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Abstract— This article proposes a novel invariant extended
Kalman filter (IEKF), a recently modified version of the extended
Kalman filter (EKF), to estimate partial discharge (PD) location
in a transformer insulation system model. An acoustic signal
measurement is utilized to localize the PD location. Unlike
conventional EKF methods, where the correction term used to
update the state is linearly proportional to the output error,
the correction term of the proposed algorithm is independent of
the output error, resulting in a fast response with a significant
reduction in the estimation error. In contrast to the EKF, the
proposed method can successfully mimic the nonlinear dynamics
and mitigate measurement noise stochasticity. Moreover, even
if the measurement model fails to fully capture the PD’s
dynamics, the IEKF will still sustain a reasonable performance.
In contrast, conventional EKFs can easily diverge if a mismatch
between the measurement model and the true measurement
occurs. Experimental results are shown to verify the proposed
method’s performance compared to a recently published variant
of the EKF.

Index Terms— Acoustic emission (AE) sensors, extended
Kalman filter (EKF), invariant extended Kalman filter (IEKF),
localization, partial discharge (PD), transformer oil/paper insu-
lation system.

I. INTRODUCTION

THE integrity of the power grid depends on the health
conditions of different power system components such as

transformers, circuit breakers, and underground cables. One
of the leading causes of power system components failure
is the initiation of partial discharge (PD) that eventually
leads to the complete failure of the insulation system [1].
PD can be initiated at different locations inside the transformer
tank leading to the gradual aging of transformer oil and
cellulose paper and eventually to the transformer’s complete
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failure. Therefore, monitoring and localizing the PD activities
inside power transformers act as preventive maintenance that
minimizes the risk of sudden transformer failure.

The release of the PD energy can generate electromagnetic
and ultrasonic waves. As a result, various sensors, such as
radio frequency (RF) antennas, high-frequency current trans-
formers (HFCTs), and acoustic emission (AE) sensors, can
be employed to detect the PD [1]. HFCT can be utilized
to detect PD activities but has several disadvantages that
limit its field application. For example, HFCT suffers from
a low signal-to-noise ratio, limited access to the ground wire,
and cannot be used to localize the PD source. On the other
hand, an RF antenna can be used to detect and localize
the PD locations if multiple antennas are utilized. However,
unless these antennas are preinstalled inside the transformer
tank during the manufacturing stage, this approach is not
practical because it is intrusive. Furthermore, the RF antenna
is susceptible to electromagnetic noise and requires a relatively
expensive data acquisition system due to the need for a high
sampling rate. Alternatively, AE measurement systems are
relatively cost-effective and nonintrusive and can be used
to localize PD sources. Furthermore, PD localization (PDL)
employing the AE technique is commonly done by estimating
the time difference of arrival (TDOA) between signals cap-
tured at multiple acoustic sensors placed on the walls of the
transformer tank. However, AE sensors suffer from noise that
may hinder their applicability in the field.

Hence, AE PD signal denoising is commonly used prior
to any PDL and/or classification [2], [3]. However, one of
the main limitations of denoising techniques for AE PD
signals is the need to estimate the environmental acoustic
noise, which may not be accessible. The authors used the
source-filter model in [4] to estimate the excitation source and
isolate it from the physical system’s acoustic response. This
PD pulse estimation can help precisely calculate the TDOA
and, thus, the PD position, alleviating the necessity for PD
denoising. The deformation of the PD shape, on the other
hand, could be caused by factors other than noise, such as
oil temperature and barriers between the PD source and the
sensor.

A pattern recognition-based method for PDL in an oil-filled
transformer using acoustic measurements was presented as an
alternative [5]. The method works by dividing the transformer
tank into smaller zones. The zone with the smallest spatial
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distance between its standard pattern vector and its indetermi-
nate pattern vector could reveal the PD location by comparing
the spatial distance between the two pattern vectors. The size
of the selected zones affects the proposed model’s reliability.
Minimizing the selected zones increases the accuracy but
increases the computational complexity.

In any measurement system, there are two types of prop-
agation errors: systematic and random. The primary goal
of our study is to determine the arrival time of various
acoustic signals. Systematic and random faults influencing
the sensor measurement include bias in the acoustic sensor
readings and external acoustic noise. The authors used dif-
ferent estimation strategies to localize the PD source using
a transformer insulation model in earlier works [6], [7], [8],
[9]. In [6], we suggested a nonlinear sequential technique
to detect bias in acoustic sensor readings to improve the
accuracy of PDL. By progressively processing the mea-
surements of the acoustic sensors, the suggested approach
finds the malfunctioning sensor and determines the bias error
integrated into its measurements. The estimator can still benefit
from utilizing the sensor’s measurements to detect the PD’s
location by subtracting the discovered bias from the related
sensor’s measurements. Both an extended Kalman filter (EKF)
and a multiple-model adaptive EKF (AEKF) were suggested
in [7] to estimate the ideal PD location in the transformer
insulation system after identifying and reducing the bias asso-
ciated with a malfunctioning sensor. The suggested method
is used to probabilistically determine the noise covariance
of AE signals, resulting in an optimal PD location estimate.
In [8], more work was done to use a maximum likelihood
estimation (MLE) approach to discover the statistics of the
dynamics and measurement noise sequences and to use that
information to improve PD location predictions. A variety of
estimation algorithms were described in [9] to estimate the PD
location that considers both measurement and dynamics noise
uncertainty as well as PD model uncertainty. The EKF, the
unscented Kalman filter (UKF), the smooth variable structure
filter (SVSF), the EK-SVSF, and the UK-SVSF are among
the estimators utilized. The results showed that the UK-SVSF
filter has the best estimation performance.

A. Contributions
This article proposes a novel invariant EKF (IEKF) for

estimating the PD location in an oil insulation system. The
proposed method enhances the estimation performance of
the PD’s location, as verified experimentally in this article.
Unlike the conventional EKF, the IEKF mimics the sys-
tem’s nonlinearity through the propagation and measurement
update steps, significantly enhancing the estimation’s perfor-
mance. The invariance property allows the IEKF to preserve
the model’s geometry, preventing the error from divergence.
Therefore, in comparison with the EKF, the IEKF produces
better tracking performance. The IEKF is presented discretely
to facilitate the implementation process at a low sampling rate.
As shown through the experimental verification, the IEKF
outperforms the EKF and UK-SVSF in the presence of a
significant mismatch between the model output and the true
measurement. The difference between the filters becomes more

Fig. 1. Schematic drawing of PD initialization to the sensors.

apparent when the initial state estimate is far from the true
state.

B. Structure
The rest of this article is organized as follows. Section II

demonstrates the method proposed in this work. The experi-
mental setup and results are discussed in Section III. Finally,
Section IV gives concluding remarks.

C. Notation

Throughout this article, R stands for the set of real num-
bers, Rn×m defines an n × m real dimensional space, and
Z = {0, 1, 2, . . .} is the set of nonnegative integer numbers.
In ∈ Rn×n stands for an n × n identity matrix. For any
xt ∈ Rn and t ∈ Z, xt refers to the value of x at sample
instant t . exp(·), P(·), E[·], sign(·), and diag(·) represent the
exponential, probability, expected value, sign, and diagonal of
a component, respectively.

II. METHODOLOGY

A. Problem Formulation

The PD system model used was presented in [6]. In this
model, the absolute time measurements are shown in Fig. 1.
These time measurements are modeled in (1) as a function of
the two unknown PD coordinates in space (x, y), the measured
arrival times Tsi, the assumed sound velocity vS , and the
Cartesian sensor coordinates (xsi, ysi)

(x − xsi)
2
+ (y − ysi)

2
= (vSTsi)

2. (1)

Fig. 2(a) shows the placement of the AE sensors around
the transformer tank. The PD source can be experimentally
initiated in any of the circled positions, as shown in Fig. 2(b).
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Fig. 2. PD initialization and modeling: (a) top view (b) side view.

The measurements of the sensors can be put in an equation
form as

yt = h(x p,t , xs)+ vt + µt (2)

h(x p,t , xs) =


√
(xt − xs1)2 + (yt − ys1)2√
(xt − xs2)2 + (yt − ys2)2√
(xt − xs3)2 + (yt − ys3)2

 (3)

where yt is the vector of the sensors’ measurements, x p,t

is the PD’s position vector with respect to the origin, xs is
the sensors’ position vector, h is a vector of the relation
between the PD’s position and the sensors’ positions, vt is
the vector of the sensors’ measurements’ noise vector of zero
mean and covariance Rt , and µt is the vector of possible
sensors’ measurements bias. This bias term is assumed to
have been estimated and removed using the method proposed
in [6]. In addition, (xt , yt ) are the xt and yt components of
x p,t , respectively, and (xsi, ysi) are the x and y components
of sensor i’s position, respectively. The discretized dynamic
equation of the system is given as follows:

x p,t = F x p,t−1 + ωt−1 (4)

where F is the transition matrix and is defined as a 2 ×

2 identity matrix and ωt is the Gaussian white dynamics noise
with zero mean and covariance Qt .

B. Overview of EKF

The EKF, using a set of observations, evaluates in real time
the updated estimate denoted by x̂ p,t = x̂ p,t |t ∈ R2, which
represents the state estimate utilizing all the measurements up
to time t . For a linear system, this represents an unbiased
estimate of the state. In addition, the EKF determines the
accuracy measure P(x p,t |y1:t ) of the estimated state, where
y1:t is the sequence of observations y1, y2, . . . , yt . The filter
operates in two stages: propagation and measurement update.
In the propagation stage, x̂ p,t−1 = x̂ p,t−1|t−1 is defined

utilizing the observed yt−1 and is propagated deterministically
mimicking the nonlinearity in (4) such that

x̂ p,t |t−1 = F x̂ p,t−1. (5)

Let us define the error between the true and the estimated state
as {

et−1 = x p,t−1 − x̂ p,t−1

et |t−1 = x p,t − x̂ p,t |t−1
(6)

where subscript t − 1 is related to a priori state employed
during propagation, while the subscript t |t−1 is utilized during
the measurement update or the correction step. Hence, the
covariances associated with the estimation error are defined
by Pt−1 = E[et−1e⊤

t−1] ∈ R2×2, Pt |t−1 = E[et |t−1e⊤

t |t−1],
and Pt = E[et e⊤

t ]. The EKF operates based on the system’s
model linearization performed using the first-order Taylor
series expansion of the nonlinear functions h(·, ·) described
in (3) where{

et |t−1 = F et−1 + ωt

yt − h(x̂ p,t |t−1) ≈ Ht et |t−1 + vt
(7)

where Ht = (∂h(x̂ p,t |t−1, 0))/∂x p, and the high-order terms
have been disregarded, visit [10]. Pt−1 is propagated using
the linearized system’s error dynamics in (7) as

Pt |t−1 = Ft Pt−1 F⊤
+ Qt . (8)

In the measurement update stage, an innovation component
is defined as zt = yt − h(x̂ p,t |t−1). The measurement and
covariance updates are defined by

x̂ p,t = x̂ p,t |t−1 + Kt zt (9)
Pt = (In − Kt Ht )Pt |t−1. (10)

Algorithm 1 summarizes the implementation steps of EKF.
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Algorithm 1 EKF Implementation Steps
Initialization:

1: Set x̂ p,0 ∈ R2, and the covariance P̂0 ∈ R2×2

loop
2: Define Ht , as in (7).
3: From (2) & (4), define Qt = Cov(ωt ) and

Rt = Cov(vt ).
/* Propagation */

4: x̂ p,t |t−1 = F x̂ p,t−1
5: Pt |t−1 = Ft Pt−1 F⊤

t + Qt

/* Measurement update */
6: St = Ht Pt |t−1 H⊤

t + Rt

7: Kt = Pt |t−1 H⊤
t S−1

t
8: zt = yt − h(x̂ p,t |t−1)

9: x̂ p,t = x̂ p,t |t−1 + Kt zt

10: Pt = (In − Kt Ht )Pt |t−1

end loop

C. UK-SVSF

The SVSF is paired with the UKF to achieve a noise-optimal
and model-robust estimator, as discussed in [9]. The SVSF
method is proposed to improve the filter’s resistance to
modeling uncertainty and the estimated state’s smoothness.
On the other hand, SVSF does not optimize the estimated state
against dynamics and measurement noise sequences, affecting
estimation accuracy. The SVSF is paired with the UKF to
produce a noise-optimal and model-robust estimator. The UKF
uses statistical linearization and the unscented transformation
to replace Jacobian calculations [11], [12]. UKF outperforms
EKF in terms of accuracy and reliability. However, it is more
computationally intensive as it avoids the EKF’s linearization
step by using 2n + 1 sigma points. All the details of imple-
menting UK-SVSF to estimate the PD location can be found
in [9].

D. IEKF Formulation

The formulation of the IEKF is described in this section.
First, the system’s model is reformulated, as shown in the
following.

1) Dynamics Reformulation: Let us recall the nonlinear
dynamics in (2){

xt = f (x p,t−1, ωt ), ω ∼ N (0, Q)
yt = h(x p,t , vt ), v ∼ N (0, R)

(11)

where 
P{ω(0) = 0} = P{v(0) = 1} = 0
E[ω] = E[v] = 0
E[ωω⊤

] = Q, E[vv⊤
] = R.

The fact that (11) follows the Gaussian process allows to
reformulate the state equation in the Gaussian process terms
as follows [13], [14], [15]:

x p,t = exp(diag(sign(F(x p,t−1))) diag(ψt ))F(x p,t−1) (12)

where F(·, ·) : Rn
× Rm

→ Rn is a nonlinear function, which
expresses the evolution of the system, ψ ∼ N (0, Q), ψ ∈

Rn denotes unknown Gaussian random noise, and the output
equation can be reformulated as follows:

yt = exp(diag(sign(H(x p,t ))) diag(µt ))H(x p,t ) (13)

where µ ∼ N (0, R), µ ∈ Rq denotes unknown Gaussian
random noise, H(·, ·) : Rn

× Rm
→ Rq is a nonlinear

function, which describes the system measured observation,
and yt ∈ Rq refers to the system output, which is equal to the
measured observation. µ and ψ satisfy

P{ψ(0) = 1} = P{µ(0) = 1} = 0
E[ψ] = E[µ] = 0
E[ψtψ

⊤
t ] = Qt , E[µtµ

⊤
t ] = Rt .

(14)

Remark 1 (Equivalency of Expectation [13], [14]):
From (12) to (14), it becomes apparent that E[ψ] =

E[µ] = 0 implies that E[exp(diag(sign(F(xt−1, ut )))diag
(ψt ))]|t=1:N = In and E[exp(diag(sign(H(xt , ut ))) diag
(µt ))]|t=1:N = Iq , which leaves the system dynamics
unaffected in the absence of noise. Thereby, one has{

E[xt ]|t=1:N = E[F(xt−1, ut )]|t=1:N

E[yt ]|t=1:N = E[H(xt , ut )]|t=1:N .
(15)

Next, the formulation of the IEKF is derived for discrete-time
systems.

2) IEKF Derivation for Discrete Systems: The widely used
IEKF is modeled on the Lie group and has been proposed
in a geometric matrix form [16]. However, the IEKF [16]
framework has not been presented for linear or nonlinear
systems in a vector form. Unlike EKF, the IEKF presented
in this section mimics the system dynamics presented in (12)
and (13). Analogous to EKF, IEKF consists of two stages,
namely, propagation and measurement update. Note that for
the deterministic part of (12), one has

x p,t = F(x p,t−1) = f (x p,t−1, 0).

Hence, the IEKF propagates a priori state estimate utilizing
the deterministic part of (12) such that

x̂ p,t |t−1 = f (x̂ p,t−1, 0). (16)

The error in estimation is defined by{
et−1 = x p,t−1 − x̂ p,t−1

et |t−1 = x p,t − x̂ p,t |t−1.
(17)

Thereby, the covariances associated with the error in (17) are
given by Pt−1 = E[et−1e⊤

t−1] ∈ Rn×n , Pt |t−1 = E[et |t−1e⊤

t |t−1],
and Pt = E[et e⊤

t ]. Similar to (7), using the first-order Taylor
series expansion of the nonlinear functions h(·, ·) described in
(2), one finds{

et |t−1 = Ft et−1 + ωt

yt − h(x̂ p,t |t−1) ≈ Ht et |t−1 + vt
(18)

where Ht = (∂h(x̂ t |t−1, 0))/∂x , and the high-order terms have
been overlooked. Pt−1 is propagated as follows:

Pt |t−1 = Ft Pt−1 F⊤

t + Qt . (19)
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Fig. 3. Overall system setup. (a) Transformer tank system. (b) Location of the barrier inside the transformer tank model.

Algorithm 2 IEKF Implementation Steps
Initialization:

1: Set x̂ p,0 ∈ R2 and the covariance P̂0 ∈ R2×2

loop
2: Define Ht , as in (18).
3: Define Qt = Cov(ωt ) and Rt = Cov(vt ).

/* Propagation */
4: x̂ p,t |t−1 = F x̂ p,t−1
5: Pt |t−1 = Ft Pt−1 F⊤

t + Qt

/* Measurement update */
6: St = Ht Pt |t−1 H⊤

t + Rt

7: Kt = Pt |t−1 H⊤
t S−1

t
8: zt = yt − h(x̂ t |t−1)

9: x̂ p,t = exp
(
diag(sign(x̂ p,t |t−1)) diag(Kt zt )

)
x̂ p,t |t−1

10: Pt = (In − Kt Ht )Pt |t−1

end loop

The a priori state estimate in (16) mimics the deterministic part
of the true nonlinear measurements in (2). To accommodate
for the noise in (12) and mimic the nonlinear dynamics in (12),
let us define zt = yt − h(x̂ p,t |t−1) and obtain the a posteriori
state estimate as follows:

x̂ p,t = exp(diag(sign(x̂ p,t |t−1)) diag(Kt zt ))x̂ p,t |t−1. (20)

The covariance update is defined by

Pt = (In − Kt Ht )Pt |t−1. (21)

Algorithm 2 summarizes the implementation steps of
the IEKF.

E. Noise Uncertainty Mitigation

The filters proposed assume knowledge of the underlying
noise statistics plaguing the dynamics and measurement mod-
els. The estimation performance will adversely be affected

by improper noise covariance magnitude parameters. Conse-
quently, the statistics characterizing the dynamics and mea-
surement sequences is to be identified. For that purpose,
we employ an enhanced online MLE routine similar to the
one proposed in [8] to aid the filters to stay robust against the
aforementioned uncertainties.

The adaptation is given by (22) for the dynamics noise
covariance

Q̂t+1 = Kt et |t−1e⊤

t |t−1 Kt (22)

and (23) for the measurement noise covariance

R̂t+1 = et |t−1e⊤

t |t−1 − Ht Pt |t−1 H⊤

t . (23)

To improve the numerical stability of the above presented
adaptation, a forgetting factor update is used as follows:

Q̂t+1 = (α)Q̂t + (1 − α)Q̂t+1 (24)

R̂t+1 = (α)R̂t + (1 − α)R̂t+1 (25)

where 0 < α < 1 and its value is empirically set based on
observation. In the context of PDL, we recommend a value
α = 0.95.

The stability characteristics of approaches like the one
presented above are addressed in [17].

III. EXPERIMENTAL WORK

A. Setup Description

A sharp point connected to a 40-kV ac supply and immersed
inside a tank filled with mineral oil is used to generate the
PD at different locations inside the tank. The PD is measured
using three AE sensors with a resonance frequency of 45 kHz.
The AE sensors are attached to the tank’s wall and silicone
grease is applied between the tank surface and AE sensors to
minimize the reflections on the contact interfaces. The data
acquisition equipment used is a 60-MHz bandwidth digital
oscilloscope with a sampling rate of 10 million sample/s. The
overall system setup is shown in Fig. 3 [2]. Fig. 4 shows the
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Fig. 4. Actual measurement of AE PD signals in tests 1–4 from left to right.

measurements from the three AE PD sensors, and the time
difference between the AE signals’ rising edge of the first wave
head and a reference RF signal, where the PD was initiated at
location 5 shown in Fig. 2.

B. Experimental Results

This section investigates the IEKF as a computationally
simpler alternative for previously proposed stochastic filters
for PDL [9]. The effect of varying the initial conditions
on the performance of the filters is explored first. For a
single experiment, the filters are fed different initial conditions
to observe the capacity of each algorithm to recover and
converge to the true PD location. Then, the filters are fed
data from four experiments to quantitatively describe and
evaluate the performance of the proposed IEKF compared to
the more traditional filters. A total of four experimental tests
are run, and two out of the four experimental runs have added
barriers that serve to impede the signals from being detected
(see Fig. 5).

C. Effect of Initial Conditions on Estimation Accuracy

The PD location is generally unknown, and initial guesses
on its location can be arbitrary. A good estimation algorithm
should be able to recover from a bad initialization and not
“lock out” or prioritize the dynamics model prediction over the
measurement and vice versa. Here, the ability of the proposed
IEKF to recover from bad initialization and estimate the PD
location is compared against the traditional EKF as well as the
hybrid UK-SVSF. The algorithms are evaluated under an array
of initial conditions for the chosen experimental test; the filters
are run four times equally spaced erroneous initialization. The
initial state and initial covariance are set according to Table I
in all the test cases. In addition, noise covariance magnitudes
of Q = diag([2 2]) and R = 4500 are used in all the
tests.

Fig. 6 presents the experimental results of the chosen test for
all the tested conditions. The proposed IEKF is evidently very
capable at localizing the PD even when the initial conditions
are incorrect. As shown in Fig. 6, the IEKF performs better

Fig. 5. Top view of the experimental setup with PD source at location
2 coordinates with barriers installed in front of AE 2 (Experiment 3) and
AE3 (Experiment 4).

TABLE I
INITIAL CONDITIONS FOR THE TESTING SCENARIO IN SECTION III-C

than the traditional EKF in estimating the PD location for
every condition tested. The IEKF achieves similar performance
to the hybrid UK-SVSF in terms of convergence speed and
how close the PD estimate is to the true PD. However,
it is noteworthy that the estimate’s quality depends on the
chosen initial covariance P̂0 corresponding to the certainty
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Fig. 6. PDL experimental results.

TABLE II
MONTE CARLO RMSE FOR THE TESTING SCENARIOS

of the initial condition being tested as well as the choice of
noise covariance magnitude selected when designing the filter.
As shown in [18] and [16], the IEKF is immune to the losses in
the linearization associated with the classical EKF. This leads
to a decreased estimation error with time in the IEKF case,
while it might lead to divergence of the EKF. It is evident
that the nonlinear structure of the IEKF is proving advanta-
geous to the PDL problem due to the nonlinearities in the
system.

D. Algorithm Performance in Different Experimental Tests

Not only is a good estimator able to recover from lousy
initialization, but it should also perform well in different
conditions and environments. The proposed IEKF is further
evaluated on a total of four tests divided into two cases
with a barrier covering one of the AE sensors and two cases
without.

Fig. 7(a)–(d) shows the comparison between the IEKF, the
UKSVSF, and the EKF in localizing PD faults in the four
experimental tests performed. Fig. 7(a) and (b) shows the tests

without barriers and Fig. 7(c) and (d) shows the tests with
barriers. For all the tests, two initial PD locations are assumed
and tested. Results back up the finding in Section III-C.
The IEKF invariance property shines at estimating the fault
location compared with the EKF irrespective of the initial
condition, and it performs just as well as the hybrid UKSVSF.
Nonetheless, the proposed IEKF is arguably favored here
over the UKSVSF given the added complexity with the
UKSVSF from both an implementation perspective as well
as tuning the various parameters involved to attain good
performance.

E. Comparison With Other Methods

It is of interest to also compare the performance of the
IEKF in PDL to other stochastic filters. The IEKF is compared
with the approaches recently proposed and tested in [9].
The experimental data are processed here based on the IC2
initialization from Table I. The 100 run-averaged Monte Carlo
estimation results in terms of root-mean-square error are
presented in Table II. The results indicate that the proposed
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Fig. 7. Algorithm performance in experimental tests. (a) Test 1 (No barriers). (b) Test 2 (No barriers). (c) Test 3 (Barrier in front of AE 2). (d) Test 4
(Barrier in front of AE 3).

IEKF performs better than traditional approaches such as the
EKF and the UKF. Nevertheless, the SVSF method motivated
by variable structure theory and sliding mode control contends

with the proposed IEKF and performs similarly. So does
hybrid filters derived from the SVSF. However, hybrid filters
are reportedly difficult to tune as they involve many more
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parameters governing switching between the two filters and
parameters affecting each filter’s performance.

IV. CONCLUSION

In this article, a novel IEKF has been proposed to address
the problem of PDL. The IEKF is characterized by an invari-
ance property that allows the filter to preserve geometry,
preventing error divergence. The filter has been shown to
mimic the nonlinear system dynamics in terms of propagation
and measurement update.

The IEKF was tested using multiple data sequences involv-
ing PD. The discharge was invoked at multiple locations in
the experimental tank, and experiments were repeated with
and without AE sensor interference in the form of physical
barriers installed between the sensor and the tank. Extensive
experimental verification of the algorithm established its supe-
riority over the traditional EKF- and UKF-based approaches,
especially when the initial conditions fed to the algorithm
are incorrect. The IEKF has been successfully implemented
at a low sampling rate, revealing the proposed solution’s
computational inexpensiveness.
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