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Abstract— The emergence of empty-dish recycling robots has
alleviated problems, such as labor shortages, caused by an aging
population. The detection and grasping of dishes play a crucial
role in empty-dish recycling robots. However, due to the limited
resources of edge devices, traditional object detection models
require more space to store parameters and much computational
overhead, limiting the development of empty-dish recycling
robots. Therefore, this article proposes an ultralightweight dish
detection model YOLO-GS for an empty-dish recycling robot.
We use the modified CSPDarknet as the backbone structure and
design an ultralightweight neck structure for efficient feature
fusion. Meanwhile, we design a lightweight head structure for
object classification and bounding box coordinate regression
by combining ghost shuffle convolution (GSConv2D) and the
anchor-free method. For the empty-dish recycling robot to
grasp the dishes, we design a dish grasp point extraction
algorithm using image processing. Finally, TensorRT is used to
optimize and accelerate the model for efficient and intelligent
detection of dishes on the NVIDIA Jetson Xavier NX. The
experimental results show that YOLO-GS achieves 99.380%
mean average precision (mAP) with a parameter amount
of 0.606 M. The inference speed of the TensorRT-optimized
YOLO-GS algorithm reaches 31.371 FPS, which meets the needs
of real-time dish detection by the empty-dish recycling robot.
The image of the empty-dish recycling robot demo is available
at https://www.youtube.com/watch?v=pCBo1nzm3qU&t=22s.

Index Terms— Empty-dish recycling robot, grasp point extrac-
tion, object detection, quantification and deployment.

I. INTRODUCTION

WITH the aging of the global population and the relative
reduction of the total labor force, many countries

have experienced serious labor shortages. The labor shortage
and the increasing labor cost are seriously restricting the
development of the food service industry. With the rapid
development of artificial intelligence technology, intelligent
food service robots relying on those technologies emerge as
the times require solving the labor shortage problem and
the increasing labor cost [1]. This article aims to study the
empty-dish recycling robot in intelligent food service robots.

In the food service industry, empty-dish recycling robots
need to solve indoor location, dish detection, dish grasping,
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Fig. 1. Illustration of empty-dish recycling robot.

recycling, walk-off, and so on. Among them, the effective
detection and grasp of dishes scattered on the desktop are the
critical problems of the empty-dish recycling robot. With the
development of convolution neural networks (CNN), computer
vision-based object detection algorithms have made break-
throughs in the field of dish detection [2], [3]. Yue et al. [1]
use traditional YOLOv4 to detect dishes and achieve more
than 96.00% high accuracy on precision, recall, and F1 values.
Wang et al. [4] use traditional YOLOv3 to detect 16 classes
of dishes and achieve a mean average precision (mAP) of
96.40%. Yue et al. [5] propose a dish grasp point extraction
algorithm based on image processing technology, which can
extract the grasp point coordinates of dishes in a 2-D plane.

The empty-dish recycling robot needs to have high mobil-
ity. Therefore, edge devices are selected as the control and
inference platform. Due to the limited resources of edge
devices, traditional object detection models take a long time
to load models on edge devices and require ample space to
store models. Therefore, designing an object detection model
suitable for running on an edge platform and meeting the
requirements of real-time and accurate dish detection have
become an urgent problem to be solved.

To solve the abovementioned problems, we develop an
ultralightweight object detection model YOLO-GS for the
empty-dish recycling robot, where GS represents the model
using ghost shuffle convolution (GSConv2D). GSConv2D is
to reorder the output of the Ghost module (a structure that
generates a large number of feature maps with a few compu-
tations) through channel shuffle, thereby preserving the hidden
connections between each channel. We choose a lightweight
CSPDarknet network as the backbone structure and adjust
the structure to reduce the parameters while ensuring feature
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extraction capabilities. We propose an ultralightweight neck
structure using GSConv2D to reduce the number of parameters
and calculations while enhancing features’ interaction abil-
ity and improving feature fusion efficiency. Simultaneously,
we design object classification and bounding box coordinate
regression as two parallel branches, reduce the number of
parameters and floating point operations (FLOPs), and form a
lightweight head structure. Ultimately, we design an image
processing-based dish grasp point extraction algorithm to
grasp the dishes. In addition, we use TensorRT to quantify
YOLO-GS in floating-point 16-bit and deploy it on the Jetson
Xavier NX, an empty-dish recycling robot control platform.

The contributions of this work are summarized as follows.
1) We design an ultralightweight neck structure for efficient

feature fusion with minimal parameters and FLOPs.
2) We propose an ultralightweight dish detection model

YOLO-GS for the empty-dish recycling robot. The
model has only 0.606 M parameters, and the mean AP
reaches 99.380%. The model requires very little storage
space, and the load time is significantly reduced.

3) We design a dish grasp point extraction algorithm
to extract the grasp points of the detected dishes
through image processing and obtain the dishes’ grasp
point coordinate information in the 3-D space of the
empty-dish recycling robot.

4) We quantify YOLO-GS with 16-bit floating-point non-
destructive precision and deploy it on the control system
Jetson Xavier NX of the empty-dish recycling robot.

The remainder of this article is arranged as follows.
Section II reviews the previous overview of empty-dish recy-
cling robots, lightweight object detection models, and object
detection applications in the edge platform. In Section III,
we describe the proposed method in detail. The experiments,
discussions, and feature work are presented in Section IV.
Finally, Section V concludes this article.

II. RELATED WORK

In this section, we first summarize the recent progress of
empty-dish recycling robots and then review the literature on
lightweight object detection models, model quantification, and
deployment on edge platforms.

A. Overview of Empty-Dish Recycling Robot

In the intelligent service robot, the empty-dish recycling
robot needs to solve tasks, such as indoor location, dish detec-
tion, dish grasping, and so on, which have high complexity.
Therefore, robots are mainly used for automatic food serving,
table cleaning, and so on. There is little research on empty-dish
recycling robots [6].

Yin et al. [7] propose a table cleaning and inspection method
using a human support robot (HSR) through a lightweight deep
convolutional neural network (DCNN) to recognize the food
litter on top of the table and then generate cleaning paths based
on the detection of food litter to perform cleaning operations.
Yue et al. [1] apply YOLOv4 to the dish detection of the
empty-dish recycling robot, quantify the YOLOv4 model
through TensorRT, and deploy it on Jetson Nano. However,

the final inference speed of the model is only 2.3 FPS.
Yue et al. [5] propose a lightweight object detection model
YOLO-GD, which is used to detect dishes in images, such
as cups, chopsticks, bowls, towels, and so on, and based on
the method of image processing, the grasp point coordinate
method for extracting different types of dishes are designed.
Significantly, the dish detection model has only 11.17 M
parameters, and the detected mAP reaches 97.42%.

B. Lightweight Object Detection Model

Object detection algorithms based on deep learning are
mainly divided into two categories. The first is the two-stage
object detection algorithm based on candidate regions [8],
including R-CNN [9], fast R-CNN [10], faster R-CNN [11],
and so on. The other is the one-stage object detection
algorithm based on regression problems, including YOLO
[12], [13], SSD [14], retina net [15], and so on.

In many real-world applications, object detection must be
performed in a timely and power-saving manner with com-
putational resource constraints. Many other vision tasks have
built lightweight models using methods, such as weight quanti-
zation [16], [17], network compression [18], computationally
efficient architecture design [19], [20], [21], and so on. For
some vision tasks, lightweight networks aim to achieve the
best tradeoff between accuracy and efficiency, showing their
superiority by reducing the model size and FLOPs with a little
performance drop [22].

Meanwhile, several studies have proposed object detec-
tion models based on lightweight backbone structures.
Guan et al. [23] propose a lightweight three-stage detection
framework consisting of a coarse region proposal (CRP)
module, a lightweight railway obstacle detection network
(RODNet), and a postprocessing stage for recognizing obsta-
cles in a single-railway image. Fan et al. [24] propose a
lightweight meter recognition method that combines deep
learning and traditional computer vision techniques for an
automatic meter reading. Cai et al. [25] propose a one-stage
object detection framework based on YOLOv4 for object
detection in autonomous driving. At the same time, an opti-
mization network pruning algorithm is proposed to solve the
problem that the computing resources of the vehicle-mounted
computing platform are limited and cannot meet the real-time
performance.

C. Application of Object Detection in Edge Platform

High-level graphics processing units (GPUs) are commonly
used in high-performance deep learning applications. How-
ever, building a high-performance platform is expensive in
terms of cost and power consumption. In real-world appli-
cation scenarios, the object detection network needs to be
deployed on the edge platform. Due to the limited resources
of the edge platform, quantification deployment of the object
detection network becomes a key factor [26], [27].

Wang et al. [4] propose a YOLOv3-based dish detection
network on an FPGA platform, and through different sparse
training and pruning methods, the model size is reduced
from 62 to 12 MB. Koubaa et al. [28] present a real-world
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Fig. 2. Structure of the GSConv2D module.

case study of deploying a face recognition application using
the MTCNN detector and FaceNet recognizer and demonstrate
that TensorRT optimization provides the fastest execution on
edge devices. Liu et al. [16] propose a fast and accurate
power line edge intelligent detection method called RepYOLO
by using the C++ language combined with TensorRT that
is employed to optimize and accelerate the model on the
NVIDIA Jetson Xavier NX embedded platform, fulfilling
efficient power line edge intelligent detection. Tu et al. [17]
propose a real-time defect detection method for tracking
components based on an improved lightweight instance seg-
mentation network, using the TensorRT inference framework
to accelerate the defect detection network and realize edge
platform deployment.

III. METHODOLOGY

A. Overview of Empty-Dish Recycling Robot

Fig. 1 shows an illustration of the empty-dish recycling
robot at work. The robot consists of a robotic body, arms,
fingers, and a camera that collects information about the
dishes. The workflow of the empty-dish recycling robot is
as follows: 1) the robot determines the table information that
needs to receive dishes in the restaurant and uses the sensor
and the drive system to arrive accurately at the empty-dish
recycling location based on the stored location information.
2) The robot loads the ultralightweight dish detection model
YOLO-GS and moves the camera (Intel RealSense D435) to
the top of the table, waiting for the camera to take images.
3) Use the camera to take images, detect the type and position
of dishes in the image through the loaded model, and calculate
the different types of dishes’ grasp points through the proposed
extraction algorithm. 4) Send the obtained coordinates of the
dish grasp point to the robotic arm control system, calculate
the rotation angle of each joint through the inverse kinematics
equation, move the robotic arm to the grasp point position,
and grasp the dish with the fingers. 5) Put the dish into the
recycling station and repeat steps 4 and 5 until all the dishes
are recycled.

B. Overview of the YOLO-GS Framework

We aim to build an ultralightweight and efficient object
detection network for the dish detection task of the empty-dish
recycling robot. Therefore, we consider many factors, such as
convolution method, lightweight backbone, lightweight feature
fusion structure, computational efficiency, computational cost-
effectiveness, and so on, and design an ultralightweight object
detection model YOLO-GS.

Fig. 3. Illustration of backbone network structure.

The YOLO-GS network structure is mainly composed of
three parts, namely, backbone, neck, and head. The backbone
network is used for feature extraction, and the output is three
effective feature layers. The neck is a feature fusion network
that fuses features of different scales output by the backbone
network. Head is a prediction network that predicts objects
and bounding boxes on the feature map output by the neck
network. Simultaneously, YOLO-GS adopts the mosaic data
augmentation method to splice images through random scal-
ing, cropping, and arrangement, which enriches the diversity
of data and reduces the use of GPU memory.

1) Ghost Shuffle Convolution: In the conventional CNN
model, many feature maps are similar and have more redun-
dancy. Han et al. [20] propose the ghost module to generate
a large number of feature maps with only a few computa-
tions (cheap operations). As shown in Fig. 2, in the ghost
module, conventional convolution is first used to generate
partial feature maps, then the cheap operation is used to
generate redundant features on the generated feature maps,
and finally, all the feature maps are concatenated. The dense
convolution computation preserves the hidden connections
between each channel, while the cheap operation severs these
connections completely. Therefore, in this work, the output
of the ghost module is reordered by the channel shuffle [19],
which improves the flow of global information.

The computational cost of GSConv2D is only 60%–70% of
standard convolution, but the contribution to the model learn-
ing ability is comparable to standard convolution [29]. Fig. 2
is a schematic of GSConv2D. Specifically, GSConv2D uses
the “halved” convolution operation to retain the interaction
information between channels. The features generated by con-
volution perform simple linear operations (cheap operations)
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Fig. 4. Overview architecture of ultralightweight detection of neck and head models. The GS bottleneck is a stacked structure of two GSConv2D and adds
the input to the output. Up-sample is to multiply the width and height of the data by using the nearest neighbor sampling method.

to generate more similar features maps, that is,

GSConv2D = S(F1×1(F)⊙8(F1×1(F))) (1)

where ⊙ represents the concatenate operation, F denotes
the feature map, F1×1(·) is the stacking structure of 1 × 1
convolution operation for half of the output channel, and the
batch normalization (BN) operation and activation function
are nonlinear operations of the sigmoid linear unit (SiLU).
8(·) is the linear operation for generating a feature map, S(·)

represents the channel shuffle operation.
2) Backbone: CSPDarknet in YOLOX-tiny [30] is an excel-

lent feature extraction network that satisfies most feature
extraction tasks for dish detection scenarios. Since the features
of the dish object are relatively simple, we adjust the structure
and parameters based on the CSPDarknet network to reduce
the number of parameters while ensuring feature extraction
capability. The structure of the backbone network is shown in
Fig. 3. At the input of the backbone, the image is downsampled
using focus without losing feature information. It uses slice
operation to split the high-resolution feature map into multiple
low-resolution feature maps. The backbone network employs
the residual structure, and residual skip connections retard the
gradient vanishing problem. The CSPNet [31] structure pro-
duces richer gradient combination information while requiring
less calculation. The SiLU activation function is used in the
backbone network’s nonlinear expression. As seen (2), SiLU
has no upper and lower bounds, smoothness, and nonmono-
tonicity, which plays an essential role in optimization and
generalization

SiLU(x) =
x

1+ e−x
. (2)

3) Ultralightweight Detection of Neck and Head Models:
The features have been described in the backbone structure,

and when these feature maps reach the neck, they are already
slender enough (the channel dimension reaches the maximum,
and the width and height dimensions reach the minimum) and
no longer need to be transformed. Therefore, using GSConv2D
in the neck structure can better describe the features than in
the backbone. The low level in the backbone network has
less semantic information but accurate object locations. The
high level has richer semantic information but coarse object
locations. We aim to fuse low-level and high-level features
using fewer parameters efficiently. Through the research on
FPN [32] structure, PANet [33] structure, and other methods,
we design an ultralightweight Neck structure, as shown in
Fig. 4.

Through GSConv2D and spatial pyramid pooling (SPP), the
low-level features improve the scale invariance of the image,
enrich the expression ability, and expand the receptive field.
SPP can be expressed as

SPP = C( f 5×5MaxP(F)⊙ f 9×9MaxP(F)

⊙ f 13×13MaxP(F)⊙ F). (3)

Among them, ⊙ represents the concatenate operation, F
denotes feature map, f k×k means k × k filter, MaxP means
max pooling operation, C(·) means concatenate operation.

YOLOv3 [12], v4 [13], and v5 all follow the original
anchor-based method, but there are many known problems
with the anchor mechanism. First, to achieve optimal detec-
tion performance, cluster analysis is required before training
to determine a set of optimal anchors. Second, the anchor
mechanism increases the complexity of the detection head
and the number of predictions per image. The anchor-free
method proposed in YOLOX [30] does not need to preset
anchors but only needs to regress the object center point
and the width and height of feature maps with different
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Algorithm 1 Extraction of Grasp Points
Input: The object classes and coordinates. The depth

image of dishes. The number of dishes in the
image (Numdish).

Output: Grasp point coordinates of the object in 3D
space.

1 for j ← 1 to Numdish do
2 x0, y0, x1, y1 ← Coordinates
3 img← image[y0 : y1, x0 : x1]

4 if t ype j = Circle then
5 xc, yc, r ← HoughCircle(img)

6 x ← x0 + xc

7 y ← y0 + yc − r
8 else if t ype j = Square then
9 Lines ← HoughLines P(img)

10 for i ← 1 to len(Lines)− 1 do
11 for k ← 1 to len(Lines) do
12 T ht ←

GetCrossAngle(Lines[i], Lines[k]) if
T ht > 85 and T ht < 95 then

13 Line.append(Lines[i])

14 for i ← 1 to len(Line) do
15 for k ← 1 to len(Line) do
16 x,y ← CrossPoint(Lines[i], Lines[k])
17 Point.append([x,y])

18 B_P ← boxPoint(minAreaRect(Point))
19 x ← x0 + (B_P [1] [0] + B_P [2][0])/2
20 y ← y0 + (B_P [1] [1] + B_P [2] [1])/2
21 else if t ype j = Polygon then
22 contous, hie ← findContours(img)
23 Area ← contourArea(contous)
24 rect ← minAreaRect(contous(argmax(Area)))
25 x ← x0 + rect[0][0]
26 y ← y0 + rect[0] [1]
27 else if t ype j = Ellipse then
28 contous, hie ← findContours(img)
29 Area ← contourArea(contous)
30 xe, ye, a, b, agl ←

fitEllipse(contous(argmax(Area)))
31 x ← x0 + xe − b × cos(agl)/2
32 y ← y0 + ye − b × sin(agl)/2
33 else
34 Lines ← HoughLinesP(img)
35 a,b,c ← Lines.shape
36 for i ← 1 to a do
37 Point[i][0] ← Lines[i][0][0]
38 Point[i] [1] ← Lines[i][0] [1]

39 polygon ← Polygon(Point).convex_hull
40 coor ← polygon.centroid.coords[0]
41 x ← x0 + coor[0]
42 y ← y0 + coor [1]
43 h ← Get_Distance(x,y)
44 return x,y,h

scales, which significantly reduces the time-consuming and
required computing power. Therefore, we use the anchor-free
method for object classification and bounding box coordinate
regression.

We adjust each position of the head into two outputs,
one for predicting the classes of objects in each feature
point. The other is used to predict the regression parameters
of each feature point and determine whether each feature
point contains an object. This method reduces the number of
parameters and FLOPs, alleviates the imbalance of positive
and negative samples, and avoids the adjustment of anchor
parameters.

4) Loss Function: The loss function is the difference mea-
surement between the predicted value and the true value. The
loss of the network, like the prediction result of the network,
is also composed of three parts, namely, the Cls part, the Obj
part, and the Reg part, which can be formulated as

LOSS = LCls + LObj + LReg. (4)

The Cls part is the class of objects contained in the feature
points, and the binary cross-entropy (BCE) loss is calculated
according to the class of the real-bounding box and the class
prediction result of feature points as the loss of the Cls part.
The Obj part evaluates whether the feature points contain
objects and calculates the BCE loss using the positive and
negative samples and the prediction results of whether the
feature points contain objects as the loss of the Obj part. The
BCE loss is calculated as follows:

LBCE = −6n
i=1(ti log P(yi )+ (1− ti ) log(1− P(yi ))). (5)

Among them, n represents the total number of samples,
ti ∈ {0, 1} is the binary label, and yi is the probability of the
label value.

The Reg part is used to predict the regression parameters
of the feature points and calculate the CIoU loss using the
real-bounding box and the predicted bounding box as the loss
of the Reg part. Reg loss is expressed as follows:

LReg = 6n
i=1LCIoU (6)

CIoU = IoU−
ρ2(b, bgt)

c2 − ðν (7)

LCIoU = 1− CIoU = 1− IoU+
ρ2(b, bgt)

c2 + ðν (8)

ν =
4
π2

(
arctan

wgt

hgt − arctan
w

h

)2

(9)

ð =
ν

(1− IoU)+ ν
. (10)

Among them, IoU is the intersection over union, (b, bgt)

represents the center point of the prediction bounding box and
the real-bounding box, ρ is the Euclidean distance between
the two center points, and c represents the diagonal distance
of the minimum closure area that contains both the prediction
bounding box and the real-bounding box. ð is the tradeoff
parameter, and ν is a parameter used to measure the consis-
tency of the aspect ratio. wgt, hgt represents the real width
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Fig. 5. Illustration of the grasp point extraction process for different classes.

and height, and w and h represent the width and height of the
prediction bounding box, respectively.

C. Extraction of Grasp Points

Effective grasping of the dish by a robotic arm is a difficult
task in the recycling process. When the grasp points are
extracted from the whole image, mutual interference occurs
between the individual dishes. By segmenting the individual
dishes, we can extract the grasp points effectively. At the
same time, we use different methods to extract grasp points
for different types of dishes. The height information of the
corresponding grasp point is obtained through the RealSense
D435 sensor, and finally, the coordinate information of the
grasp point in the 3-D space of the empty-dish recycling robot
is determined. The extraction method of grasp points is shown
in Algorithm 1.

We divide all dishes into five types: circle, ellipse, square,
polygon, and irregular. The process of extracting grasp points
is shown in Fig. 5, where the circle represents the round dish,
the square represents square dishes, the polygon represents
polygon dishes, the irregular represents irregular dishes, and
the ellipse represents oval dishes. original represents the orig-
inal image segmented according to the detection result, gray
represents the grayscale converted image, Canny represents
Canny edge detection, Guass represents Gaussian filtering,
line represents line detection, threshold represents binarization
processing, and result represents the grasp point extraction
result.

We first segment the object dish for all detected dishes
based on the detected coordinate information. Grasp-point
extraction is then performed on various types of dishes. For
circular dishes, we first perform the grayscale conversion and
strengthen the edge information through Canny edge detection,
then filter out the redundant information through Gaussian

filtering. Finally, Hough circle detection is used to find the
dish’s contour and the grasp points. For square dishes, we use
grayscale conversion and Canny edge detection to keep the
lines in the image with an intersecting angle between 85◦

and 95◦, then obtain each line’s intersection points, calculate
the smallest circumscribed rectangle of the intersection, and
finally, obtain the four vertices’ coordinates of the rectangular
box to calculate the grasp points. For polygonal dishes, we use
grayscale conversion, Gaussian filtering, and binarization con-
version to convert the original image into a clear binarized
image and directly find the largest contour in the image,
and then calculate the smallest circumscribed rectangle whose
center is the grasp point. The grasp point extraction of the
irregular-shaped dishes is through grayscale conversion, Canny
edge detection to extract the outline information of the dish,
and then uses the Hough line detection to retain all the straight
lines in the image and performs polygon fitting on the vertices
of all straight lines, and the center of the fitting polygon is
the grasp point. Through grayscale processing, Canny edge
detection, and the closing operation in image processing to
find the contour of the elliptical dishes, the center, the major
axis, the minor axis, and the rotation angle information of the
ellipse are calculated by ellipse fitting, and the grasp point is
calculated.

D. Model Optimization Based on TensorRT and Deployment
on Edge Platform

TensorRT is a high-performance deep learning inference
SDK launched by NVIDIA, which provides low latency and
high throughput for deep learning inference applications.
TensorRT supports INT8, FP16, and FP32 calculations and
achieves the purpose of accelerating inference by achieving
an ideal tradeoff between reducing the amount of calculation
and maintaining accuracy. More importantly, TensorRT recon-
structs and optimizes the network structure. Fig. 6 shows the
inference optimization process of TensorRT.

TensorRT eliminates useless output layers in the network to
reduce computation by analyzing the network model. Through
the vertical fusion of the network structure, the three layers
of convolution, batch normalization, and Relu of the current
mainstream neural network are integrated into one layer.
Layers whose inputs are the same tensors and perform the
same operations are fused together through the horizontal
fusion of the network. Finally, the input of the concat layer
is directly sent to the following operations, which reduces the
transmission throughput and speeds up the inference process
to a certain extent [16]. Moreover, quantize 32-bit floats in
the network to 16-bit half floats or 8-bit integers to speed up
inference.

We evaluate YOLO-GS on two edge platforms, Jetson Nano
and Jetson Xavier NX, Table I shows the parameter compari-
son of the two devices. Jetson Nano contains a quad-core CPU
and a GPU with 472 Floating-point Operations Per Second
(FLOPS). Jetson Xavier NX contains a six-core CPU and a
GPU with 21 Tera Operations Per Second (TOPS). All devices
have the same underlying GPU architecture, so the underlying
hardware instruction set remains constant and is comparable
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Fig. 6. Inference optimization process of TensorRT.

TABLE I
PARAMETER COMPARISON OF EDGE PLATFORMS

across devices. The differences in all measurement evaluation
metrics only come from TensorRT optimization [1], [28].

IV. EVALUATION

A. Experimental Configurations

1) Implementation Details: We conduct all experiments on
an i9-10900 CPU and a single NVIDIA GeForce RTX 3090Ti
GPU. The operating system is Ubuntu 21.04, the CUDA
version is 11.4, and the GPU acceleration library cuDNN
is 8.2.4. The proposed method is implemented using the
TensorFlow library.

The training of all experiments is conducted using the Adam
optimizer, with parameters β1 = 0.937, β2 = 0.999. We decay
the learning rate with a warm-up cosine annealing for each
epoch as follows:

ηt = ηi
min +

1
2

(
ηi

max − ηi
min

)(
1+ cos

Tcur −Wi

Ti −Wi
π

)
(11)

η·min represents the minimum learning rate. η·max represents the
maximum learning rate. Tcur is how many epochs have been
trained. Ti is the total number of epochs. Wi is the epochs
of warm-up. In the whole training process, η·max is set to
1e-3, and η·min is set to 1e-5. We train the proposed model
for 300 epochs, and the batch size is set to 4. During the
evaluation, confidence is set to 0.5, and IoU is set to 0.3 for
nonmaximum suppression.

2) Dataset: We use the public dish dataset Dish-20,1 which
contains 506 images in 20 classes. Among them, 409 images
are used for training, 46 images are used for validation,
and 51 images are used for testing [5]. The image size of
the dataset is resized to the YOLO-GS default input size
(416 × 416) previously.

1http://www.ihpc.se.ritsumei.ac.jp/obidataset.html

3) Evaluation Metrics: To evaluate the effect of the object
detection approach, this article mainly uses AP, mAP, param-
eters of the model, FLOPs, and inference speed (FPS) as
evaluation metrics. AP and mAP represent the accuracy of
the model. The number of parameters, FLOPs, and FPS of
the model represents the computational resources required by
the model [34]. The meanings of these evaluation metrics are
as follows:

P =
TP

TP+ FP
(12)

R =
TP

TP+ FN
. (13)

TP represents true positives, FP represents false positives,
and FN represents false negatives. P means precision, and
R means recall. AP is calculated by the area under the
precision–recall curve (P–R curve), expressed as

AP =
∑

n

(Rn+1 − Rn)Pmax[Rn, Rn+1] (14)

among them, Rn represents the recall of the n-th value,
Pmax[Rn, Rn+1] represents the maximum AP value in the range
of [Rn, Rn+1]

mAP =
1
C

C∑
j

AP j . (15)

The mAP is shown in (15). C is the number of classes and
AP j is the AP of the j th class.

B. Performance Comparison

We compare the proposed YOLO-GS with 18 state-of-the-
art object detection methods, including faster-RCNN [11],
Efficientdet [35], SSD [14], YOLOv3 [12], YOLOv4
series [13], YOLOv5 series, YOLOX series [30], and
YOLO-GD [5]. Table II shows the quantitative results. In all
tables, −1.000 means no relevant data is detected. The results
demonstrate that YOLO-GS achieves the same accuracy as
state-of-the-art object detection methods, especially in terms of
mAP, AP11, and AP50. For example, our method achieves com-
parable performance with state-of-the-art two-stage detection
networks faster-RCNN and YOLOX series but significantly
reduces the parameters and FLOPs. Our proposed YOLO-GS
has only 0.606 M of parameters, which is three times smaller
than YOLOv5-Nano (1.800 M) with the most minor parame-
ters. Our method achieves an inference speed of 108.006 FPS,
which is comparable to the inference speed of YOLOX-S and
YOLOX-Tiny, but on the premise of equivalent performance,
the parameters amount is only 1/8 of YOLOX-Tiny and 1/14 of
YOLOX-S. Although the FPS is 1/2 of YOLOv4-Tiny, we only
need 1/9 parameters of YOLOv4-Tiny, and also, our method
gets a higher mAP. The FLOPs of YOLO-GS are only 2.131 G,
which is smaller than other state-of-the-art models (slightly
larger than 1.796 G of YOLOv5-Nano, but the parameters are
only 1/3 of it). Because the number of FLOPs is related to
energy consumption, YOLO-GS has the minimum FLOPs, and
the complexity is the lowest. Hence, it is friendly to embedded
devices with limited energy. Moreover, YOLO-GS has the
highest potential to improve inference speed further.
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TABLE II
PERFORMANCE COMPARISON OF YOLO-GS WITH OTHER STATE-OF-THE-ART MODELS. PARAM. MEANS THE NUMBER OF

PARAMETERS. AP11 IS THE AVERAGE OF APS AT IOU FROM 0.5 TO 0.95 WITH A STRIDE OF 0.05

Fig. 7. Illustration of the tradeoff among mAP, the number of parameters, the number of FLOPs, and inference speed.

TABLE III
COMPARISON EXPERIMENT BETWEEN GSCONV2D AND GHOST MODULE.

GSCONV2D ADDS CHANNEL SHUFFLE ON THE GHOST MODULE

To better illustrate the tradeoff between accuracy and effi-
ciency, we present three images in Fig. 7, showing mAP
against the number of parameters, the number of FLOPs, and
inference speed, respectively. In the figures of mAP versus

parameters and mAP versus FLOPs, YOLO-GS is in the top-
left corner, which means the YOLO-GS has an ultralightweight
setting and good accuracy. In the figure of mAP versus FPS,
YOLO-GS is in the upper middle corner, demonstrating its
good tradeoff between accuracy and inference speed. There-
fore, we can conclude that YOLO-GS achieves a good tradeoff
between accuracy, the number of parameters, FLOPs, and
inference speed.

C. Ablation Study

Table III verifies the effectiveness of using the Ghost module
and GSConv2D in the neck. We found that the results of using
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Fig. 8. Illustration of dish detection and grasp point extraction based on the ultralightweight object detection model YOLO-GS and grasp point extraction
algorithm.

TABLE IV
COMPARE WITH THE LATEST SIGNIFICANT NECK + HEAD

MODELS. OURS REPRESENTS OUR BACKBONE

GSConv2D in the neck are significantly better than the Ghost
module. For example, after using GSConv2D, mAP increased
by 0.56%, AP11 increased by 1.7%, AP50 increased by 0.6%,
and AP75 increased by 1.7%. We found that GSConv2D sig-
nificantly improves the accuracy of the model while improving
the generalization ability of the model.

Table IV shows the results of the combinatorial comparison
of our proposed backbone structure with different state-of-
the-art neck + head structures. Compared with Table II,
it can be seen that after using our backbone in YOLOv3, the
number of parameters is reduced from 61.679 to 20.915 M,
the FLOPs are reduced from 65.520 to 17.802 G, and the
speed is increased from 83.364 to 144.608 FPS. The mAP has
increased from 84.160% to 94.710%. It is the same effect on
YOLOv4. On YOLOv5-Nano, our backbone effect becomes
unsatisfactory but also reduces the number of parameters and
improves the inference speed. Under the same mAP, YOLOX-
Tiny significantly reduces the number of parameters and
FLOPs. It proves the effectiveness of our proposed backbone.
At the same time, the comparison between the five models
shows that our proposed neck + head has the smallest number
of parameters and FLOPs. Although mAP is slightly lower

TABLE V
PERFORMANCE EVALUATION OF YOLO-GS

than YOLOX-Tiny, our model has only 1/5 of the parameters,
and the inference speed is comparable. It is proven that our
proposed neck + head structure performs feature fusion with
the least number of parameters.

D. Performance of YOLO-GS and Grasp Point Algorithm
Evaluation

Table V shows the results of our proposed YOLO-GS on
the test set. It can be seen that the AP value of 13 categories of
dishes in the 20 classes is 100.00%. Among them, the “square-
bowl” with the lowest recall and AP values is 95.83, the
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TABLE VI
COMPARISON RESULTS OF DIFFERENT QUANTIFICATION METHODS ON DIFFERENT PLATFORMS. FP32 REPRESENTS FLOATING-POINT

32-bit QUANTIZATION, FP16 REPRESENTS FLOATING-POINT 16-bit QUANTIZATION, INT8 REPRESENTS 8-bit
INTEGER QUANTIZATION, AND ORI REPRESENTS NO QUANTIZATION

“fish-dish” with the lowest precision is 93.10, and the “towel-
dish” with the lowest F1 is 0.90. At the same time, the AP50
of YOLO-GS is 0.990, and the test accuracy meets the work
requirements of the empty-dish recycling robots.

Fig. 8 shows the results of dish detection and grasp point
extraction using our proposed ultralightweight object detection
model YOLO-GS and grasp point extraction algorithm. In the
complex desktop environment, it can be seen that YOLO-GS
detects the target dish well. However, some dishes do not
appear completely in the image, and the contour fitting of
the dish is incomplete during the extraction of the grasp point
process, resulting in the ineffective extraction of grasp point
information. Our method effectively extracts the grasp points
of the detected dish that appears completely in the image.
As a result, our grasp-point extraction algorithm satisfies the
requirements of the empty-dish recycling robot.

E. Model Optimization and Deployment on Edge Devices

The performance of our proposed YOLO-GS on different
quantization methods of GPU and Jetson edge platforms is
compared, as shown in Table VI. From the experimental
results, on all platforms, the quantized accuracy of FP32 and
FP16 is consistent with the original accuracy, and the inference
speed is increased twice. On the RTX 3090Ti GPU platform,
although the speed of INT8 quantization is 2.675 FPS higher
than FP16, the mAP drops from 99.380 to 82.380. Similarly,
in Jetson Xavier NX with similar results to RTX 3090Ti, the
mAP drops from 99.380 to 71.360 after INT8 quantization.
On each experimental platform (Jetson Nano does not support
INT8 quantization), the inference speed of INT8 quantization
is optimal, but the detection accuracy loss is large.

The precision after quantization by FP32 and FP16 is the
same as the original precision. But the inference speed of
FP16 is faster than FP32. The inference speed of YOLO-GS

on Jetson Xavier NX after FP16 quantization is 31.371 FPS,
which is twice of Jetson Nano (15.359 FPS). Therefore,
we chose Jetson Xavier NX as the edge platform for the
empty-dish recycling robot.

F. Robotic Fingers Grasp Dishes

In practical applications, we found that three pneumatic
fingers cannot grasp “Chopsticks,” “Paper,” “Spoons,” “Fish-
dish,” and so on very well, so we use a two-finger gripper
with a suction cup to solve the problems shown in Fig. 9(a).
Fig. 9(b) shows the robot using a suction cup to absorb
and recycle a dish that has a smooth surface and is not
easy for fingers to grasp. Fig. 9(c) shows the robot uses a
two-finger gripper to grasp and recycle shallow dishes. After
experimental evaluation, 20 classes of dishes can be grasped
by our two-finger gripper with a suction cup. The results have
proved that the extracted grasping points perfectly cooperate
with the robotic fingers to grasp the dishes.

G. Discussion and Future Work

Compared with the optimal model, the detection perfor-
mance of YOLOX is slightly higher than that of our pro-
posed YOLO-GS. However, the parameters and FLOPs of
the YOLOX model are too large, so it takes more time to
load the model on the edge device and requires more storage
space. We use related operations that reduce the number
of parameters and FLOPs. For example, the computational
overhead of GSConv2D is only 60%–70% off standard con-
volution. However, the inference time is slower than the
standard convolution due to the edge devices’ access quantity
and memory usage limitation. Although YOLOv4-Tiny is
twice as fast as YOLO-GS, the accuracy is lower than our
99.380%. When the empty-dish recycling robot works, the
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Fig. 9. Illustration of robotic fingers grasping different types of dishes. (a) Two-finger gripper with suction cups. (b) Suction cups for dish recycling.
(c) Two-finger gripper for dish recycling.

detection accuracy of dishes exceeds the inference speed. After
the 16-bit quantization of the float point, YOLO-GS reaches
31.371 FPS on Jetson Xavier NX, which fully meets the
detection requirements.

In practical applications, factors, such as the external envi-
ronment, significantly affect the quality of the dish images.
Errors occur in the feature extraction process of dish images,
eventually leading to errors in the contour fitting and shifts in
the position of the grasp point. For example, since the “wine-
cup” is a transparent dish, it is easy to fit the bottom contour
to the overall contour in the image processing stage, resulting
in deviations in the grasp points extraction. However, there is
a gap between the robot fingers, and the fingers can grasp the
dish when the grasp point is in the fingers’ gap. Hence, the
robot finger works well in the case of a margin of error. In our
tests, all dishes are effectively grasped. In future work, we will
optimize the grasp point extraction algorithm to solve the grasp
point extraction error caused by environmental factors. For all
the scattered dishes on the table, we will design the optimal
grasping path to solve the problem of overlapping dishes.

At the same time, the inference speed of the model on
specific hardware is not only affected by the amount of
calculation but also by many factors, such as memory access,
hardware characteristics, software implementation, and system
environment. The proposed YOLO-GS has achieved an ultra-
lightweight structure with fewer parameters and calculation
amounts (FLOPs), and it also has the most potential for sig-
nificantly improving inference speed. In future work, we focus
on solving factors other than the parameters and FLOPs that
slow down the inference speed, such as the amount of memory
access, hardware characteristics, and so on, to improve the
inference speed of our model.

V. CONCLUSION

Instead of only focusing on model accuracy, this article
explores a new direction of object detection, namely, ultra-
lightweight object detection networks, aiming to achieve a
good tradeoff between accuracy, efficiency, parameters, and
FLOPs. Therefore, we propose an ultralightweight object
detection model YOLO-GS and design an algorithm to extract
the grasp points of dishes. Experimental results show that
YOLO-GS has only 0.606 M parameters and 2.131 G FLOPs

and achieves 99.380% mAP in the Dish-20 dataset. The model
is quantized with a floating-point 16-bit through TensorRT, and
the inference speed of 31.371 FPS is obtained on the edge
device Jetson Xavier NX under the premise of ensuring the
same accuracy.

To the best of our knowledge, this is the first attempt at
object detection toward an accuracy–efficiency tradeoff and
ultralightweight models. We demonstrate that our proposed
ultralightweight object detection model YOLO-GS effectively
detects dishes and extracts the coordinates of grasp points.
YOLO-GS has only 0.606 M of parameters, which is much
smaller than the current object detection model and is not
constrained by the storage capacity of edge devices, which has
far-reaching significance for the development of empty-dish
recycling robots.
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