented.

the port j , represent the elements of the impedance matrix Z
derived from the result of the following relation [3]:

Z =
(
1− S

)−1
·
(
1+ S

)
· Zr. (3)

In this case, 1 denotes the 4 × 4 identity matrix, and Zr the
50 � reference impedance. Similarly, the 4TP impedance for
the configurations #2 and #3 can also be obtained from other
element combinations of the Z matrix.

Fig. 3 shows the modulus of the 4TP impedance as a func-
tion of frequency f calculated according to configurations #2
and #3 from data coming from the measurements of a 1 k�

resistor with the VNA. The different frequency-dependent
behavior of measured data by adopting two different configu-
rations immediately becomes apparent. While at LF the values
coincide, a clear disagreement begins to be noticeable starting
from 200 MHz. This clearly demonstrates an asymmetry
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between the connector types C1 and C2 and their fundamental
influence on the 4TP impedance definition.

The frequency dependence of the impedance calculated
between nodes A and B according the approach described
in [18] is also represented in Fig. 3. This curve remarkably
shows the fundamental effect that connectors have for an
accurate computation of the 4TP impedance in the high
frequency range.

IV. MODELING THE STANDARD RESISTOR

The results of the measurements performed with the VNA
shown in Section III prove that, if we want to correctly
describe the proposed broadband resistor standards, we need
to accurately model the connective parts. To this end, in this
section, we present an approach divided in two steps. The
first step, described in Section IV-A, covers the resolution
of the TLE between the nodes A and B, in the central
coaxial part of the resistor, to determine the impedance ZA–B.
Second, we assess the effect of the connectors with the aim of
correcting ZA–B and to finally obtain the 4TP impedance Z4TP.

In this regard, a numerical model based on the finite
elements simulation of the entire connector block (described
in Section IV-B) provides the consistency of the impedance in
the LF–RF range. Moreover, it confirms that the discrepancy
between measured Z4TP and calculated ZA–B is due to the
connector effects and not to a miscomputation of ZA–B. In the
analytical model proposed in Section IV-C we estimate
the fundamental circuit parameters characteristics of the con-
nector block. In this way, we are finally able to model the
impedance of the resistor, within the calculated uncertainty
values, as a function of frequency along the LF–RF range.

A. Coaxial Line Model

The central part of the Haddad resistor standard can be
considered as a two-port linear network [21], which relates
voltages and currents between the points A and B. Mathemat-
ically, this is represented by the following linear system:(

VA

IA

)
= MA–B ·

(
VB

IB

)
(4)

where MA–B is a 2 × 2 matrix, whose components are the
so-called ABCD parameters [22]. The geometry of the central
part is characterized by a pure cylindrical symmetry defined
by its central conductor, the evanohm wire tightened between
points A and B, surrounded by the outer metal shield. Ideally,
this represents a homogeneous, infinite coaxial line and the
elements of the impedance matrix MA–B can be computed by
solving the coupled TLE as described in [17]. The components
of MA–B can be represented with the following approximation:

MA–B ≈ MTLE =

(
cosh(γ ℓ) Z0 sinh(γ ℓ)

sinh(γ ℓ)/Z0 cosh(γ ℓ)

)
(5)

where γ and Z0 denote the propagation constant and the
characteristic impedance respectively, whereas ℓ represents the
length of the coaxial line.

The two terminal-pair impedance between the points A
and B, separated by a distance ℓA–B, can be obtained by solving
the linear system (4) according to the definition [20]

ZA–B =
VA

IB

∣∣∣∣
VB=0.

= Z0 sinh(γ ℓA–B). (6)

The values of γ = (z0 · y0)
1/2 and Z0 = (z0/y0)

1/2 are the
result of the multiplication and ratio between the impedance z
and the admittance y per unit of length along the coaxial line.
Such quantities, which depend on the angular frequency ω,
can be determined by following the calculation procedures
described in [23] and [24]. The described approaches consist in
directly calculating the complex components of z and y from
geometric dimensions and material properties of the resistor.
For the sake of clarity, it is worth mentioning that to determine
these values, some approximations are taken into account.
These prove to be valid when operating with frequencies that
are below the threshold given by the cutoff value fc for the
transverse EM mode [21]

fc ≈
1

π(rw + ri)
√

εµ
(7)

where ε and µ are the electrical and magnetic permittivity,
whereas rw and ri are the wire and the tube’s inner radius
as reported in Table I. Geometrical and material parameters
of the presented Haddad resistor type allow to determine the
impedance between nodes A and B for a frequency limit up
to about 6 GHz, which is a factor 2 greater than the maximal
frequency value considered in this article.

The modulus of the impedance ZA–B, calculated for the
1 k� standard, is represented in Fig. 3 as a function of the
frequency. The remarkable difference between the measured
and the calculated 4TP impedance above 100 MHz points out
that such a simple model cannot properly describe a broadband
resistor standard.

B. Numerical Model of the Connectors

In this section, we provide the description of a model
obtained through physical simulations performed on the con-
nector blocks on each side of the central coaxial part of
the resistor. Material and geometry reconstructed in the finite
element simulation software faithfully reproduce the assembly
of the two connectors C1 and C2 plus the first portion of the
wire that from point A (resp. B) faces the cylindrical coaxial
part of the resistor as illustrated in the enlargement of Fig. 1(b).
The resulting object represents a three-port network system.

The first two ports, corresponding to P1 and P2 (resp. P4
and P3) are the section of the SMA connectors, while the
third port is formed by the section of the central coaxial line
and named PA (resp. PB). In this context, the definition of
lumped port can be adopted, as a first-order approximation,
up to the highest frequency taken into account in this work,
which is 3 GHz. The simulation software solves the Ampère’s
law equations in frequency domain all over the schematized
connector block as shown in Fig. 4, where the steady-state
propagation of the EM field is illustrated. As a result, simula-
tions quantify the electrical behavior of the three-port network
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Fig. 4. Representation of the electric field norm at 1.7 GHz on the
schematized connector block realized with COMSOL simulations.

Fig. 5. Four terminal-pair standard represented with a three-two-three
cascaded network system described by SA, SA–B, and SB scattering matrices,
respectively.

for each considered frequency through a scattering parameter
matrix S3P.

A two-port network relating incident and reflected
EM-waves in the central part of the resistor between points A
and B (i.e., ports PA and PB) can also be described through the
scattering matrix SA–B. The elements of SA–B are determined
from the calculated elements of the matrix MA–B defined in (5)
using transformation equations [25].

In general, the 4TP resistor can be described as a cascaded
network system through the scattering matrices SA and SB,
associated with the three-port networks of the connector blocks
and the scattering matrix, SA–B, associated with the two-port
network of the central part. Such a representation is illustrated
by a block diagram in Fig. 5.

By taking into account that, first, in our model the connector
part in both sectors A and B are defined as identical and
therefore matrices SA and SB are substituted by the simula-
tion result matrix S3P, and, second, that incident waves of
the two-port network correspond to reflected waves of the
three-port networks and vice versa, it is possible to set up the
following three linear systems that chain incident and reflected
EM waves over the whole resistor:

(b1 b2 bA)T
= S3P · (a1 a2 aA)T

(aA aB)T
= SA–B · (bA bB)T

(b3 b4 bB)T
= S3P · (a3 a4 aB)T.

(8)

From the system of equations (8), it is possible to obtain,
by carrying out the algebraic steps shown in detail in the
Appendix A, a scattering matrix S4P that describes the
electrical behavior of the presented four-port resistor

Fig. 6. Frequency dependence of impedance measured (symbols) and
modeled (solid lines) according to the configuration #2 for the 100 � (in
red) and 1 k� (in blue) resistor standards. Dotted lines represent ZA–B as
calculated in Section IV-A. Top plot: impedance modulus |Z | versus frequency
(log-log scale). Bottom plot: time constant τ versus frequency (log scale).

as follows:

(b1 b2 b3 b4)
T

= S4P · (a1 a2 a3 a4)
T. (9)

The impedance matrix Z of the numerical model can then be
calculated by substituting S4P in (3) and, consequently, through
its components it is possible to derive the 4TP impedance of
the resistor standard according to the chosen configuration as
shown, e.g., in (2).

In Fig. 6, the impedance measured with the VNA is com-
pared against the impedance modeled with simulations for
both the 100 � and the 1 k� standard types. A very good
agreement can be noticed over the whole frequency range
for the two illustrated values: the modulus |Z | and the time
constant τ = ̸ Z/ω. This confirms two important aspects.
First, the effect of the connective part has been accurately
reproduced through the simulations, and second, the resistor
modeling can be decomposed into two independent parts.

It is interesting to notice that the time constant obtained
from the central part of the model alone (i.e. from ZA–B)
describes very well the measured time constant of the
4TP standard over the whole frequency range. This can be
explained by the fact that the phase shift between the voltage
and the current used to obtain the impedance is mainly related
to the geometrical distance between the HP and LC ports.
Distance that is in turn dominated by the length ℓA–B of the
resistive wire rather by the length connectors C1 and C2. The
effect of the connector on the time constant is therefore only a
second-order effect, at least in the considered frequency range.

C. Analytical Model of the Connectors

The results presented in Section IV-B clearly prove that a
broadband resistor standard can be accurately described by
splitting the modeling into two simple steps: one covering
the connector blocks and the other considering the central
coaxial part. Based on this consideration, in this section we



1501510 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

Fig. 7. Block diagram of the Haddad-type resistor standard subdivided in a
series of five two-port networks system.

develop an analytical model describing both connector types,
C1 and C2, in terms of the elementary parameters associated
with its equivalent circuit. These parameters are then fit to
the VNA data at the high-frequency range, thus providing
uncertainty boundaries that confer sensitivity to our model.

To this end, the resistor standard geometry has been ideally
subdivided in five circuit blocks, each one defined as a
two-port network system as illustrated in Fig. 7. It can be
noticed, that one of these represents the central coaxial line,
whose impedance ZA–B has been previously determined. The
remaining blocks correspond to connector types C1 and C2
that are located on each side of the coaxial part between the
node A (respectively B) and the ports P1 and P2 (respectively
P4 and P3). The relation between currents and voltages at the
input (in) and output (out) terminals of each involved two-port
network can be represented in a general form by adopting the
transmission matrix formalism defined in [22]. The resulting
linear system can thus be written as(

Vin
Iin

)
= M2P ·

(
Vout
Iout

)
, M2P =

(
A B
C D

)
. (10)

By applying the 4TP definition [20] to the resistor ports and
the two-port network concatenation properties, the system (10)
produces the two following coupled equations:

VHP = (AHP DHP − BHPCHP)
VA

DHP
(11)

ILC = CLCVB + DLC IB (12)

where the ABC D parameters of M2P describe the port with
measured voltage (HP) or output current (LC). The two-
port networks, as previously defined, satisfy the reciprocity
condition [22], which implies that the determinant of M2P is
equal to 1. For this reason, (11) simplifies further to

VHP =
VA

DHP
. (13)

According to (1), it is possible to obtain the 4TP impedance
as a function of the ABC D components of the involved trans-
mission matrices by dividing (13) and (12) and by eliminating
the dependence on voltages and currents at points A and B
with (6). Finally, the most simplified form of 4TP impedance
for this model yields

Z4TP =
ZA–B

DHP DLC
. (14)

Fig. 8. Circuit diagram of connector types C1 and C2.

The three impedance configurations, introduced in
Section II, allow to express (14) in relation to the connector
types C1 and C2, according to the symmetry characteristic of
the diagram illustrated in Fig. 7, as follows:

Z#1
4TP =

ZA–B

DC1 DC2
(15a)

Z#2
4TP =

ZA–B

D2
C1

(15b)

Z#3
4TP =

ZA–B

D2
C2

. (15c)

The parameter D in the transmission matrix describes thus the
correction due to the connector-type C1 or C2. Such correction
factors can be easily determined from the VNA measure-
ments and the calculated impedance ZA–B, by respectively
considering (15b) and (15c)

DC1 =

√
ZA–B

Z#2
4TP

(16a)

DC2 =

√
ZA–B

Z#3
4TP

. (16b)

The model of the connector areas is depicted in Fig. 8.
The diagram points out how C1 and C2 can be described by
basically dividing their structure in two main parts. The first
part consists of a coaxial line, defined by the SMA connector
and the coaxial portion through the outer conductor of the
standard, which is described by a distributed impedance Zc =

Rc + jωLc and a distributed admittance Yc = Gc + jωCc.
The remaining circuitry, consisting of the PCB track up to the
point A (respectively B), is characterized by series impedance
Zs = Rs + jωLs .

Being a chaining of two-port networks, this model can
also be described by an ABC D matrix relating incoming and
outgoing currents as described in (10). In this case, the value
of M2P is the result of the following matrix multiplication:

M2P =

(
cosh(γ c) Z c

0 sinh(γ c)

sinh(γ c)/Z c
0 cosh(γ c)

)(
1 Zs

0 1

)
where γ c

= (Zc/Yc)
1/2 and Z c

0 = (ZcYc)
1/2 are the TLE

approximation components of the coaxial connector part. The
D component of M2P giving the correction factor due to the
connectors has the following value:

D = Zssinh
(√

ZcYc

)√
Yc

Zc
+ cosh

(√
ZcYc

)
. (17)
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TABLE III
PARAMETERS OF THE CONNECTOR’S ANALYTIC MODEL

Fig. 9. Frequency dependence (in log scale) of (a) modulus of the correction
factor D for both connector types C1 and C2, and of the imaginary part of D
over the angular frequency ω for connector types, (b) C1, and (c) C2. Symbols
represent the values obtained with VNA measurements performed on each of
the four different resistor standard, whereas solid lines and shaded areas are
the results, and respectively the uncertainties of the analytic model.

The values of the impedance and admittance parameters
contained in (17), with corresponding uncertainty, are listed for
both connector types C1 and C2 in Table III. The parameters
have been adjusted to make the model (17) correctly describe
the measured values obtained from (16a) and (16b) in the
high-frequency range above 100 MHz, as shown in Fig. 9.
The uncertainties have been determined in a conservative way;
therefore, the same parameters can be used to model each of
the four-resistance standard.

The most significant difference between the parameter val-
ues characterizing the connector types C1 and C2 concerns the
series resistance Rs . The reason is due to the fact that a short
piece of resistive wire connects the node A (respectively B)
and the PCB track of C1 [see Fig. 1(b)]. Therefore, in this case,
Rs is 50 times greater than for C2, which does not present this
characteristic. It can also be noticed that the values of Cc and
Lc for the connector type C1 are greater than those for the

connector type C2, although, in this instance the difference is
less significant. This can be explained by the portion of coaxial
line inside the outer conductor between the SMA connector
and the PCB edge. The length of this portion is indeed longer
for the connector type C1 than for the connector type C2.

The comparison between the correction factor D due to
connectors for values derived from the 4TP impedance mea-
surements, as shown in (16a) and (16b), and modeled with (17)
according to the parameters listed in Table III, is shown in
Fig. 9. The full agreement between VNA data, measured for
two 100 � and two 1 k� resistor standards, and model over
the whole frequency range is noticeable. The scattering of the
values inside each curve reflects mainly the homogeneity of
the mechanical realization of each connector type and, to an
extent reduced, the VNA measurement spread.

Fig. 9(a) shows the modulus of the correction factor D of
both connector types C1 and C2. It can be seen that there is
no systematic difference between the results obtained using
the 100 � and the 1 k� resistance standards. For this reason,
as the ratio between the size of the connector blocks and the
length of the coaxial part is not the same for the two resistor
types, the edge effect in the TLE analysis of the coaxial line
can be considered negligible.

Fig. 9(b) and (c) represent the ratio between the imaginary
part of the correction factor D and the angular frequency ω for
the C1 and C2 case, respectively. The scattering of the values
for the connector type C1 is significantly larger than what is
obtained for the connector type C2. As previously described,
this is due to a broader variation of the series resistance Rs in
the connector type C1.

V. UNCERTAINTY BUDGET

In this section, we provide an estimate of the uncertainty
budget for both the presented resistor standard types of
100 � and 1 k�, over the whole considered frequency range.
All the computed uncertainties correspond to one standard
deviation (k = 1). In the model proposed in Section IV,
the 4TP impedance (14) is the ratio between the impedance
of the central coaxial part ZA–B (6) and the correction
factor D (17) due to connectors. The uncertainty correspond-
ing to this impedance is therefore the result of the uncertainty
propagation calculated with the parameters listed in Table I,
for the central coaxial part, and in Table III, for the connective
part. For the sake of clarity, in the case of ZA–B, the resistance
uncertainty part is calculated using these parameters only to
assign the frequency dependence component, while the basis
value Rdc comes from the calibration of the resistor stan-
dards in dc and can easily be performed with an uncertainty
below 1 µ�/�.

The main contributions of the total uncertainty estimated in
the analytic model, using the UncLib library [26] developed
at METAS, differ depending on the impedance value of
the resistor and on the frequency range considered. In the
case of the modulus of the impedance at frequencies below
500 MHz, by considering the 100 � Haddad, the 90% of
the uncertainty is due to the resistance of the evanohm wire
in the central coaxial part, while, for the 1 k� resistor, the
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Fig. 10. Frequency dependence (in log scale) of (a) absolute relative
difference (in log scale) between the modulus of measured and the modulus
of modeled 4TP impedance using 1 k� standards (blue symbols) and
(b) difference of the measured and modeled 4TP time constant using 100 �

standards (red symbols). Dashed and solid lines represent the uncertainty
limits of VNA measurements and model, respectively.

dominant contribution is provided by the connectors. The 85%
of the total uncertainty is due to the capacitance Cc. Above
500 MHz, the uncertainty of both resistor types is dominated
by connector contributions.

Also in the case of the uncertainty estimated for the time
constant, by considering the 100 � resistor, the main uncer-
tainty contribution comes from the resistance of the central
evanohm wire, up to 200 MHz. For 1 k� Haddad instead,
up to 700 MHz, the uncertainty is almost equally distributed
between the resistive part of the central wire and the series
resistance of the connectors Rs . Beyond these frequencies, for
both types of resistors, the uncertainty is totally due to Rs .

Two examples of uncertainty analysis results are shown over
the whole considered frequency range in Fig. 10(a) which
illustrates the absolute relative difference between the modulus
of measured and the modulus of modeled Z4 TP in the example
of 1 k� standards, and in Fig. 10(b) which instead illustrates
the difference of the measured and modeled 4TP time constant
using the 100 � standards. The uncertainty of Z4TP estimated
with the analytical model is lower than the uncertainty of
the VNA measurements up to 200 MHz, where it has a
value of 0.4%. Beyond this frequency, where VNA is more
accurate, the model is still reliable because all absolute relative
differences between the modulus of the impedance of model
and measurements lie within the uncertainty. This can also
be observed with regard to the time constant τ . In this case
the crossing with the VNA uncertainty occurs at 25 MHz and

the value is about 22 ps, but then the uncertainty of the model
assumes less significant values throughout the frequency range
except for the resonance values.

Estimating the uncertainty of these broadband resistor stan-
dards allows for their traceability. The low values of these
uncertainties down to 100–200 MHz furthermore allow for
the calibration of commercial impedance analyzers. In this
regard, Fig. 10 reports, as an example, the uncertainty
limits claimed in the specification of the Keysight E4990A
impedance analyzer up to 120 MHz, indicated with the dotted
line in Fig. 10(a). It can be noticed how these are at least five
times higher than the uncertainties of the presented standards.

For the sake of completeness, it is worth mentioning that,
in all the measurements performed in this article and in the
development of the model, the effect of the temperature on
the resistance value as well as a possible short-term drift have
not been taken into account. These effects concern mainly the
dc resistance and not the frequency dependence and moreover,
they can be considered as negligible in comparison of the other
uncertainty components above 10 MHz.

VI. CONCLUSION

In this article, a novel design for broadband resistor stan-
dards has been presented. Improvements to the connective
parts with respect their previous version [17], designed for
the kHz frequency range, allow for a traceability of the
new standards up to 200 MHz. A numerical model, based
on physical simulations, proves that at high frequencies the
contribution of connectors is crucial to properly determine the
4TP impedance of the standards at the high-frequency range.
The development of a subsequent analytical model results in
considerably improved impedance values through a correction
factor due to the connectors, whose parameters are fit to the
VNA measurement data. Such a fit allows to faithfully repro-
duce the data at high frequencies and, moreover, to provide
the uncertainty estimation.

The results show a remarkably good agreement between
measured and modeled 4TP impedance over the whole consid-
ered frequency range. The uncertainty of the proposed model
is lower than the uncertainty of the VNA measured data, for
both the 100 � and 1k � resistors, up to 60 MHz, respectively,
200 MHz, as regards the modulus of the 4TP impedance
and up to 25 MHz, respectively, 60 MHz, as regards the
time constant. The uncertainty of the modulus of the 4TP
impedance has been reduced by 70 times compared with [17],
by decreasing from 7% to 0.1%.

The model of the resistor standards presented in this article
will allow us to set up a traceable calibration system for
commercial impedance analyzers over their whole frequency
range (20 Hz–120 MHz). Moreover, the accuracy obtained on
the time constant of these new resistance standards will allow
us to improve our present calibration measurement capabilities
by at least a factor of ten [27].

APPENDIX A
S-MATRIX SYNTHESIS

The description of incident and reflected EM-waves for
a four-terminal pair standard can be quantified through a
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cascaded system of all networks defined along its circuit.
Fig. 5 shows an example of a four-port resistor, which has
been subdivided into a two-port network, associated with
the scattering matrix SA–B, and into two three-port networks,
associated with scattering matrices SA and SB, respectively.
Mathematically, this can be expressed through the following
three equations:

b1
b2
bA

 = SA

a1
a2
aA

 =

SA
11 SA

12 SA
13

SA
12 SA

22 SA
23

SA
13 SA

23 SA
33

a1
a2
aA

 (18a)

(
aA
aB

)
= SA–B

(
bA
bB

)
=

(
SA-B

11 SA-B
12

SA-B
12 SA-B

22

)(
bA
bB

)
(18b)b3

b4
bB

 = SB

a3
a4
aB

 =

SB
11 SB

12 SB
13

SB
12 SB

22 SB
23

SB
13 SB

23 SB
33

a3
a4
aB

. (18c)

By carrying out the multiplication between matrices and
vectors, (18a), (18b), and (18c) can be displayed through the
following linear system:

b1 = SA
11a1 + SA

12a2 + SA
13aA

b2 = SA
12a1 + SA

22a2 + SA
23aA

bA = SA
13a1 + SA

23a2 + SA
33aA

aA = SA-B
11 bA + SA-B

12 bB

aB = SA-B
12 bA + SA-B

22 bB

b3 = SB
11a3 + SB

12a4 + SB
13aB

b4 = SB
12a3 + SB

22a4 + SB
23aB

bB = SB
13a3 + SB

23a4 + SB
33aB.

(19)

By combining the equations on lines 3, 4, 5, and 8 of (19) it
is possible to express aA and aB independently of bA and bB.
These two terms can then be inserted in lines 1, 2, 6, and 7 to
formulate the relation between the reflected and incident EM
waves at the four ports of the standard resistor through the
scattering matrix S

b1
b2
b3
b4

 =


S11 S12 S13 S14
S21 S22 S23 S24
S31 S32 S33 S34
S41 S42 S43 S44




a1
a2
a3
a4

 (20)

whose matrix elements are expressed as a function of SA, SA–B,
and SB components as follows:

S11 = SA
11 + SA

13SA
31α S12 = SA

12 + SA
13SA

32α

S13 = SA
13SB

31β S14 = SA
13SB

32β

S21 = SA
21 + SA

23SA
31α S22 = SA

22 + SA
23SA

32α

S23 = SA
23SB

31β S24 = SA
23SB

32β

S31 = SB
13SA

31β S32 = SB
13SA

32β

S33 = SB
11 + SB

13SB
31γ S34 = SB

12 + SB
13SB

32γ

S41 = SB
23SA

31β S42 = SB
23SA

32β

S43 = SB
21 + SB

23SB
31γ S44 = SB

22 + SB
23SB

32γ

where the values of multiplication parameters α, β, and γ are
given in the following:

α =

(
1 − SA-B

22 SB
33

)
SA-B

11 + SA-B
12 SB

33SA-B
21

1

β =
SA-B

12

1

γ =

(
1 − SA-B

11 SA
33

)
SA-B

22 + SA-B
12 SA

33SA-B
21

1
.

Finally the denominator 1 yields

1 =
(
1 − SA-B

11 SA
33

)(
1 − SA-B

22 SB
33

)
− SA-B

12 SA-B
21 SA

33SB
33.
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