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Invariant Error-Based Integrated Solution for
SINS/DVL in Earth Frame: Extension

and Comparison
Hongqiong Tang , Jiangning Xu , Lubin Chang , Wence Shi , and Hongyang He

Abstract— The error propagation of traditional strapdown
inertial navigation system (SINS)/Doppler velocity log (DVL)
is not autonomous because its error state model is trajectory-
dependence. Recently, the invariant error defined on the Lie
group has raised much attention due to its trajectory-independent
and autonomous error propagation. In this article, the invari-
ant error-based Kalman filter for the SINS/DVL integration
solution is investigated with a main focus on its extension
and comparison. The contributions of this study are threefold.
First, the invariant error defined on the matrix Lie group
(group of double direct isometrics) is extended to model the
nongroup affine traditional SINS mechanism and the group affine
transformed SINS mechanism; both of them are derived in Earth
frame and augmented with the drift and bias of the inertial
measurement units (IMUs). Then, the observation equations
for different invariant error-based state models are derived
for SINS/DVL application, a theoretical analysis is performed,
and a comprehensive evaluation is conducted under different
maneuvering conditions by lake field trial. Finally, the variational
Bayesian approach is introduced into the invariant error-based
Kalman filter to infer the inaccurate process noise covariance
matrix (PNCM) and time-varying measurement noise covariance
matrix (MNCM) from a practical perspective; experimental
results demonstrate that it can improve the navigation accuracy
significantly. This study is expected to facilitate the selection of
appropriate invariant error to SINS/DVL applications.

Index Terms— Invariant error-based model, Lie groups,
strapdown inertial navigation system (SINS)/Doppler velocity
log (DVL), underwater navigation, variational Bayesian (VB)
approach.

NOMENCLATURE

Id d × d identity matrix.
0d d × d zero matrix.
0m×n m × n zero matrix or vector.
i, e, b Inertial frame, Earth frame, and body

frame, respectively.
(·)× Skew-symmetric matrix operation.
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χ � [C, v, p] Embedded navigation states attitude C,
velocity v, and position p on Lie group
with χ ∈ SE2(3).

b = [εb,∇b] Sensor bias vectors εb and ∇b denote
gyroscope and accelerometer bias,
respectively.

ϕ, δv, δp Traditional attitude error defined on
SO(3), and the velocity and position error
variable defined in Euclidean space.

dv,dp Velocity and position state error variable
represented by Lie algebra, respectively.

δx Traditional error state with considering
sensor bias.

dxe
l , dxe

r Left- and right-invariant Lie algebra error
state including sensor bias under tradi-
tional nongroup affine SINS mechaniza-
tion in Earth frame, respectively.

dxe
lg, dxe

rg Left- and right-invariant Lie algebra error
state including sensor bias under tradi-
tional group affine SINS mechanization
in Earth frame, respectively.

Tl, Tr , Tlg, Trg Transformation matrix between invari-
ant error state covariance and traditional
error state covariance.

(·̃), (·̂) Priori estimate vector of state and poste-
riori estimate vector of state.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) play a
critical role in biological monitoring, oceanographic

surveys, military underwater surveillance, and so on, and
all of these tasks are dependent on the accurate naviga-
tion information provided by AUVs [1], [2], [3]. Since the
electromagnetic-based signals with position functional will
attenuate rapidly underwater [3], [4], underwater localization
is a particularly challenging problem compared with land-
based vehicles’ location. Fortunately, the strapdown inertial
navigation system (SINS) integrated with other complemen-
tary acoustic navigation techniques, such as Doppler veloc-
ity log (DVL) [6], [7], long baseline (LBL)/short baseline
(SBL)/ultrashort baseline (USBL), and single beacon [4],
[5], can be used for underwater accurate positioning. The
LBL/SBL/USBL and single beacon generally require extensive
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setup and expensive investment and are easily disturbed by
cluttered environment, while DVL is an alternative for its flex-
ibility and autonomy [8]. The SINS/DVL integrated navigation
system can alleviate the inevitably accumulated errors and
becomes the commonest navigation solution for underwater
vehicles [9], [10].

For integrated navigation applications, there are two dif-
ferent integration procedures, direct model [12] and indirect
model [13], [14], which can be used for SINS/DVL. The
navigation states, including attitude, velocity, and position, will
be selected directly as state variables for the direct model.
The latter, established on error state-space model, is more
preferred as the superiority of linear Kalman filter in terms
of computational efficiency [14]. Many Kalman filter methods
can be used for error estimation [11], [15]. Traditionally, the
extended Kalman filter (EKF) is usually used for SINS/DVL
integrated navigation. The EKF usually approximates the
integrated navigation system, which is a nonlinear system in
different navigation frames, by first-order approximation to
stabilize the linearized estimation error [15]. The traditional
EKF adopts this kind of linearization operation attempt to
derive local convergence properties around any trajectory.
However, the local stability of EKF is aleatory [17], [18], [19]
and may suffer from inconsistency in some applications, such
as simultaneous location and mapping (SLAM) [16]. It follows
the assumption that the estimated error is sufficiently small to
be propagated analytically through the first-order linearization
around the previously estimated trajectory. When the estimated
trajectory is far from the truth, the linearization based on the
estimated trajectory is uncredible, and it may induce positive
feedback to the filter [19].

In fact, the reason for this phenomenon can be attributed to
its error definition. Different error state definitions can lead to
different performances. Hartley et al. [20] derived a contact-
aided inertial navigation observer for a 3-D bipedal robot
using the theory of invariant observer design, and the contact-
aided InEKF provides better performance in comparison with
the quaternion-based EKF. Li and Chang [21] revisited the
MEKF for INS/GPS with the utilization of navigation frame
attitude error model rather than the attitude error that is
used as the local filtering state expressed in the body frame.
Heo and Park [22] defined the error in the Lie group to
address the inconsistency of EKF. Wang et al. [23], [24]
transformed the traditional velocity error representation with a
new velocity error considering the attitude error and proposed
a state-transformed EKF (STEKF) to improve the consistency
and accuracy of integrated navigation. The traditional state
error is commonly defined as the algebraic difference of
vectors without considering the vector’s representation [25],
[26]. The invariant EKF (IEKF) [15], [19], whose error state
defined by invariant error, derived based on the matrix Lie
Group has proven that it outperforms the EKF in theory
and experiment. Actually, the error state model, where the
attitude error is usually defined in a special orthogonal (SO)
group, while another error is defined in Euclidean space, has
been widely used in inertial applications, especially in attitude
estimation [17], [21].

Recently, the group of double direct spatial isometries
SE2(3) is introduced to formulate the attitude, velocity, and
position into a group [15]. Through formulating the navigation
parameter into SE2(3), the vector error state corresponding to
the SE2(3) group-based invariant error satisfies a log-linear
autonomous differential equation if the group-based state
dynamical system is group affine [15]. However, the primitive
SINS dynamic equation embedded on group is not completely
group affine and can be regarded as an approximated model
if ignored the Coriolis and centrifugal force. In the Earth-
centered Earth-fixed (ECEF) frame, the SINS mechanism can
be transformed into a group affine form [27], [28], [29], and
the striking group affine property, the ability to handle the
large initial attitude misalignments in inertial alignment, can
be fully exploited [30], [31], [32]. The invariant error state
on the matrix Lie group, named left- or right-invariant error,
is defined as the product between the inverse of the true state
and the estimated state or conversely. Introducing an auxiliary
in Earth frame or adopting the GNSS-aided decomposition
procedure in the east–north–upward (ENU) frame can make
the SINS mechanism satisfies group affine and further embed
into the IEKF framework [31]. From the common frame error
definition perspective, state transformation techniques have
been applied to the coordinate-frame consistency of velocity
error vector [23], [24] but not take the position error into
consideration. Regardless of whether the SINS differential
equation embedded on the group satisfies the group affine,
the invariant error can be employed to construct the error
state model, just as the traditional error definition can be
utilized to model the error differential equation in different
navigation frames. The position error expressed in the ENU
frame is usually tiny, which will cause numerical instability
in the Kalman filter calculation. This article only investigated
the error state in the Earth frame.

For SINS/DVL integrated applications, there remain some
issues that need to be addressed. On the one hand, the
measurement accuracy of DVL will not exceed 0.3% under
a low dynamic environment, while it can be up to 2% in a
complex environment, and the measurement noise is unknown
and time-varying [7]. Thus, it is unrealistic to set proper
parameters for all conditions and it may lead to parame-
ter mismatch. On the other hand, even though the attitude,
velocity, and position can be embedded on the Lie group,
the drift and bias of inertial measurement unit (IMU) cannot,
which play an important role in navigation and cannot be
acquired accurately before navigation. However, the Kalman
filter works well based on the assumption that the accurate
process noise covariance matrix (PNCM) and the measure-
ment noise covariance matrix (MNCM) can be acquired in
advance [33]. There is lack of solutions for dealing with the
adaptivity of invariant error-based Kalman filter. To address
the parameter mismatch, adaptive methods, including correc-
tion, covariance matching, maximum likelihood (ML), and
Bayesian inference, can be used for the Kalman filter [33],
[34], [35], [36], [37], [38], [39], [40]. Wang et al. [36]
introduced the improved Sage–Husa adaptive Kalman filter
(SHAKF) into an SINS/DVL tightly integrated model, where
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four beams’ measurements are used rather the 3-D velocity.
Based on the ML principle, a new adaptive unscented Kalman
filter (UKF) with process noise covariance estimation is pro-
posed to enhance the UKF robustness against process noise
uncertainty [37]. In [38], to improve the speed of convergence,
rotation vectors instead of traditional Euler angles were used
and developed an algorithm to automatically tune the MNCM
using adaptive Kalman filtering. In [39], an algorithm based
on variational Bayesian (VB) for attitude estimation was
proposed. A robust initial alignment method for SINS/DVL
is proposed in [40] to solve a practical applicable issue,
which is that the outputs of DVL are often corrupted by the
outliers. The mentioned above adaptive filters almost cannot
estimate the process noise and measurement noise simulta-
neously. However, a novel VB-based adaptive Kalman filter
(VBAKF) was proposed in [33] to estimate an inaccurate and
slowly varying MNCM and unknown PNCM. The simulation
results demonstrated that the VBAKF outperforms the existing
state-of-the-art filters, and it is a good choice to employ
the VB into SINS/DVL application to enhance its adaptive.
Wang et al. [34] and Wang and Chen [35] employed the
VB approach into SO(3)-based IEKF for attitude estimation
for spacecraft and robotic applications where the inaccurate
process noise or heavy-tailed process noise occurred. In our
following method, we employed the VB into SE2(3) IEKF, the
Lie group adopted is not the same as in [34] and [35], to infer
the inaccurate process noise and the time-varying measurement
noise at the same time for SINS/DVL integrated system, and
verified its adaptive by field test.

As mentioned above, this article focuses on the extension
of invariant error-based Kalman filter for SINS/DVL and
its adaptivity. The contributions of this article include the
following.

1) The derivation of error state models considering IMU bias
based on the SE2(3) left- and right-invariant error definition
for SINS mechanization and transformed SINS mechanization
in the Earth frame.

2) The theoretical analysis points out that the left-invariant
error definition is more appropriate for SINS/DVL integrated
navigation when the IMU bias is considered regardless of the
error state dynamic that is group affine or not. The theoretical
analysis is well verified by the lake field test on different
maneuvering conditions.

3) The VB approach is introduced into invariant error-
based Kalman filter to infer the PNCM and MNCM online,
and experiments demonstrated that it can achieve superior
performance for its adaptive capabilities.

The remainder of this article is organized as follows.
Section II gives a brief SINS mechanization in the Earth frame
and mathematical preliminaries about the Lie group, invariant
error representation, and group affine. The error state models
based on invariant error under nongroup affine and group
affine are derived in Section III, and the model analysis is
also performed. The observation equations for different error
models are deduced in Section IV, and VB is adopted to infer
the time-varying MNCM and inaccurate PNCM. In Section V,
a lake trial experiment is conducted to make a comparison

and evaluation. Conclusions and suggestions are drawn in
Section VI.

II. SINS MECHANIZATION AND

MATHEMATICAL PRELIMINARY

In this section, SINS mechanization and transformed SINS
mechanization in ECEF are presented. Then, some useful
matrix Lie group and Lie algebra and its relationship are
presented. The transformed SINS mechanization dynamics
with Lie group representation that is group affine is verified.

A. SINS Mechanization in ECEF

The traditional SINS mechanization in ECEF is given
by [30] ⎧⎪⎨

⎪⎩
Ċe

b = Ce
b

(
ωb

ib×
)− (

ωe
ie×

)
Ce

b

v̇e = Ce
bfb − 2

(
ωe

ie×
)
ve + ge

ṗe = ve

(1)

where e denotes the ECEF frame, i denotes the inertial
frame, and b denotes the body frame. (·×) denotes the skew-
symmetric matrix operation. Ce

b is the direction cosine matri-
ces from b-frame to e-frame. ve and pe are the velocity and
position in the e-frame, respectively. ωb

ib is the body angular
rate expressed in the b-frame measured by the gyroscopes.
fb is the specific force in the b-frame measured by the
accelerometers. ωe

ie is the Earth rotation in e-frame. ge is
the gravity vector, and the relationship with the gravitational
vector ḡe is given by

ge = ge − (
ωe

ie×
)2

pe. (2)

The transformed SINS mechanization is formulated by
introducing an auxiliary velocity vector [25]⎧⎪⎨

⎪⎩
Ċe

b = Ce
b

(
ωb

ib×
)− (

ωe
ie×

)
Ce

b

v̇
e = Ce

bfb − (
ωe

ie×
)
ve + ge

ṗe = ve − (
ωe

ie×
)
pe

(3)

where the auxiliary velocity vector is given by

ve = ve + (
ωe

ie×
)
pe. (4)

Remark 1: The transformed SINS mechanization is derived
in the ECEF frame while not in ENU frame due to the strong
coupling of navigation states. The transformed SINS mecha-
nization in ECEF is group affine, while SINS mechanization
in ENU frame is not; this property leads to two dominantly
striking advantages that the error is trajectory-independent and
log linearity [15]. The detailed explanation will be given in
Section II-C.

B. Matrix Lie Group and Lie Algebra

The Lie group encompassed the concepts of group and
smooth manifold in a unique body means that a Lie group is
a smooth manifold whose elements satisfy the group axioms
[41], and the calculus can be conducted to the unique tangent
space of each point; the tangent space is a linear or vector
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space. In the general navigation and position application, the
matrix Lie group SE2(3), also called the group of double direct
isometrics [16], [19], is used to represent the extended pose
as

SE2(3) =
⎧⎨
⎩χ =

⎡
⎣ C v p

01×3 1 0
01×3 0 1

⎤
⎦ ∈ R

5×5

∣∣∣∣∣∣
C ∈ SO(3)
v, p ∈ R

3

⎫⎬
⎭ (5)

where χ is a 5×5 matrix with attitude rotation matrix C ∈ SO
(3) which is a special orthogonal group, the velocity vector
v ∈ R

3 and position vector p ∈ R
3. The inverse of group state

is given by

χ−1 =
⎡
⎣ CT −CTv −CTp

01×3 1 0
01×3 0 1

⎤
⎦ ∈ SE2(3). (6)

The Lie algebra associated with SE2(3) is given by

se2(3) �
{
ξ∧ =

[
ϕ× v ρ

02×3

]
∈ R

5×5

∣∣∣∣ ξ =
[
ϕ, v,ρ

]T

ϕ, v,ρ ∈ R
3

}
. (7)

The Lie algebra SE2(3) space is equivalent with the 9-D
Euclidean space in representation as the operation (·^) is a
linear map operation. The Lie algebra and the Lie group can
be transformed by each other by exponential mapping exp(·)
and logarithmic mapping log(·) as follows:

χ = exp(ξ ) =
⎡
⎣ expm(ϕ×) Jlv Jlρ

01×3 1 0
01×3 0 1

⎤
⎦ (8)

ξ = log(χ) =
⎡
⎣ ζa

J−1
l v

J−1
l p

⎤
⎦ (9)

where ϕ = ζa is the rotation vector, ζ denotes the rotation
angle, and a is the unit-length axis of rotation. expm(ϕ×) is
the matrix exponential operation, expm(ϕ×) ≈ I3+ (ϕ×) if ζ
is small angle. Jl and J−1

l are given by

Jl = sin ζ

ζ
I3 +

(
1− sin ζ

ζ

)
aaT +

(
1− cos ζ

ζ

)
(a×)

(10)

J−1
l =

ζ

2

cot ζ

2
I3 +

(
1− ζ

2

cot ζ

2

)
aaT − ζ

2
(a×) (11)

when ζ is assumed to be small, and then, Jl ≈ I3+(ϕ×)/2 and
J−1

l ≈ I3 − (ϕ×)/2.

C. Group Affine and Invariant Error Representation

Consider that a class of dynamical systems with differential
equation χ̇ = fu(χ), where χ lives in the Lie group and
u is an input variable. Define two different nonlinear errors,
namely, the left-invariant error ηl = χ̃−1χ and right-invariant
error ηr = χχ̃−1, where χ is the ground-truth value and χ̃ ,
which lives in the Lie group, is the estimated value of χ .

Formulating the attitude Ce
b, velocity v̄e, and position pe as

elements of the group SE2(3)

χ =
⎡
⎣ Ce

b ve pe

01×3 1 0
01×3 0 1

⎤
⎦. (12)

The left-invariant error and the right-invariant error between
χ and χ̃ can be written as

ηl = χ̃−1χ =
⎡
⎢⎣ C̃e T

b Ce
b C̃e T

b

(
ve − ṽ

e
)

C̃e T
b (pe − p̃e)

01×3 1 0
01×3 0 1

⎤
⎥⎦
(13)

ηr = χχ̃−1 =
⎡
⎣Ce

bC̃e T
b ve − Ce

bC̃e T
b ṽ

e
pe − Ce

bC̃e T
b p̃e

01×3 1 0
01×3 0 1

⎤
⎦.

(14)

Then, (3) can be reformulated as the following compact
form:

χ̇ = fu(χ) = χW + Uχ

= χ

⎡
⎣
(
ωb

ib×
)

fb 0
0 0 1
0 0 0

⎤
⎦+

⎡
⎣−

(
ωe

ie×
)

ge 0
0 0 −1
0 0 0

⎤
⎦χ . (15)

Furthermore, for ∀χ , χ̃ ∈ SE2(3), where χ and χ̃ are the
solution of (15), the deterministic dynamics (15) satisfies the
following equation:

fu(χχ̃) = fu(χ)χ̃ + χ fu(χ̃)− χ fu(I5)χ̃ . (16)

According to [15, Th. 1], a dynamic system, which follows
the abovementioned relationship, is regarded as group affine
dynamic, the left-invariant error and the right-invariant error
are trajectory-independent, and the error model is independent
of the global estimated states. Taking the left-invariant error
as an example, it can be easily verified that the following
equation always holds on for any χ and ηl

η̇l = gu
(
ηl

) = −χ̃−1 fu(χ)ηl + χ̃−1 fu
(
χηl

)
. (17)

In the particular case where χ = I5, (17) becomes

η̇l = fu
(
ηl

)− fu(I5)ηl = ηlW −Wηl . (18)

For the right-invariant error, the following differential equa-
tion for ηr can be obtained:

η̇r = fu
(
ηr

)− ηr fu(I5) = Uηr − ηrU. (19)

Remark 2: In (18), it is shown that the differentiation
of left-invariant error is undoubtedly trajectory-independent.
However, the differentiation of right-invariant error is not in
the strict sense, because U embeds the pe

ib into ge. The pe
ib

is coupled into U by a second-order fractional quantity of
ωe

ie, and the error introduced is only (ωe
ie×)2δpe, which plays

a limited negative effect, or even negligible. Therefore, the
rightinvariant error differential equation can be regarded as
trajectory-independent to some extent. It is easy to verify that
the SINS mechanization in Eq. (1) cannot be rewritten into
a compact form like Eq. (15) that W and U is independent
of global states, whose differential equation for the invariant
error is not group affine.

Consider the left-invariant error as define in Eq. (13), let
Au be defined by gu(ηl) = gu(ξ l) = (Auξ l)

∧ +O(�ξ l�2)[15],

the linear differential equation in R
9 can be write as ξ̇ l = Auξ l .

According to the log-linear property of error in [15], for
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arbitrary large initial errors ξ l,0 ∈ R
9, if ηl,0 = exp(ξ l,0).

Then the nonlinear error for all times t ≥ 0 can be exactly
recovered by ηl,t = exp(ξ l,t ) without approximation error,
which leads to follow the standard Kalman Filter guarantees
especially with local asymptotic stability.

III. ERROR STATE MODEL AND ANALYZATION

In this section, the traditional error state model whose errors
are defined as the direct differences of the vectors without
considering the vector representation is first derived. Then, the
error state model based on the left- and right-invariant errors
is derived under the SINS kinematic without group affine.
The error state model is derived based on the group affine
transformed SINS mechanization. Finally, a heuristic analysis
for different error state models is performed.

A. Traditional Error State Model

For the intermediate-grade and the navigation-grade IMU,
the sensor errors of accelerometers and gyroscopes can be
modeled as a random walk process

δωb
ib = εb + wb

g, ε̇
b = 0 (20)

δfb = ∇b + wb
a, ∇̇b = 0 (21)

where εb is the gyroscope bias, wb
g is the corresponding

zero-mean Gaussian noise, ∇b is the accelerometer bias, and
wb

a is the corresponding zero-mean Gaussian noise.
Denote the attitude error corresponding to Ce

bC̃
eT
b in the

Euler angle form as ϕr . The velocity and position error are
defined directly by the difference of the estimated value and
the truth value. If ϕr is assumed to be a small value⎧⎪⎨

⎪⎩
Ce

bC̃e T
b ≈ I3 +

(
ϕr×

)
δve = ṽe − ve

δpe = p̃e − pe.

(22)

According to (1) and (22), the traditional error state model
is given by⎧⎪⎨

⎪⎩
ϕ̇r = −

(
ωe

ie×
)
ϕr − C̃e

bδω
b
ib

δv̇e = (
C̃e

b f̃b×)ϕr − 2
(
ωe

ie×
)
δve + C̃e

bδfb

δṗe = δve

(23)

where δωb
ib = ω̃b

ib − ωb
ib, ω̃

b
ib is the body angular rate with

noise measured by gyroscopes, δfb = f̃b− fb, f̃b is the special
force with noise measured by accelerometers. More derivation
detail can refer Appendix A. Actually, the traditional error can
be viewed as definition on SO(3)+ R

6.
Furthermore, taking the bias of inertial sensors into consid-

eration, define the traditional error state vector as

δx = [
ϕr δve δpe εb ∇b

]T
. (24)

The corresponding error state model (named SO) is given
by

δẋ = Fδx +Gw (25)

where w = [wb
g, wb

a]T and F and G can be referred in
Table VII.

B. Invariant Error State Model Without Group Affine

For dynamic systems, whether the group affine is sat-
isfied is not a necessary prerequisite for employing the
SE2(3)-based invariant error representation. In other words,
the SE2(3)-based invariant error is just an error representa-
tion, which can be employed for any deterministic system.
Therefore, SE2(3)-based invariant error definition for dynamic
systems (1) and its error propagation equation can be derived.

For the left-invariant error definition, denote the attitude
error corresponding to C̃

eT
b Ce

b in Euclidean space as ϕl , and
denote the vector-form velocity and position errors corre-
sponding to C̃e T

b (ve − ṽe) and C̃e T
b (pe − p̃e) as dve

l and
dpe

l , respectively. If ϕl is assumed to be a small value, the
left-invariant error can be approximated as⎧⎪⎨

⎪⎩
C̃e T

b Ce
b ≈ I3 +

(
ϕl×

)
dve

l ≈ C̃e T
b

(
ve − ṽe

) = −C̃e T
b δve

dpe
l ≈ C̃e T

b

(
pe − p̃e

) = −C̃e T
b δpe.

(26)

Define the error state vector as

dxe
l =

[
ϕl dve

l dpe
l εb ∇b

]T
. (27)

The derivation of left-invariant error state model augmented
IMU bias for traditional SINS mechanization is given by⎧⎪⎨

⎪⎩
ϕ̇l = −

(
ω̃b

ib×
)
ϕl − δωb

ib

ḋv
e
l = −

(
f̃b×)ϕl −

(
ω̃b

ib + ω̃b
ie

)× dve
l − δfb

dṗe = dve
l −

(
ω̃b

ib + ω̃b
ie

)× dpe

(28)

where ω̃b
ie = C̃

eT
b (ωe

ie×)C̃
e
b is the Earth rotation is expressed

in the b-frame. The detail of derivation above formulas can
refer to Appendix B. Then, the corresponding error state model
(denoted as LSE) is given by

dẋe
l = Fldxe

l +Glw (29)

where Fl and Gl can be referred in Table VII.
For the right-invariant error (14), denote the attitude error

corresponding to Ce
bC̃

eT
b in Euler space form as ϕr , and denote

the vector-form velocity and position errors corresponding to
ve − Ce

bC̃
eT
b ṽe and pe − Ce

bC̃
eT
b p̃e in (14) as dve

r and dpe
r ,

respectively. If ϕr is assumed to be a small value, the right-
invariant error can be approximated as⎧⎪⎨

⎪⎩
Ce

bC̃e T
b ≈ I3 +

(
ϕr×

)
dve

r ≈ ve − Ce
bC̃e T

b ṽe ≈ (
ṽe×)ϕr − δve

dpe
r ≈ pe − Ce

bC̃e T
b p̃e ≈ (

p̃e×)ϕr − δpe.

(30)

Define the error state vector as

dxe
r =

[
ϕr dve

r dpe
r εb ∇b

]T
. (31)

The derivation of right-invariant error state model aug-
mented with IMU bias for traditional SINS mechanization is
given by⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ϕ̇r = −

(
ωe

ie×
)
ϕr − C̃e

bδω
b
ib

dv̇e
r =

[(
ge×)− (

ṽe×)(ωe
ie×

)]
ϕr − 2

(
ωe

ie×
)
dve

r

−(ṽe×)C̃e
bδω

b
ib − C̃e

bδfb

dṗe
r = −

(
p̃e×)(ωe

ie×
)
ϕr + dve

r −
(
p̃e×)C̃e

bδω
b
ib.

(32)
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The detail of derivation can refer to Appendix C. Then, the
corresponding error state model (named RSE) is given by

dẋe
r = Fr dxe

r +Gr W (33)

where Fr and Gr can refer to Table VII.

C. Invariant Error State Model Within Group Affine

By introducing the auxiliary velocity vector (4) into
traditional SINS mechanization (1), the transformed SINS
mechanization (3) can be derived. The transformed SINS
mechanization formulated within Lie group satisfies the group
affine property and its error dynamics is exactly log linear.
In fact, the log-linear error system is only an approximation
of the existing sensor noise and IMU bias, and however, the
performance on initial alignment is proven outstanding [30].

For the transformed SINS mechanization, the traditional
velocity and position error and its differentiation are given
by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
δve = ṽ

e − ve = δve + (
ωe

ie×
)
δpe

δv̇
e = (

Ce
b f̃b×)ϕ − (

ωe
ie×

)
δve + Ce

bδfb

δpe = p̃e − pe

δṗe = δve − (
ωe

ie×
)
δpe.

(34)

For the left-invariant error (13) within group affine system
(15), denote the attitude error as ϕl , and denote the velocity
and position vector-form error corresponding to the element
C̃e T

b (ve− ṽ
e
) and C̃e T

b (pe− p̃e) as dve
lg and dpe

lg , respectively.
The subscript means that the error is defined for group affine
systems. If ϕl is assumed to be a small value, the left-invariant
error can be approximated as{

dve
lg ≈ C̃e T

b

(
ve − ṽ

e
)
= −C̃e T

b δve

dpe
lg ≈ C̃e T

b

(
pe − p̃e

) = −C̃e T
b δpe.

(35)

Define the error state vector as

de
lg =

[
ϕl dve

lg dpe
lg εb ∇b

]T
. (36)

The derivation of left-invariant error state model augmented
IMU bias for transformed SINS mechanization is given by⎧⎪⎨

⎪⎩
ϕ̇l = −

(
ω̃b

ib×
)
ϕl − δωb

ib

dv̇
e
lg = −

(
f̃b×)ϕl −

(
ω̃b

ib×
)
dve

lg − δfb

dṗe
lg = dve

lg −
(
ω̃b

ib×
)
dpe

lg .

(37)

The above derivation is similar to (28), but it can clearly
conclude that the error dynamic is independent to estimated
global states, while (28) is not. Then, the corresponding error
state model (named LSEGA) can be rewritten as

dẋe
lg = Flgdxe

lg +Glgw (38)

where Flg and Glg can be referred in Table VII.
For the right-invariant error (14) within group affine system

(15), denote the attitude error as ϕr , and denote the velocity
and position vector-form error corresponding to the element
ve−Ce

bC̃e T
b ṽ

e
and C̃e T

b (pe−p̃e) as dve
rg and dpe

rg , respectively.

TABLE I

RELATIONSHIP WITH ESTIMATED STATE FOR ERROR STATE
MODEL CONSIDERING IMU DRIFT BIAS

If ϕr is assumed to be a small value, the right-invariant error
can be approximated as⎧⎪⎪⎨

⎪⎪⎩
Ce

bC̃e T
b ≈ I3 +

(
ϕr×

)
de

rg ≈ ve − Ce
bC̃e T

b ṽ
e ≈

(
ṽ

e×
)
ϕr − δve

dpe
rg ≈ pe − Ce

bC̃e T
b p̃e ≈ (

p̃e×)ϕr − δpe.

(39)

Define the error state vector as

dxe
rg =

[
ϕr dve

rg dpe
rg εb ∇b

]T
. (40)

The derivation of right-invariant error state augmented IMU
bias for transformed SINS mechanization is given by⎧⎪⎪⎨
⎪⎪⎩

ϕ̇r = −
(
ωe

ie×
)
ϕr − C̃e

bδω
b
ib

dv̇
e
rg =

(
ge×)ϕr −

(
ωe

ie×
)
dvrg −

(
ṽ

e×
)

C̃e
bδω

b
ib − C̃e

bδfb

dṗe
rg = dve

rg −
(
ωe

ie×
)
dpe

rg −
(
p̃e×)Ce

bδω
b
ib.

(41)

The detail of derivation above formulas can refer to
Appendix D. Then, the corresponding error state model
(named RSEGA) is given by

dẋe
rg = Frgde

rg +Grgw (42)

where Frg and Grg can be referred in Table VII.

D. Analyzation for Different Error State Model

The error state models in (25), (29), (33), (38), and (42) are
denoted as SO, LSE, RSE, LSEGA, and RSEGA, respectively.
For clarity, a summary table is provided in Table VII for differ-
ent error state models. If the IMU measurement is noise-free
and bias-free, LSEGA (RSEGA) will be independent with esti-
mated states and its errors will be propagated autonomously.
However, the IMU drift bias needs to be estimated to attenuate
error divergence in practice, and the error state model will
be slightly or strongly coupled by the estimated states. The
relationship between the different error state models and the
estimated states considering the IMU drift bias is summarized
in Table I. It can be observed that RSE and RSEGA are
more state-dependently than the other models, while LSEGA is
completely (to some extent) independent with estimated states
and its error propagation will be autonomous.

The LSE is not completely decoupled from the estimated
states, the product of estimated attitude and the Earth rotation
rate ωe

ie ≈ 7.292115× 10−5 rad/s, and ω̃b
ie is coupled to the

error model. However, this negative effect is limited compared
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to the product of attitude and velocity or position, that is to
say, LSE will be better than the RSE (RSEGA).

Remark 3: Despite the fact that both the SO and LSE
are associated with the estimated attitude, the mechanisms
affecting their error propagation are different. For the SO,
the estimated attitude matrix will be applied on both IMU
measurements and bias, and the residual error will be propa-
gated to the following error estimation through two channels,
especially the attitude and velocity errors. However, for the
LSE model, the residual error in attitude estimation will
only act on ωe

ie negligibly, and the experimental results in
Section V can prove this theoretical inference. For the RSE
and RSEGA models, it can be noted that the latter has less
correlation with the estimated states, which only acts on the
IMU bias due to the introduction of the group affine error
representation, while the RSE has a more complex dependence
on the estimated states.

IV. APPLICATION FOR SINS/DVL WITH VB

In this section, the measurement equations of SINS/DVL
for different error models are first deduced. Then, the Kalman
filter parameters (initial covariance) are initialized and feed-
back corrections are given for the different error state mod-
els. Finally, the VB approach is incorporated for invariant
error-based state models to infer inaccurate PNCM and vary-
ing MNCM online, and an example algorithm is given for
illustration.

A. Measurement Equations Establishment for SINS/DVL
Integrated Navigation in Different Error State Model

For the integrated SINS/DVL, the measurement is the
body velocity vb. It can be verified that the measurement
is neither left- nor right-invariant observation for the trans-
formed group state (13), but right-invariant for nontransformed
group [30].

For the traditional error state model (25), the indirect error
observation is derived as

z = ṽe − C̃e
bvb ≈ ṽe − [

Cb
e

(
I3 + ϕr×

)]T
vb

= −(ve×)ϕr + δve

= Hδx (43)

where H = [−(ve×) I3 03×9 ] is the observation matrix for
traditional error state mode (25), and the above derivation is
based on the approximation (22).

For the left-invariant error state model (29), the indirect
error observation is derived as

ze
l = ṽe − C̃e

bvb ≈ ṽe − [(
I3 +

(
ϕl×

))
Cb

e

]T
vb

= Ce
b

(
ϕl×

)
vb + δve

= −Ce
b

(
vb×)Cb

eCe
bϕl − C̃e

bdve
l

= −(ve×)Ce
bϕl − C̃e

bdve
l

= He
l dxe

l (44)

where He
l = [−(ve×)Ce

b −C̃e
b 03×9 ] is the observation matrix

for left-invariant error state mode (30), and the above deriva-
tion is based on the approximation (26).

Similarly, for the right-invariant error state model (33), its
indirect error observation is derived as

ze
r = ṽe − C̃e

bvb = −(ve×)ϕr + δve = −dve
r

= He
r dxe

r (45)

where He
r = [ 03 −I3 03×9 ] is the observation matrix for the

right-invariant error state mode (33).
For the left-invariant error state model (38) with transformed

SINS mechanism, its indirect error observation is derived as

ze
lg = ṽe − Ce

bvb = −(ve×)Ce
bϕl + δve

= −[ve − (
ωe

ie×
)
pe
]× Ce

bϕl + δve − (
ωe

ie×
)
δpe

= He
lgdxe

lg (46)

where He
lg = [−[(ve×)+(ωe

ie×pe)×]Ce
b−C̃e

b(ω
e
ie×)C̃e

b03×6] is
the observation matrix for left-invariant error state mode (38).

Similarly, for the right-invariant error state model (42) with
transformed SINS mechanism, its indirect error observation is
derived as

ze
rg = ṽe − C̃e

bvb = −(ve×)ϕr + δve

= −[ve − (
ωe

ie×
)
pe

]× ϕr + δve − (
ωe

ie×
)
δpe

= (
ωe

ie × pe
)× ϕr −

(
ve×)ϕr + δve − (

ωe
ie×

)
δpe

= −(pe×)(ωe
ie×

)
ϕr − dve

rg +
(
ωe

ie×
)
dpe

rg

= He
rgdxe

rg (47)

where He
rg = [−(pe×)(ωe

ie×) −I3 (ωe
ie×) 03×6 ] is the obser-

vation matrix for the right-invariant error state mode (42).
Remark 4: It is important to realize that some observation

matrices involved true state, such as H . However, the true state
is unavailable in practice, and it can be compromised with the
estimated states. This substitution will yield an approximation
error, but this error can be treated as observation noise or
an approximation of measurement noise. In Section IV-B,
to mitigate the inaccuracy of the measurement noise and
the error caused by the observation approximation, the VB
approach will be introduced to infer the MNCM online.

B. Parameters Initialization and Feedback Correction
The initial covariance matrix will directly affect the filtering

performance. However, it is difficult to acquire an accurate ini-
tial covariance matrix in practice. Generally, an initial diagonal
covariance P0 can be set for δx according to prior knowledge
based on error interindependent assumption. However, for
the error state model based on the invariant error definition
(26), (30), (35), and (39), the errors are mutually coupled,
so their initial covariances cannot be set directly and need to
be translated based on the traditional method.

According to the left-invariant error definition in (26), the
initial covariance for [ϕl dve

l dpe
l ]T is given by

Pl,0 = Tl P0TT
l (48)

where

Tl =
⎡
⎣ I3 03 03

03 −C̃b T
e,0 03

03 03 −C̃b T
e,0

⎤
⎦

and C̃
b
e,0 is the initial attitude matrix.
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For the right-invariant error definition in (30), the initial
covariance for [ϕr dve

r dpe
r ]T is given by

Pr,0 = Tr P0TT
r (49)

where

Tr =
⎡
⎣ I3 03 03

(ṽe
0×) −I3 03

(p̃e
0×) 03 −I3

⎤
⎦

ṽe
0 and p̃e

0 are the initial velocity and position, respectively.
According to the left-invariant error definition in (35), the

initial covariance for [ϕl dve
lg dpe

lg ]T is given by

Plg,0 = Tlg P0TT
lg (50)

where

Tlg =
⎡
⎣ I3 03 03

03 −C̃b T
e,0 −C̃b T

e,0 (ωe
ie×)

03 03 −C̃b T
e,0

⎤
⎦.

For the right-invariant error definition in (39), the initial
covariance for [ϕr dve

rg dpe
rg ]T is given by

Prg,0 = TrgP0TT
rg (51)

where

Trg =
⎡
⎣ I3 03 03

(ṽe
0×) −I3 −(ωe

ie×)
(p̃e

0×) 03 −I3

⎤
⎦

ṽe
0 and p̃e

0, are the initial auxiliary velocity and position,
respectively.

The Kalman filter is employed to estimate and update the
error states, as defined in (24), (27), (31), (36), and (40).
In addition, the corrected error states are feedback to the SINS
solution (navigation parameters) to inhibit its error divergence,
i.e., error feedback correction. After the SINS states correction,
the corresponding error states will be resettled to zero.

For the traditional error definition in (24), the feedback
correction for navigation parameters at instant k is given by⎧⎪⎨

⎪⎩
Ĉe

b,k = exp
(
ϕ̂r,k

)
C̃e

b,k

v̂e
k = ṽe

k − δv̂e
k

p̂e
k = p̃e

k − δp̂e
k

(52)

where (·̃) and (·̂) represent the estimated (priori) state and the
corrected (posteriori) state, respectively.

For the left-invariant error definition based on the nontrans-
formed SINS mechanism, the navigation parameters will be
corrected by ⎧⎪⎨

⎪⎩
Ĉe

b,k = C̃e
b,k exp

(
ϕ̂l,k

)
v̂e

k = ṽe
k + C̃e

b,kdv̂e
l,k

p̂e
k = p̃e

k + C̃e
b,kdp̂e

l,k .

(53)

Similarly, for the right-invariant error definition, the feed-
back correction is given by⎧⎪⎨

⎪⎩
Ĉe

b,k = exp
(
ϕ̂r,k

)
C̃e

b,k

v̂e
k = ṽe

k + dv̂e
r,k −

(
ṽe

k×
)
ϕ̂r,k

p̂e
k = p̃e

k + dp̂e
r,k −

(
p̃e

k×
)
ϕ̂r,k .

(54)

Fig. 1. PDF of DVL noise and its Gaussian fitting.

For the left- and right-invariant error definitions based on
the transformed SINS mechanism, the corresponding feedback
correction is given, respectively, as follows:⎧⎪⎨

⎪⎩
Ĉe

b,k = C̃e
b,k exp

(
ϕ̂l,k

)
v̂

e
k = ṽ

e
k + C̃e

b,kdv̂
e
lg,k

p̂e
k = p̃e

k + C̃e
b,kdp̂e

lg,k

(55)

⎧⎪⎪⎨
⎪⎪⎩

Ĉe
b,k = exp

(
ϕ̂r,k

)
C̃e

b,k

v̂
e
k = ṽe

k + dv̂
e
rg,k −

(
ṽ

e
k×

)
ϕ̂r,k

p̂e
k = p̃e

k + dp̂e
rg,k −

(
p̃e

k×
)
ϕ̂r,k .

(56)

Remark 5: Since the estimated errors have been already fed
into the global navigation parameters (attitude, velocity, and
position), its corresponding error states need to be resettled,
that is, δx(1:9) = 0 or dxl/r/lg/rg,k (1:9) = 0. It should be noted
that the velocity and position corrections are perceived as a lin-
ear approximation to the exponential map operation of SE2(3),
and this approximation does not lose accuracy because it is
only used to construct nonlinear group errors [30]. According
to the log-linear property of the group affine system, the left-
and right-invariant errors can be recovered from the linear
vector errors of the transformed SINS mechanism.

C. Uncertainty Processing With VB
The actual DVL measurement noise does not completely

coincide with the desirable Gaussian distribution, as shown in
Fig. 1. The measurement noise is time-varying as the vehicle’s
own mobility and environmental variability. The probability
density functions (pdfs) of the east and north velocity noise
are more difficult to be fit with a Gaussian than the upward
velocity noise. In underwater navigation, the upward channel
can be measured accurately using a depth meter, while the hor-
izontal channel cannot. Therefore, adaptive measurement noise
of velocity is required to enhance the navigation accuracy.
System noise plays an essential role in integrated navigation,
and it should also be adjusted to ensure good performance
accuracy as much as possible [40].

To address the uncertainty of inaccurate PNCM and time-
varying MNCM, the state together dx with the predicted error
covariance matrix (PECM) P and MNCM R is inferred based
on the VB approach by choosing the inverse Wishart priors
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for the PECM and MNCM [33]. Both the one-step predicted
posterior pdf and the measurement likelihood pdf submit the
Gaussian distribution

p
(
dx | z1:k−1, P̃

) = N
(
dx; dx̃, P̃

)
(57)

p(zk | dx, R) = N(zk;Hdx, R) (58)

where N(·;μ,
) denotes the Gaussian pdf, dx̃ and P̃ are,
respectively, the one-step predicted error state vector and
corresponding PECM, and H and R are, respectively, the
discrete observation matrix and MNCM.

Remark 6: In [33], inspired by the heuristic idea that the
estimate of the state dx is more directly influenced by PECM,
which may be more estimable than system noise matrix Q,
the author prefers to infer the PECM P̃ rather than infer Q
directly. In this article, this heuristic idea is also adopted.

In Bayesian statistics, the inverse Wishart distribution is
a good choice for characterizing the conjugate prior to the
covariance matrix of Gaussian distribution with known mean.
In this article, since both P̃ and R are the covariance matrices
of Gaussian pdfs, the inverse Wishart pdf is chosen as the
prior distribution for p(P̃ | z1:k−1) and p(R | z1:k−1)

p
(
P̃ | z1·k−1

) = IW
(
P̃; t̂k|k−1, T̂k|k−1

)
(59)

p(R | z1·k−1) = IW
(
R; ûk|k−1, Ûk|k−1

)
(60)

where IW(·;μ,
) denotes the inverse Wishart pdf with
degrees of freedom (DOFs) parameter μ and inverse scale
matrix 
 of inverse Wishart pdf. For the distribution of (59),
t̂k|k−1 = n + τ + 1 and T̂k|k−1 = τ P̃, where τ ≥ 0 is the
tuning parameter and n is the dimension of system. For (60),
ûk|k−1 = ρ(ûk−1−m−1)+m+1 and Ûk|k−1 = ρÛk−1, where
m is the dimension of measurement and ρ is the forgetting
factor to adapt the time-varying measurement noise.

The joint poster pdf p(dx, P̃, R|z1:k) will be used to infer
the states along with PECM and MNCM together. However,
the joint poster pdf does not have an analytic solution. The
VB method can obtain an approximate solution by finding a
free-form derived approximate pdf [33]

p
(
dx, P̃, R | z1:k

) ≈ q(dx)q
(
P̃
)
q(R) (61)

where q(·) is the approximate posterior pdf of p(·) and given
by minimizing the Kullback-Leibler divergence between the
factored approximate posterior pdf and the true joint poster
pdf. The optimal solution satisfies the following equation

log q(κ) = E�(−κ)

[
log p(�z, z1:k)

]+ cκ (62)

where � � {dx, P̃, R} is the jointed to-be-estimated para-
meter, κ is an arbitrary element of �, �(−κ) is the set that
does not involve κ , the cκ is a constant related only κ, E[·]
and log(·) denotes the expectation operation and logarithmic
function respectively. In general, the local optimum of (62)
can be obtained by employing fixed-point iterations.

According to the Gauss-inverse-Wishart conditional inde-
pendence property, the joint pdf can be factored as

p(
z:k) = p(zk | dx, R)p
(
dx | z1:k−1, P̃

)
×p

(
P̃ | z1:k−1

)
p(R | z1:k−1)p(z1:k−1). (63)

The variational measurement update contains three-step as
follows. First, update the q(P̃) given q(dx) by

q
(
P̃
) = IW

(
P̃; t̂k, T̂k

) = IW
(
P̃; t̂k|k−1 + 1, T̂k|k−1 + Ak

)
(64)

where Ak = P̃ + (dx̂ − dx̃)(dx̂ − dx̃)T, dx̂ is the corrected
state. The PECM is inferred P̃ = ((t̂k − n − 1)T̂

−1
k )−1 [33].

Let dx̂ = dx̃ when the first iteration. Then, update the q(R)
given q(dx) by

q(R) = IW
(
R; ûk, Ûk

) = IW
(
R; ûk|k−1 + 1, Ûk|k−1 + Bk

)
(65)

where Bk = HP̃HT + (zk − Hdx̂)(zk − Hdx̂)T. The MNCM
is inferred by R = ((ûk − m − 1)Û−1

k )−1. Finally, update the
q(dx) based on the inferred q(P̃) and q(R) by

q(dx) = N
(
dx; dx̂, P̂

)
(66)

where dx̂ = dx̃ + K(zk − Hdx̃) is the corrected state by
Kalman filter, P̂ = P̃ − KHP̃, K = P̃HT(HPHT + R)−1

is the Kalman filter gain. After fixed-point iteration N as
(64)–(66), the variational approximations of posterior pdfs can
be obtained. More details refer to [33].

In order to illustrate unambiguously how to incorporate the
VB with invariant error-based models for adaptive inference
of PNCM and MNCM. Here, only give the VB-LSEGAKF
implementation pseudocode incorporating LSEGA, and the
variational measurement update is shown in Algorithm 1.

Remark 7: For our SINS/DVL application in this article,
the tuning parameter τ and the forgetting factor ρ are chosen
by default to 2 and 0.98, respectively. Under the assumption
that the measurement noise is independent, the DOF parameter
û0 = 9 is set by default. The initial MNCM R is assumed
to have an inverse Wishart pdf and Û0 = (û0 − m − 1)R
according to [33]. Actually, when ρ = 1, û0 = 1, and
τ = 1, the VB-LSEGAKF will be boiled down to LSEGAKF.
The iteration number N = 5 with considering the navigation
accuracy and computational efficiency. Unfortunately, the nav-
igation accuracy does not increase infinitely with the iterations.
It should be noted that this parameter setting is appropriate
for our SINS/DVL and it may not perform well for other
integrated systems.

V. EXPERIMENTS STUDY

A boat-mounted lake field trial was conducted at Lake
Mulan in January 2022 to evaluate the proposed algorithm.
The equipment used in the lake trial and its trajectory are
shown in Fig. 2(a) and (b), respectively. The experimental
platform contains three main parts, i.e., high-precision SINS,
GPS, and DVL. The SINS is equipped with laser gyroscopes
and quartz accelerometers; the SINS system can collect the
IMU measurement and it can also provide high-precision
reference information when GPS is available. The GPS module
contains an OEM628 series receiver and antennas; three GPS
systems are adopted in this test: one is provided for high-
precision SINS and the other two work in PPP and RTK modes
to provide positioning results. The DVL (PA600), developed
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Algorithm 1 The VB-LSEGAKF for SINS/DVL
Initialization: m = 3, n = 15, N = 5, ρ = 0.98, τ = 2, û0 =
9, �t = 0.005, dx̂e

lg,0 ← 0, χ̂0 ← [Ce
b,0, ve

0, pe
0], P̂lg,0 ←

TlgP0TT
lg , Q, R, Û0 ← (û0 − m − 1)R

WHILE receiving data DO
IF IMU measurement u = [ ω̃b

ib f̃b
ib ] THEN

Time update:
1. SINS updating by (15) [C̃e

b,k, ṽe
k, p̃e

k] ← fu(χ̂ k−1)
2. calculate the discrete transition matrix lg,k ← Flg,k�t
3. error propagation dx̃e

lg,k ← lg,k dx̂e
lg,k−1

4. PECM update P̃lg,k ← lg,k P̂lg,k−1
T
lg,k +GlgQ�tGT

lg

ELSE DVL measurement ṽb THEN
Variational update:

5. VB initialization dx̂e
lg,k ← dx̃e

lg,k , P̂lg,k ← P̃lg,k ,

ũk ← ρ(ûk−1 − m − 1)+ m + 1, t̃k ← n + τ + 1,

T̃k ← τ P̃lg,k , Ũk ← ρÛk−1

6. The dof parameter setting t̂k ← t̃k + 1, ûk ← ũk + 1
7. calculate the He

lg,k and observation vector ze
lg by (46)

FOR i = 1 : N DO
8. Ak ← P̂lg,k + (dx̂e

lg,k − dx̃e
lg,k)(dx̂e

lg,k − dx̃e
lg,k)

T

9. Bk ← He
lg,k P̂lg,k He T

lg,k + (ze
lg − He

lg,k dx̂e
lg,k)(z

e
lg −

He
lg,k dx̂e

lg,k)
T

10. update the inverse scale matrix
T̂k ← T̃k + Ak, Ûk ← Ũk + Bk

11. infer the one-step predicted PECM and MNCM
P̂lg,k ← ((t̂k−n−1)T̂−1

k )−1, R̂k ← ((ûk−m−1)Û−1
k )−1

12. Kalman gain K← P̂lg,k He T
lg,k(H

e
lg,k P̂lg,k He T

lg,k + R̂k)
−1

13. update error state dx̂e
lg,k ← dx̃e

lg,k +K(ze
lg −He

lg,k dx̃e
lg,k)

14. update covariance P̂lg,k ← P̂lg,k −KHe
lg,k P̂lg,k

15. feedback correction the navigation parameters by (58)
χ̂ k ← [C̃e

b,k exp(ϕ̂l,k), ṽ
e
k + C̃e

b,kdv̂e
lg,k , p̃e

k + C̃e
b,kdp̂e

lg,k ]
END FOR

16. reset the error state dx̂e
Ig,k(1 : 9)← 0

END IF
END

Fig. 2. (a) Equipment and (b) trajectory of lake field experiment.

by the Institute of Acoustics, Chinese Academy of Sciences,
was mounted on boat in this field trial. The major sensor
parameters are summarized in Table II.

Fig. 3. Reference attitude of trajectory.

Fig. 4. Reference velocity of trajectory.

The lake field experiment lasts for 12 000 s. The first
1000 s are devoted to the initial alignment and calibration
process, which is not the focus of this article. Their reference
attitude and velocity are shown in Figs. 3 and 4, respectively.
In addition to the entire test data for algorithm validation
(named Case 1), a sequence of smooth maneuvering condition
(red trajectory in Fig. 2(b), which goes from 4000 to 5500 s
in Figs. 3 and 4, denoted as Case 2) and a sequence of
intense maneuvering condition (green trajectory in Fig. 2(b),
which goes from 8000 to 9500 s in Figs. 3 and 4, denoted
as Case 3) were selected to verify the effectiveness of the
proposed algorithms for different maneuvering conditions.

The mean absolute error (MAE) and the root-mean-square
error (RMSE) are used to evaluate the performance of algo-
rithm. The MAE and RMSE are defined as follows:

MAE(x̃, x) = 1

n

n∑
i=1

|x̃i − xi | (67)

RMSE(x̃, x) =
√

1

n

∑n

i=1
(x̃i − xi )

2. (68)

Besides this, the following relative metric horizontal posi-
tion error (Hori-Error) percentage will be adopted [24]:

PEP = Hori-Error

D
× 100% (69)

where D is the distance traveled.
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TABLE II

PARAMETER OF THE MAIN SENSORS

Fig. 5. Pitch estimate errors for different algorithms.

Remark 8: This article focuses on the horizontal error since
the vertical channel value can be accurately measured by depth
meter for underwater navigation. In the following comparison,
the navigation results in the ECEF frame are transformed to
the ENU frame, and only the navigation results starting from
1000 s are given since the first 1000 s are used for the initial
alignment [30], [31], [32].

A. Experiment Study for Case 1

The initial navigation parameters can be provided accurately
by the first 1000-s initial alignment. For the initial covariance
of SO, set the attitude, velocity, and position error covariance
as [0.1◦, 0.1◦, 0.1◦]2, [0.1 m/s, 0.1 m/s, 0.1 m/s]2, and [1 m,
1 m, 1 m]2, respectively. For invariant error-based models, the
initial covariance will suffer a transformation from the initial
covariance of SO as described in Section IV-B, so the initial
covariance is the same in Euclidian space. In addition, set
the inertial sensor bias covariance according to Table II. The
following comparisons are based on this configuration.

Figs. 5–7 show the estimated attitude error for different
algorithms without VB under Case 1. It can be noted that
there is no apparent discrepancy between the five algorithms
in terms of pitch, roll, and yaw indices. It can be observed from

Fig. 6. Roll estimate errors for different algorithms.

Fig. 7. Yaw estimate errors for different algorithms.

Fig. 7 that when the boat is turning around (at about 1000,
3600, 5500, 6600, and 7900 s), its attitude angle error increases
immediately but converges quickly as well. The attitude error,
especially the yaw error, will increase to 0.3◦ after departure
due to intense maneuvers and the inaccurate initial covariance
settings, but its error will converge gradually.

Table III summarizes the MAE and RMSE of the yaw
error for different algorithms, which do not exceed 0.021◦



9500617 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

TABLE III

YAW MAE AND RMSE FOR DIFFERENT ALGORITHMS

Fig. 8. Velocity errors for different algorithms without VB.

and 0.045◦, respectively. LSEGAKF (RSEGAKF), compared
to LSEKF (RSEKF), does not significantly exhibit advantages
in terms of the yaw estimation although its error propagation
follows the log-linear property under group affine error state
model. On the one hand, the yaw estimated error can achieve
satisfactory results even for pure inertial solution as the
high-precision inertial navigation instruments were adopted
in our field experimental; in addition, for the SINS/DVL
integrated navigation, the yaw is observable and can be well
corrected [42].

However, it can be noticed from Table III that the left-
invariant error-based algorithm can achieve a slightly better
performance than the right-invariant error-based one.

Figs. 8 and 9 show the velocity and position errors of the
different algorithms without VB, respectively. Fig. 10 shows
the position error for different algorithms with VB. The quan-
titative metrics for velocity and position errors are summarized
in Tables IV and V, respectively. For the velocity accuracy, the
five algorithms remain basically the same, with the MAE of
both the east velocity error and the north velocity error not
exceeding 0.01 m/s. For the navigation accuracy, LSEGAKF
has the best navigation accuracy performance among the
compared algorithms, especially for the north position error,
which is only 4.97 m. The horizontal position error MAE value
of LSEGAKF is 9.80 m, and the PEP value is only 0.053% D,
which is the lowest of all.

Fig. 10 shows the position errors of the different algorithms,
and these algorithms employ the VB approach to infer inac-
curate PNCMs and MNCMs. Here, a prefix “VB-” will be

Fig. 9. Position errors for different algorithms without VB.

TABLE IV

VELOCITY ERROR FOR DIFFERENT ALGORITHMS

TABLE V

POSITION ERROR FOR DIFFERENT ALGORITHMS

Fig. 10. Position errors for different algorithms with VB.

added to the algorithms if the VB approach has been adopted.
The detailed quantitative results of the position errors are
summarized in Table VI. Fig. 10 and Table VI show that the
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TABLE VI

POSITION ERROR FOR DIFFERENT ALGORITHMS WITH VB

Fig. 11. Inferred R̃ by VB-LSEGAKF and the actual R.

left-invariant error-based methods are competitive compared
to other algorithms, especially the VB-LSEGAKF. Compared
with the algorithms without VB, the navigation accuracy of
the algorithms with VB is enhanced significantly.

From Tables V and VI, we can conclude that the
Hori-Error MAEs of RSEKF (VB-RSEKF) and RSEGAKF
(VB-RSEGAKF) are basically the same; besides this, rare
improvement is achieved compared with SOKF (VB-SOKF).
These results can be attributed to the fact that the RSEKF
(VB-RSEKF) error state models are coupled with navigation
states, as shown in Tables I and VII. However, it is indisputable
that the navigation accuracy of all algorithms is improved by
introducing the VB approach.

To further illustrate the effectiveness of our proposed algo-
rithms, the inferred MNCM is fit to the actual MNCM, which
is calculated by the reference velocity and DVL measured
velocity. As shown in Fig. 11, the inferred MNCM is positively
correlated with the actual MNCM, and it is consistent with the
movement and is capable of tracking the time-varying noise.
From another perspective, the VB approach can somewhat
attenuate the negative impact caused by the time-varying or
inaccurate MNCM as well as the inaccurate PNCM.

Therefore, it can be concluded that for SINS/DVL integrated
navigation, it is favored to select the left-invariant error-based
model than the right-invariant error-based model when the
error state model needs to augment with IMU drift bias. More-
over, for the left-invariant error-based model, the performance
is further improved by introducing the group affine state rep-
resentation. On the contrary, for the right-invariant error-based

Fig. 12. Position errors of different algorithms without VB under smooth
maneuvering condition (Case 2).

Fig. 13. Position errors of different algorithms with VB under smooth
maneuvering condition (Case 2).

model, the performance does not improve obviously even if the
group affine condition is satisfied due to the strongly coupled
nature of the navigation parameters.

Remark 9: Since the reference navigation information was
available in the ENU frame, the inferred MNCM in the
ECEF frame will be transformed to the ENU frame for
comparison. In order to obtain the authentic noise more
accurately, a smooth operation was conducted to the velocity
error calculated by reference velocity and DVL measurements
in the ENU frame, and then, the fit is performed. Extrapolated
results for the other algorithms are not shown here as it is
almost equivalent to VB-LSEGAKF.

B. Experiment Study for Case 2

Fig. 12 shows the navigation results of different algorithms
without VB under Case 2 (smooth maneuvering condition,
from 4000 to 5500 s, as the red trajectory shown in Figs. 2–4),
and Fig. 13 shows the results of different algorithms with VB
under Case 2. As shown in the partial enlargement of Fig. 12,



9500617 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 72, 2023

TABLE VII

DIFFERENT ERROR STATE MODEL AND CORRESPONDING OBSERVATION MODEL FOR SINS/DVL

the LSEKF (LSEGAKF) outperforms SOKF and RSEKF
(RSEGAKF) with slight advantages in terms of Hori-Error and
Hori-Error percent. There is rarely a difference between SOKF
and RSEKF (RSEGAKF). Although theoretically, RSEKF
(RSEGAKF) will be superior to SOKF, but its error state
model coupled with estimated states more seriously as the
introduction of IMU drift, it may lead to limited performance.

After using VB, it can be noted from Fig. 13 that
VB-LSEKF (VB-LSEGAKF) has more pronounced
advantages compared with VB-SOKF and VB-RSEKF
(VB-RSEGAKF) in terms of Hori-Error and Hori-Error
percent. The VB approach makes the navigation accuracy of
different algorithms improved significantly. However, there is
still no evidence to suggest that VB-RSEGAKF (VB-RSEKF)
would be better than VB-SOKF. The navigation accuracy of
the right-invariant error-based Kalman filter is worse than that
of the left-invariant error-based Kalman filter for SINS/DVL
applications. The experimental results are consistent with the
previous conclusions.

C. Experiment Study for Case 3

Fig. 14 shows the Hori-Error and Hori-Error percent results
of different algorithm under intense maneuvering condition

Fig. 14. Position errors of different algorithms without VB under intense
maneuvering condition (Case 3).

(Case 3, from 8000 to 9500 s, as shown in the green tra-
jectory in Figs. 2–4). Fig. 15 shows the results of different
algorithms with VB under Case 3. It can be seen that the
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Fig. 15. Position errors of different algorithms with VB under intense
maneuvering condition (Case 3).

LSEGAKF achieves a better performance compared with other
algorithms without VB. The max Hori-Error value is worse
than Case 2, which is consistent with intuition. However,
after a period of time, regardless of whether VB is used,
the position error seems to be gradually converging. The
observability of SINS/DVL system is complex and related
to the maneuvering trajectory. Our future work will analyze
the global observability of invariant error-based model for
SINS/DVL applications.

As shown in Fig. 15, after employing VB into algorithms,
the Hori-Error increases more slowly than the corresponding
algorithms without VB, especially for VB-LSEGAKF. It can
be concluded that the VB can estimate MNCM effectively.
In addition, compared with the algorithm without VB, the
MAE of Hori-Error for algorithm with VB is reduced by about
40%. Most importantly, the left-invariant error-based Kalman
filter has a preferable performance than the traditional Kalman
filter and right-invariant error-based Kalman filter.

VI. CONCLUSION

The nonlinear invariant error defined on the Lie group and
Lie algebra developed in recent years is widely exploited in
the application of navigation, SLAM, and so on. When the
equation of state embedded in the Lie group meets group affine
property, the propagation of the invariant error is trajectory
independent, and the error in the Lie group and algebraic
representation satisfies the logarithmic linear property. In this
article, extension and comparison for invariant error-based
integrated solutions for SINS/DVL in Earth frame have been
explored. First, the invariant error propagation model of SINS
under nongroup affine and group affine conditions is derived,
and the IMU drift is augmented into the invariant error state-
space model. Then, the observation equations under different
error models are derived. Finally, from a practical perspective,
VB empowers the Kalman adaptive capability of the invariant
error-based model, which is capable of estimating time-varying
noise and inaccurate process noise online.

The different invariant error-based models are compared
comprehensively through a boat-mounted lake field trial with

different maneuvering conditions. The experimental results
show that for the SINS/DVL integrated navigation, the left-
invariant error-based model is preferably in terms of position
accuracy, which is consistent with the theoretical analysis.
When the group affine condition is not satisfied, the left-
invariant error-based model is still competitive with the
right-invariant error-based model following the group affine.
These findings are expected to facilitate the selection and
establishment of invariant error-based model for SINS/DVL
applications.

APPENDIX

A. Exact Derivation of (23)

For the attitude error within vector form, its differential is

ϕ̇r× = Ċe
bC̃e T

b + Ce
b
˙̃Ce T

b

= (
Ce

b

(
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ib×
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)
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)
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)
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≈ −(ωe
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)(
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b
ib×

)
. (A1)

When deriving the above formulas, the approximations (22)
and the following equations are used:

R(a×)RT = (Ra)× (A2)

(a1×)(a2×)− (a2×)(a1×) = (a1 × a2)× (A3)

where R is the rotation matrix and a is a vector.
The velocity and position error can be derived as

δv̇e = ṽe − v̇e

= C̃e
b f̃b − 2

(
ω̃e

ie×
)
ṽe + g̃e − Ce

bfb + 2
(
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ie×
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δve + C̃e

bδfb (A4)

δṗe = ˙̃pe − ṗe = δve. (A5)

B. Exact Derivation of (28)

The derivation of (28) is given as follows:
ϕ̇l× = ˙̃Ce T

b Ce
b + C̃e T

b Ċe
b

= −(ω̃b
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)
C̃b

e Ce
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C. Exact Derivation of (32)
The derivation of (32) is given as follows:
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ṽe×)ϕ̇r − δv̇e

≈ (
C̃e

b f̃b − 2
(
ωe

ie×
)
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ṽe×)C̃e

bδω
b
ib −

(
C̃e

b f̃b×)ϕr + 2
(
ωe

ie×
)
δve − C̃e

bδfb

= [(
ge×)− (
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ṽe×)(ωe
ie×

)]
ϕr − 2

(
ωe

ie×
)
dve

r

− (
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D. Exact Derivation of (41)
The derivation of (41) is given as follows:
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