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Storage Codes With Flexible Number of Nodes

Weiqi Li

Abstract—This paper presents flexible storage codes, a class
of error-correcting codes that can recover information from a
flexible number of storage nodes. As a result, one can make better
use of the available storage nodes in the presence of unpredictable
node failures and reduce the data access latency. Assume a
storage system encodes k¢ information symbols over a finite field
F into n nodes, each of size £ symbols. The code is parameterized
by a set of tuples {(R;,¥¢;) 1 < j < a}, satisfying
b <l < -+ < ly=4Land R1 > Rz > --- > R,, such
that the information symbols can be reconstructed from any R;
nodes, each node accessing ¢; symbols, for any 1 < 5 < a.
In other words, the code allows a flexible number of nodes for
decoding to accommodate the variance in the data access time of
the nodes. Code constructions are presented for different storage
scenarios, including LRC (locally recoverable) codes, PMDS
(partial MDS) codes, and MSR (minimum storage regenerating)
codes. We analyze the latency of accessing information and
perform simulations on Amazon clusters to show the efficiency
of the presented codes.

Index Terms—Flexible storage, maximum distance sepa-
rable (MDS) code, reed-solomon code, minimum storage
regenerating (MSR).

I. INTRODUCTION

N DISTRIBUTED systems, error-correcting codes are

ubiquitous to achieve high efficiency and reliability. How-
ever, most of the codes have a fixed redundancy level, while
in practical systems, the number of failures varies over time.
When the number of failures is smaller than the designed
redundancy level, the redundant storage nodes are not used
efficiently. In this paper, we present flexible storage codes
that make it possible to recover the entire information through
accessing a flexible number of nodes.

An (n, k,0) (array) code over a finite field F is denoted by
(Chy...,Cy),C; = (Criy..., Coi)T € FY, where n is the
codeword length, k is the dimension, and / is the size of each
node (or codeword symbol) and is called the sub-packetization
size. For an (n, k,¢) code, assume we can recover the entire
information by downloading all the symbols from any R
nodes. R is called the recovery threshold. We define the
download time of the slowest node among the R nodes as
the data access latency. In practical systems, the number of
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available nodes might be different over time and the latency of
each node can be modelled as a random variable [2]. Waiting
for downloading all ¢ symbols from exactly R nodes may
result in a large delay. Hence, it is desirable to be able to adjust
R and ¢ according to the number of failures. Motivated by
reducing the data access latency, we propose flexible storage
codes below.

A flexible storage code is an (n, k,¢) code that is parame-
terized by a given integer o and a set of tuples {(R;, k;, ;) :
1 < j < a} that satisfies

kjéjzk;é,lgjga,k;l>k2>...>k;a=k;,€a=€, (1)

and if we take /; particular coordinates of each node, denoted
by (Conyiiy--»Cm, )T € F4, 1 < i < n, we can recover
the entire informatién from any R; nodes. Here, k; can be
viewed as the code dimension when only ¢; coordinates are
considered in each node.

For example, flexible maximum distance separable (MDS)
codes are codes satisfying the singleton bound for every
1 < j < a, namely, R; = k;. Fig. 1 shows an example.
It is easy to see that the flexible code in the example has a
better expected latency than that of a fixed code with either
k = 2 or 3. In particular, each node can read and then send its
three symbols one by one to the decoder (in practice, each
symbol can be viewed as, for example, several Megabytes
when multiple copies of the same code are applied). The
flexible decoder can wait until 2 symbols from any 3 nodes,
or 3 symbols from any 2 nodes are delivered. Therefore, the
latency of the flexible code is the minimum of the two fixed
codes.

Naively, the flexible (n,k,¢) MDS code can be achieved
by an (nf,kf,1) MDS code, where ¢ codeword symbols
are viewed as one node in the flexible (n,k,¢) MDS code.
However, by doing so, a large field with a size of at least
ntl is required. The complexity of such a code is more than
that of the codes that require smaller field sizes. While several
works have attempted to improve the computation over large
fields [3], [4], [5], [6], the large field size still significantly
increases the memory and the time complexity of encoding
and decoding [7], [8] due to the need for large look-up tables.
For example, 64 KB of memory is required for a standard
multiplication table in GF(2%), while 8 GB is required for
GF(2'%). With limited look-up tables, the computing speed is
much slower in large fields [3]. Efforts to alleviate the high
cost of memory and computing complexity in larger fields can
be seen in [3], [4], [5], and [6].

Several constructions of flexible MDS codes exist in
the literature, though intended for different application
scenarios, including error-correcting codes [9], universally
decodable matrices [10], [11], secrete sharing [12], and private
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Flexible code

2 symbols are accessed in 3 nodes.

Fig. 1.
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Scenario 1: Scenario 2:

3 symbols are accessed in 2 nodes.

Example of a (4,2, 3) flexible MDS code over GF'(5). C1,1,C1,2,Ch,3,C2,1,C2,2,C2 3 are the 6 information symbols. We set W1 = C1,1 +

0172 =+ 0173,W1/ = 01,1 + 201,2 + 301,3 as the parities for 01,1701,2,01,3, and Wy = 0271 =+ 02,2 + 02,3, WQI = 0271 =+ 20272 =+ 302,3 as the
parities for C'a,1, C2,2,C2, 3. The accessed symbols in each scenario are marked as red. W4 = W{ + W}, W, = W{ + 2W} are the parities of W] and
WQ’ In Scenario 1, all the information symbols are accessed, we obtain the entire information directly. In Scenario 2, Wl’ and WQ’ are also the parities in
Rows 1 and 2, respectively. Thus, we obtain 3 symbols in the first two rows, and the entire information can be decoded.

information retrieval [13]. However, flexible constructions
remain an open problem for other important types of storage
codes, such as codes that efficiently recover from a single
node failure, or codes that correct mixed types of node
and symbol failures. Single failure recovery is essential for
efficient storage management of distributed systems [14], [15],
while mixed types of failures are common in solid-state
drives [16]. In this paper, we provide a framework that
can produce flexible storage codes for different code fam-
ilies. The main contributions of the paper are summarized

below:
o A framework for flexible codes is proposed that can

generate flexible storage codes given a construction of fixed
(non-flexible) storage code. The framework keeps the same
code rate k/n as the original fixed code. Therefore, if the orig-
inal fixed code has an optimal code rate, our constructions are
also optimal. Furthermore, the application of our framework
to the three types of codes listed below provides optimal code
rates and optimal recovery thresholds.

e Flexible LRC (locally recoverable) codes allow informa-
tion reconstruction from a variable number of available nodes
while maintaining the locality property, providing efficient
single node recovery. For an (n,k,£,r) flexible LRC code
parametrized by {(R;,k;,¢;) : 1 < j < a} that satisfies (1)
and R; = kj + =2 — 1, each single node failure can be
recovered from a subset of r nodes, while the total informa-
tion is reconstructed by accessing ¢; symbols in R; nodes.
We provide code constructions based on the optimal LRC code
construction in [17].

e Flexible PMDS (partial MDS) codes are designed to tol-
erate a flexible number of node failures and a given number of
extra symbol failures, desirable for solid-state drives due to the
presence of mixed types of failures. We provide an (n, k, ¢, s)
flexible PMDS code parameterized by {(R;, k;j,¢;) : 1 < j <
a} satisfying (1) and R; = k; such that when ¢; symbols are
accessed in each node, we can tolerate n — R; failures and
s extra symbol failures. We construct flexible codes from the
PMDS code in [18].

e Flexible MSR (minimum storage regenerating) codes
are a type of flexible MDS codes such that a single node
failure is recovered by downloading the minimum amount of

information from the available nodes. Both vector and scalar
codes are obtained by applying our flexible code framework
to the MSR codes in [19] and [20].

e Latency analysis is carried out for flexible storage codes.
It is demonstrated that our flexible storage codes always have
a lower latency compared to the corresponding fixed codes.
Also, applying our flexible codes to the matrix-vector multi-
plication scenario, we show simulation results from Amazon
clusters with 6% improvement in latency for n = 8, Ry
5, Ry = 4,0, = 12,05 = 15 and matrix size of 1500 x 1500.

Related work. The flexibility idea was first proposed in [21]
to minimize a cost function such as a linear combination of
bandwidth, delay or the number of hops. Flexible MDS codes
were proposed in [9] to recover the entire information by
downloading ¢; symbols from any k; nodes. However, each
of the k; nodes needs to first read all the ¢ symbols and then
calculate and transmit the £; symbols required for decoding.
The aim of [9] is to reduce the bandwidth instead of the
number of accessed symbols. Universally decodable matrices
(UDM) [10], [11] can also be used for the flexible MDS
problem. UDM is a generalization of the flexible MDS code
where the decoder can obtain different number of symbols
from the nodes. In particular, from the first v; symbols of

node C;, for any v;, 1 <i < nsuchthat Y v; > k¢, the entire

information can be recovered. FlexibiliLtgflproblems are also
considered for secret sharing [12], [22], [23], [24] and private
information retrieval [13], [25], [26], [27], [28], [29], such that
the number of available nodes is flexible. The constructions
in [12] and [13] are equivalent to each other and they achieve
optimal decoding bandwidth while keeping secrecy or privacy
from other parties. When we remove the secrecy or privacy
requirement, these constructions become flexible MDS codes.
The schemes in [9], [10], [11], [12], and [13] achieve the
optimal field size of |F| = n.

There are several works on latency and flexibility in the
literature in distributed coded computing [30], [31], [32], [33].
Specifically, fixed MDS codes are well studied [30], [31],
where the computing task is distributed to n server nodes
and the task can be completed with the results from the
fastest £ nodes. In [30] and [31], the authors studied the
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optimal dimension & under exponential latency of each node.
Moreover, flexible MDS codes are applied to the distributed
computing problem in [32], [34], and [35]. However, it is
assumed that we know the set of available nodes before we
start computing, which is not the case in our setup.

The paper is organized as follows: In Section II, we present
the definition and the construction of our flexible storage
codes. We present the flexible LRC, PMDS, and MSR codes
in Sections III-A, III-B, and III-C, respectively. In Section IV,
we analyze the latency of data access using our flexible codes
and compare it with that of fixed codes. Conclusion remarks
are made in Section V.

Notation. For any integer a > 1, [a] denotes the set
{1,2,...,a}. For a matrix A over a field F, rank(A) denotes
its rank. For a set of matrices Ay, Ao, ..., A, of size x X
y, diag(Ay, As, ..., A,) denotes the corresponding diagonal
matrix of size nx X ny.

II. THE FRAMEWORK FOR FLEXIBLE CODES

In this section, we define flexible storage codes and provide
the framework to convert a fixed (non-flexible) code construc-
tion into a flexible one. For ease of exposition, ideas are
illustrated through flexible MDS code examples in this section.
Other types of code constructions are shown in Section III.

First, we define flexible storage codes. In our illustrations,
the codeword is represented by an ¢ x n array over F, denoted
by C' € (F*)", where n is called the code length and  is called
the sub-packetization. Each column corresponds to a storage
node. We choose some fixed integers a > 0, 0 < 1 < ly <
.-+ < Uy =, and recovery thresholds R; € [n], for j € [a].
Let the decoding columns R; C [n] be a subset of R; columns
and the decoding rows 1,,T,,...,Zr; C [{] be subsets of
rows, each with size ¢;. Denote by C' |R‘7:Il71-27---,IR,’ the
¢; x R; subarray of C' that takes the rows Z; in the first
column of R;, the rows 7y in the second column of R;,...,
and the rows Zg; in the last column of R;. The information
will be reconstructed from this subarray.

The information consists of k¢ symbols. We choose k; >
ko > -+ > ko = k such that k;¢; = k¢ for all j € [al.
Informally, k; represents the dimension of the code when C
is limited to a sub-packetization of /;. For flexible MDS codes,
flexible MSR codes, and flexible PMDS codes, we have

R; = kj.

and we simply omit the parameter R;.
Since the minimum distance of LRC codes is lower bounded
by n—k; — ﬁ;l + 2 [14], where r is the locality, we require

flexible LRC codes to be optimal and satisfy
k;

Rj_k‘j-f-’V?—‘—l.

Definition 1: The (n, k, () flexible storage code is parame-
terized by (R;,kj,¢;), j € [a], for some positive integer a,
such that kjfj = k€,1 <3< a,k1 > ko > ... > kg =
k,l, = (. It encodes k¢ information symbols over a finite
filed I into n nodes, each with ¢ symbols. The code satisfies
the following reconstruction condition for all j € [a]: from
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any R; nodes, each node accesses a set of £; symbols and we
can reconstruct all the information symbols. That is, the code

is defined by
o an encoding function & : (]Ff)k — (F9)",
o decoding functions Dg; : (Fei)Rj — (Fe)k, for all
R; C ), [R;] = Ry, and
o decodingrows Z1,75,...,Ig, C [{], |I1| = |Iz| = --- =
|Zr,| = {;, which are dependent on the choice of the
decoding columns R ;.

The functions are chosen such that any information U € (IFZ)
can be reconstructed from the nodes in R;:

Dg, (E(U) |RjiIl7Ig,...,IR]) =U.

A flexible MDS code is defined as a flexible storage code
as in Definition 1, such that R; = k;.

In the rest of this section, we first prove in Lemma 1
that the the example in Fig. 1 is a flexible MDS code.
Then, the general flexible code framework is presented in
Construction 1, based on which Fig. 1 is designed. Afterwards,
we prove in Theorem 1 that this framework can provide a
flexible MDS code for arbitrary parameters.

Lemma 1: Fig. 1 presents an (n,k,¢) = (4,2,3) flexible
MDS code parameterized by (k;,¢;) € {(3,2),(2,3)}.

Proof: The encoding function is clear. We have encoded
k¢ = 6 information symbols over I to a code with n =4,/ =
3.k =2.

Then, we present the decoding. From any k; = 3 nodes,
each node accesses the first /7 = 2 symbols: The first
2 rows form a single parity-check (4,3,2) MDS code.
We can easily get the information symbols from any 3 out
of 4 symbols in each row. From any ks = 2 nodes,
each node accesses all the ¢ = 3 symbols: We can first
decode W/ and WJ in the last row since the last row is
a (4,2,1) MDS code. Then, (Ci1,C4 2,C1,3, Wi, W{) and
(Ca1,C2.0,Co3,Wo,W3) form two (5,3,1) MDS codes.
We can decode all information symbols from W, W3 and any
2 columns of the first 2 rows. [ ]

Code overview. The main idea of the general code con-
struction is similar to that of Fig. 1. The construction is based
on a set of (n+k; —kq, k;,{; —€;_1) codes, each code called
a layer, such that k;¢; = kl,j € [a], k1 > ko > ... kq =
k,l, = {,0y = 0. The first layer is encoded from the original
information symbols and the other layers are encoded from the
“extra parities.” The intuition for the flexible reconstruction is
that after accessing symbols from some layers, we can decode
the corresponding information symbols, which are in turn extra
parity symbols in an upper layer. Therefore, the decoder can
afford accessing less codeword symbols in the upper layer,
resulting in a smaller recovery threshold.

Construction 1: In Table I, we construct (n, k, ¢) flexible
storage codes with {(k;,¢;) : 1 < j < a}, such that k;{; =
kO, ki > ko> ... ke =k, L, =1L

Each column is a node. Note that only the first n columns
called storage nodes are stored and the extra parities are
auxiliary. Let us set {; = 0. We have a layers and Layer
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TABLE I
CONSTRUCTION OF MULTIPLE-LAYER CODES

Storage nodes Extra parities
Ci1 Ciz [ ] Cin CT 4 [
Ca,1 C2,2 Capn Cha O kot
Ca-1,1 | Ca—12 Ca-1,n 0;71,1 C¢l171,ka_1fka

Ca,l Ca,Z Ca,n

jisan (n+kj — kq,k;,£; —€;_1) code Base case: For Layer j, it is obvious since Layer j is an

MDS code with dimension ;.
[Ci1:Cl2se s Ciny €15 Clas oo, O g e, Induction step: Suppose that Layers j'+1,5’+2,...,j are

with j € [a], where Cjﬁ‘ = [Cj717i,Cj727¢, .. .,Cj7gj_gj_17i]T
€ F4 %1, i € [n], are actually stored and C}, =
(C% 14 ;,z,iv---vcg/',efzj,l,i]T € Flti-1, i € [k — ki,
are the auxiliary extra parities. The (n + k1 — kq, k1, ¢1) code
in the first layer is encoded from the k1¢; = k¢ information
symbols over F and the (n + k; — ko, kj,¢; — ¢;_1) code
in Layer 7,5 > 2, is encoded from extra parities C]’»/’i, for
j elj—1lkj — ke +1<i<kj_1—kq As asanity check,

j—1
> (ki1 = k) (L — £y 1)
i'=1

= (kj—1 — kj)(lj—1 — o) = k;({; — £j—1)

extra parities over [ are encoded into Layer j, which matches
the code dimension of that layer. Here, we used ¢y = 0 and
kjflgjfl = Ifjgj.

Remark 1: Tt can be seen that the code rate of our (n, k, {)
flexible code remains the same as the original fixed (n,k,¢)
code since the number of information symbols is k1¢; =
koly = kL.

Construction 1 can be applied to different kinds of codes.
We start with MDS codes to show how to use Construction 1
with a family of storage codes.

The (n,k,¢) flexible MDS codes parametrized by
{(Rj,kj,¢;) : 1 < j < a} is constructed by applying a
set of (n+ k; — ko, kj,¢; —4j-1),j € la],{p = 0 MDS
codes over F to Construction 1. Namely, we encode the k¢
information symbols into an (n + k1 — kq, k1, ¢1) MDS code
and (n +k; — ko, kj,0; —{;—1),2 < j < a MDS codes are
encoded from the extra parities. Next, we prove that the code
satisfies Definition 1 and R; = k;. That is, we can recover the
entire information from any k; nodes, each node accessing its
first £; symbols.

Theorem 1: With a set of (n+k; — kg, kj, {; —{;-1),j €
[a], o = 0 MDS codes over F, Construction 1 is an (n,k,¢)
flexible MDS code parametrized by {(R;, k;,¢;) : 1 < j < a}
satisfying Definition 1 and R; = k;.

Proof: Fix j € [a]. Assume from any k; nodes, each node
accesses its first £; symbols over . We want to show that all
information symbols can be recovered.

We prove by induction that we are able to decode Layer j’
for all j/ = 4,5 —1,...,1. As a result, after decoding Layer
j' =1, we can recover all information symbols.

decoded. Then, for Layer j', as shown in Construction 1, from
the decoded layers, we get kj» — k; extra parities C, ;, kj —
ke +1 < i < kjy — k4. Together with the k; nodes that
we have accessed in Layer j/, we get enough dimensions to
decode Layer j'. [ ]

We note that one can choose any family of MDS codes for
the above theorem, e.g., Reed-Solomon codes [36] and vector
codes [37]. In the case of vector codes, the codeword symbols
of the MDS codes are from a vector space rather than a finite
field.

III. CONSTRUCTIONS

In this section, we show how to apply Construction 1 to
LRC (locally recoverable) codes, PMDS (partial maximum
distance separable) codes, and MSR (minimum storage regen-
erating) codes. These codes have optimal code rate k/n and
optimal recovery threshold R. They provide a flexible recon-
struction mechanism for the entire information, and either
can reduce the single-failure repair cost, i.e., the number of
helper nodes and the amount of transmitted information, or can
tolerate mixed types of failures. Applications include failure
protection in distributed storage systems and in solid-state
drives.

A. Flexible LRC

An (n, k,¢,r) LRC code is defined as a code with length n,
dimension k, sub-packetization size ¢, and locality r. Locality
here means that for any single node failure or erasure, there
exists a group of at most r available nodes (called helpers)
such that the failure can be recovered from them [14], [38],
[39], [40], [41]. The minimum Hamming distance of an
(n, k,¢,7) LRC code is lower bounded in [14] as

i > — k= mw, @
and LRC codes achieving the bound are called optimal LRC
codes. For simplicity, we use (n, k,r) LRC codes to present
(n,k,¢,r) LRC codes with ¢ = 1. For k divisible by r, and
n divisible by r + 1, Tamo and Barg [17] constructed optimal
(n, k,r) LRC codes that encode the k information symbols
into

C =[Ch1,Choa,.. Con_ 1, C

. e n
»Crirta, 1 T+

20 Clnp gl
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TABLE II
CONSTRUCTION OF (n = 12,k = 4,¢ = 3,7 = 2) FLEXIBLE LRC CODE

group 1 group 4 extra group
U U T
Layer 1 | CLtt | Cii2 | Ciis Cipao [ Ciin | Craae | Cryy | Cran [ Clas
T T T
Ci21 | Ci2z2 [ Ciogs Ci2,00 [ Ciz2u1 | Ciza2 121 | Cloa | Clas
Layer2 | Co11 | Co12 | Co13 Co110 | Co111 | Co112

Here, each group {Cy,; : @ € [r+ 1]}, m € [35], is an
MDS code with dimension r and the code C' has a minimum
distance of n — k — % + 2, i.e., we can decode all information
symbols from any £ + % — 1 nodes. If an optimal LRC code
has the above structure with groups, we say it is an optimal
LRC code by groups.

We define the (n, k, ¢, r) flexible LRC code parameterized
by {(Rj,k;,¢;) : 1 < j < a} as a flexible storage code as
in Definition 1, such that all the symbols of any node can be
recovered by reading at most r other nodes and

k.
Rj:/fj-f- ’7%—‘ — 1.

The above I?; matches the minimum distance lower bound (2).
As a result, our definition of flexible LRC code implies optimal
minimum Hamming distance when we consider ¢; symbols at
each node.

In the following, we present flexible LRC codes in Con-
struction 2. Then, Table II illustrates the structure of our code.
We prove in Theorem 2 that Construction 2 leads to flexible
LRC codes. When the specific LRC in [17] is applied to each
layer, Table II is further explained in Example 1 at the end of
this subsection.

Code overview. The flexible LRC code is based on Con-
struction 1, where each layer consists of LRC codes. First,
extra groups are generated in each row. Then, r extra parities
are chosen from each extra group and encoded into lower
layers. During information reconstruction, extra parities and
hence extra groups are recovered from lower layers, leading
to a smaller number of required accesses.

Construction 2: Let n be divisible by r 4+ 1 and all £;,
j € [a] be divisible by r. We apply a set of optimal LRC codes
by groups over F with parameters (n + (k; — ko)=L, &, 7),
j € [a] to Construction 1.

In Layer j, we apply an (n + (k; — ko)™t kj, 1), j € [d]
optimal LRC code to each row. As described in Construction 1,
we encode the k¢ information symbols in the ¢; rows of Layer
1 and the remaining rows are encoded from the extra parities.

Next, we show how to choose the n stored symbols and
the k; — k, extra parities in each row. In the (n + (k; —
ka)™E, kj,r) LRC code, we have g + Fizke oroups.
We first pick .75 groups, containing n symbols, as the stored
symbols. Thus, the n stored symbols in each row form an
(n,kj,7),j € [a] optimal LRC code. Then, in the remaining
j%k” groups, we pick r nodes in each group, containing
k; — ko nodes, as extra parities.

Table II shows an example of (n = 12,k = 4,0 =3,r = 2)
flexible LRC code parameterized by {(R; = 8,k1 = 6,¢1 =
2),(Rg = 5,ky = 4,05 = 3)}. In this code, Rows 1 and 2 are
(n+ (k1 — ko)t = 15,k; = 6,r = 2) LRC codes encoded

from the information and one extra group is generated in each
row. We take 4 extra parities from the extra groups, which are
encoded into the (n = 12, ks = 4,7 = 2) LRC code in Row 3.
In this code, we have 12 nodes and they are evenly divided into
4 groups. Any single failed node can be recovered from the
other 2 nodes in the same group. It will be seen in Theorem 2
that to recover the entire information, we require either any
R, = 8 nodes, each accessing the first 1 = 2 symbols, or any
Ry = 5 nodes, each accessing all /o = 3 symbols.

Theorem 2: Construction 2 results in an (n, k, £, r) flexible
LRC code parameterized by {(Rj,k;,¢;) : 1 < j < a}.
Moreover, when only the first £; symbols are considered at
each node, any single node failure can also be recovered from
r helpers.

Proof: We first prove the reconstruction of all information
symbols from ¢; symbols of R; = k; + k77 — 1 nodes, for any
J € [a]. Then we prove the locality.

Reconstruction: We prove by induction that for 7/ = j,
j—1,...,1, we can decode Layer j’. Therefore, all information
symbols can be recovered after decoding Layer ;' = 1.

Base case: From Layer j, since each row is part of the
(n+ (kj — ko)™, k;j, ) optimal LRC code, we can decode
this layer from I?; nodes by the minimum Hamming distance
property of the optimal LRC codes.

Induction step: Suppose that Layers j' + 1,7 + 2,...,]
are decoded. We prove that Layer j’ can be decoded. By the
construction, k; — k; extra parities (from M i extra groups)
in each row of Layer j' can be obtained from the decoded
layers. By Construction 2, the extra parities in Layer j' consist
of r parity symbols in each extra group. Thus, according to
locality, the remaining symbol in each of the @ extra
groups in each row of Layer j' can be recovered. In total,
we get additional (k; — k;) ™t symbols in each row of Layer
j' from the extra parities. Together with the R, accessed
symbols in each row of Layer j/, we get R; symbols and
we are able to decode Layer j’.

Locality: Since each row is encoded as an LRC code with
locality r, the code restricted to the first ¢; rows also has
locality r. |

When applying the LRC codes in [17], our flexible LRC
code requires a finite field of size at least n + (k1 — ko) “EL.
Below, we show the encoding, the reconstruction, and the
locality for the code in Table II using [17].

Example 1: We set (n, k,1,r) = (12,4,3,2), (R1,k1,01) =
(8,6,2), (Ra, ko, l2) = (5,4, 3). The code is defined over F =
GF(2*) ={0,1,,...,a'}, where o is a primitive element
of the field. Totally, we have k¢ = 12 information symbols and
we assume they are wig,u1,1,...,U1,5 U2,0,U2,1,---,U25.
The example is based on the optimal LRC code constructions
in [17].
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The construction is shown below, each column is a node
with 3 symbols:

Ciin Ciaio Ci112
Ci21 Ci22 Cip12] (3)
Coi1 Cai Ca,1.12

where every entry in Row m will be constructed as f,,(x) for
some polynomial f,,(-) and some evaluation point = € F as
below, m = 1,2, 3.

The evaluation points are divided into 4 groups as = €
A = UL A, for A; = {1,0°,a1%}, Ay = {a,ab, ot}
Az = {a?,a",a'?}, Ay = {a?,a8,a'}. We also set A5 =
{a*, o a'*} as the evaluation points for the extra parities.

According to [17], we define g(z) = 2 and one can check
that g(z) is a constant for each group A;, i € [5]. Then, the
first 2 rows are encoded with

fm(m) = (um,O + um,lg(l‘) + Um,QQQ(x))
+ 2 (Um,3 + Uma9(T) + Um59°(x)),m = 1,2. (4)

The last row is encoded with

fs(x) = (fr(a®) + fi(a”)g(x))
+2(f20a) + f2(a”)g(2)). (5)

For each group, since g(x) is a constant, f,,(z), m € [3]
can be viewed as a polynomial of degree 1. Any single failure
can be recovered from the other 2 available nodes evaluated by
the points in the same group. The locality » = 2 is achieved.

Reconstruction with ¢; = 2, Ry = 8: Noticing that f;(z)
and fo(x) are polynomials of degree 7, all information sym-
bols can be reconstructed from the first /1 = 2 rows of any
Ry = 8 available nodes.

Reconstruction with ¢ = 3, Re = 5: Since f3(z) has
degree 4, with R, = 5 available nodes, we can first
decode fi(at), fi(a?), fa(a*), f2(a®) in Row 3. Then,
f1(a?), f2(a'?) can be decoded due to the locality r = 2.
At last, together with the Ry = 5 other evaluations of f;(z)
and fo(x) obtained in Rows 1 and 2, we are able to decode
all information symbols.

B. Flexible PMDS Codes

PMDS codes are first introduced in [16] to overcome mixed
types of failures in Redundant Arrays of Independent Disks
(RAID) systems using solid-state drives. A code consisting of
an ¢ x n array is called an (n,k,¢,s) PMDS code if every
row is an (n, k) MDS code and it can tolerate n — k node or
column failures and s additional arbitrary symbol failures in
the code.

Let /o = 0 and {(k;,¢;) : 1 < j < a} satisfy (1). We define
an (n, k, £, s) flexible PMDS code parameterized by {(k;, {;) :
1 < j < a} tobe an ¢ x n array such that any row in the
range {;,_1 + 1 to ¢; is an (n,k;) MDS code, and from the
first £; rows, we can reconstruct the entire information if there
are up to n — k; node failures and up to s additional arbitrary
symbol failures, 1 < j < a. As mentioned, for PMDS codes,
R; = k;. Note that different from Definition 1, the number
of information symbols for a flexible PMDS code is at most
kl —s= K.

TABLE III

AN EXAMPLE OF (5, 3,4, 2) FLEXIBLE PMDS CODE
WITH { (K1, £1), (k2,£2)} = {(4,3), (3,4)}

Cii1 | A [ Ciags * *
Cio1 | A1 Ci23 | Ci24 | *
Ciza1 | A * Ci34 | *
Co11 | A | Coa3 | Coa4 | *

Example 2: We demonstrate the information reconstruc-
tion requirement of the (5, 3,4,2) flexible PMDS code with
{(k1,41), (k2,l2)} = {(4,3),(3,4)} in Table IIL. If we only
have “x” as failures, we can use the first 4 nodes to decode,
each node accessing the first 3 symbols. If both “x” and
“A” are failures, we can decode from Nodes 1,3,4, each
node accessing 4 symbols. In both cases, the remaining K =
kl¢ — s = 10 symbols should be independent and sufficient to
reconstruct the entire information.

Code overview. To tolerate additional symbol failures, the
fixed PMDS code in [18] uses Gabidulin code to encode
the information into auxiliary symbols, which are evenly
allocated to each row. Then, an MDS code is applied to
the auxiliary symbols in each row, ensuring the protection
against column failures. Our flexible PMDS code also encodes
the information using Gabidulin code into auxiliary symbols,
which are allocated to each layer according to k;j,j € [al.
MDS codes with different dimensions are then applied to each
row, thus ensuring flexible information reconstruction.

We first introduce the construction in [18] and then show
how to apply it to flexible PMDS codes.

An (N, K) Gabidulin code over the finite field F =
GF(¢*),L > N is defined by the polynomial f(z) =
Ziligluixq7', where u; € F,i = 0,1,...,K — 1 are
the information symbols. The N codeword symbols are
flaq), f(a2),..., f(an), where the N evaluation points
{a1,...,an} are linearly independent over GF'(q). From any
K independent evaluation points over GF'(q), the information
can be recovered.

In [18, Construction 1], the (n, k, ¢, s) codeword is an ¢ x n
matrix over F = GF(¢**) shown below:

0171 0172 Cl,n
Coy Cap Con

: : : ’ (6)
Ci1 Cop Con

s )

where each column is a node. Set K = ¢k — s. Here, C,, ; €
F,m € [{],i € [k] are the K + s codeword symbols from a
(K + s, K) Gabidulin code. For each row m, m € [{],

[Crit1r s Cmm] = [Crm1y o, Coo k)Gups,  (7)

where Gups is the k X (n — k) encoding matrix of an (n, k)

systematic MDS code over GF'(q) that generates the parity.
It is proved in [18, Lemma 2] that ¢, symbols in Row

m,m € [{], are equivalent to evaluations of f(z) with
¢

>~ min(¢,,, k) evaluation points that are linearly independent
m=1

over GF(q). Thus, with any n — k node failures and s symbol
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failures, we have t,, < k and

¢
Z min(t,,, k)

m=1

14

= tm=lh-s =K. )

m=1

Then, with the K linearly independent evaluations of f(x),
we can decode all information symbols.

Next, we show how to construct flexible PMDS codes.
Rather than generating extra parities as in Construction 1, the
main idea here is that we divide our code into multiple layers
and each layer applies a construction similar to that of (6)
with a different dimension.

Construction 3: Fix (n,k,¢,s) and {(k;,¢;) : 1 <j <a}
satisfying (1). Assume there exists an (N, K') Gabidulin code
over GF(¢") and a set of (n, k;) systematic MDS codes over

GF(q), where N = " k;({; —{j_1), bo =0, K = lk — s.
j=1

We construct a storage code over GF(¢") that encodes K
information symbols into an ¢ x n codeword array.

Denote Cjm,i,J € [a],m; € [{; —€;-1],7 € [n] as the
symbol in the m; -th row and the i¢-th column of Layer j.
We first encode the K information symbols using the (N, K)
Gabidulin code. Then, for each j € [a],m; € [{; — {;_1],
we set the first k; codeword symbols in the m; -th row of
Layer j as the codeword symbols in the (N, K) Gabidulin
code. The remaining n — k; codeword symbols in the row are
generated as
Cjmyn] =

[Cj,m],la L) Cj,m],kJ]Gn,kja

©)

[Cj,mj,ijrl, ey

where G, 1, is the encoding matrix (to generate the parity
check symbols) of the (n,k;) systematic MDS code over
GF(q).

Theorem 3: Construction 3 results in an (n, k, ¢, s) flexible
PMDS code over GF(¢") parameterized by {(k;,¢;) : 1 <
j < a} satisfying (1).

Proof: It is obvious that each row in Layer j is an (n, k;)
MDS code due to (9). We will prove that we can decode the
information from any n — k;,j € [a], failures by accessing
the first £; rows (the first j layers) from each node. The
code structure in each layer is similar to the general PMDS
code in [18, Construction 1]. From [18, Lemma 2], we know
that for a union of ¢, , symbols in Row m; of Layer 7,

j' < j, they are equivalent to evaluations of f(x) with
j [ i1 — é r_q
> E mm(tm . kjr) linearly independent points over

j—l mJ/ 1

GF(q) in GF(¢"). Thus, with n — k; node failures and s
symbol failures, we have ¢,, , < k; < k: for j' € [j], and
j é ’r— é r_q j [ ) — é r_q
Z Z mln m, /7 Z Z m i
=1 my = 1 =1 myr= 1
= Kjkj—s = K

Then, the information symbols can be decoded from K
linearly independent evaluations of f(z). [ |
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C. Flexible MSR Codes

In this section, we study flexible MSR codes. In the fol-
lowing, the number of parity nodes is denoted by r = n — k.!
The repair bandwidth is defined as the amount of transmission
required to repair a single node erasure, or failure, from all
remaining nodes (called helper nodes), normalized by the size
of the node. For an (n,k) MDS code, the repair bandwidth
is bounded by the minimum storage regenerating (MSR)
bound [15] as

n—1

b> . (10)

n—=k
An MDS code achieving the MSR bound is called
an MSR code. MSR vector codes are well studied
n [19], [42], [43], [44], [45], [46], [47], and [48], where

each symbol is a vector. As one of the most popular codes in
practical systems, Reed-Solomon (RS) codes and their repair
are studied in [20], [49], [50], [51], and [8], where each symbol
is a scalar.

We have shown in Theorem 1 that using a set of MDS
codes, Construction 1 can recover the information symbols by
any pair (k;,¢;), which means that for the first £; symbols in
each node, our code is an (n, k;,£;) MDS code. In addition,
we require the optimal repair bandwidth property for flexible
MSR codes. A flexible MSR code is defined to be a flexible
storage code as in Definition 1, such that R; = k; and a single
node failure is recovered using a repair bandwidth satisfying
the MSR bound (10) with equality.

Code overview. Our codes in this section are similar to
Construction 1, with additional restrictions on the parity check
matrices and the extra parities. The key point here is that the
extra parities and the information symbols in lower layers are
exactly the same and they also share the same parity check
sub-matrix. To repair the failed symbol with the minimum
bandwidth, the extra parities are viewed as additional helpers
and the required information can be obtained for free from the
repair of the lower layers.

We will first show an illustrative example with 2 layers and
then present our constructions based on vector and scalar MSR
codes.

Example 3: We construct an (n,k,¢) = (4,2,3) flexible
MSR code parameterized by (k1,¢1) = (3,2) and (kz,¥f2) =
(2,3).

Let F = GF(2%) = {0,1,3,3% = 1 + 3}, where 3 is a
primitive element of GF(22). Our construction is based on
the following (4,2,2) MSR vector code over F? with parity
check matrix

- hig hia hiz higa

hai hao hoz hoa

01 1 01 000

1 1110100
/o1 11001 0| a1

1 01 00 0 01

where each h; ; is a 2 x 2 matrix over F. A codeword symbol
¢; is in F2, § = 1,2, 3,4, meaning ¢; is a column vector of

length 2 over F. The codeword [c],cl, el ct]T e (F?)*

Notice that 7 was used for a different meaning (locality) in LRC codes.
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in the null space of H. One can check that it is a (4,2) MDS
code, i.e., any two codeword symbols suffice to reconstruct
the entire information. The repair matrix is defined as

Slz[l 0 0 0],52:[1 0 0 0],

0 0 01 0010
1010 01 10
53_[0 11 0]’54_[0 00 1]' 12)
It is easy to check that
hl,i _ 2,i=>k
rank (S* [h21]>_{ Lids (13)

When node * € {1,2,3,4} fails, we can repair node c. by

equation S, x H x [¢T',cT cT' ¢T)T = 0. In particular, helper

i, 1 # %, transmits
hi
S* h ’ Ci,
2,i

which is one symbol in F, achieving an optimal total repair
bandwidth of 3 symbols in F.

For our flexible MSR code, every entry in the code array is
a vector in F2. The code array is shown below, each column
being a node:

Ciii Criz Ciis Ciia
Cip1 Cio2 Cias Cioa (14)
Coi1 Coi2 Coi3 Caia

The code has 2 layers, where C'y ., ; € F? are in Layer 1 and
Co.m,i are in Layer 2 with ¢ € [4], m1 = 1,2,me = 1.
Each Cj ., i is the vector [Cj,mj,z',l, cj,m,J,i,z]T with elements
in F. The code totally contains 48 bits with 24 information
bits and each node contains 12 bits. We define the code with
the 3 parity check matrices shown below. Let

hii hi2 hiz hia hip
Hy = |7ot o2 s e, 15
! |:h2,1 hoo hasz hag ﬁhz,l] (15

hii hi2 hiz hia hip
Hy= |01 M2 Aus e, 16
2 |:h2,1 hoo hasz hag ﬁhz,z] (16)

hii  hi2 hiz hig
Hy=| b 2 s el 17
’ [ﬁhm Bhao has hz,J 17
The code is defined by

Hy % [ClT,1,1a C1T,1,2701T,1,3a C1T,1,4702T,1,1]T =0, (18)
Hy x [ClT,Q,p C1T,2,2701T,2,3a C1T,2,4702T,1,2]T =0, (19)
Hs x [027:1,17027:1,% CzT,1,37CQT,1,4]T =0 (20)

Next, we prove that itis an (n, k, £) = (4,2, 3) flexible MSR
code parameterized by (k;,¢;) chosen from {(3,2), (2,3)}.

It is easy to check that the code defined by H; or Hs is a
(5,3) MDS code and Hg defines a (4, 2) MDS code. Thus, this
code is the same as Construction 1 based on MDS codes and
the flexible reconstruction of the entire information is shown
in Theorem 1.

Let x € {1,2,3,4} be the index of the failed node. For the
repair, we first note that

rank (S* [Z;j) = rank (S* [;}z;i) _ {

for i =1,2.

2,1 =x
1,0 £+’
ey

Then, we use the repair matrix S, in (12) to repair the failed
node :

Sk X Hy x [C1T,1,17C1T,1,2aC1T,1,37017:1,4a02T,1,1]T =0, (22)
Sy x Hy % [C1T,2,1vC1T,2,2a C1T,2,3vC1T,2,4a C2T,1,2]T =0, (23)

S, x H3 x [C311,C15,C3135,Cqq4]" =0. (24)
Helper i € [4], i # *, transmits
.
S hl’} Cris (25)
/42,1
e
S hl’} C12; (26)
/42,1
[ his
5[] 20 <

where § = if i = 1,2 and 3 = 1 if i = 3,4. Note that to
repair the failed node, in Eq. (22) and (23), we also require

hl,l
S* 5h21‘] 027171 and S*

obtained from (27) or solved %fgm Equation (24).

Then, from (13) and (21), it is clear that for any failed node,
we only need one symbol from each of the remaining C ., 4
which meets the MSR bound.

Remark. Notice that in this example, we do not require
the codes in the first layer defined by (15) and (16) to be
MSR codes, thus resulting in a smaller field. However, the
rank condition (21) guarantees the optimal repair bandwidth
for the entire code. Also, in our general constructions, we do
not require the codes in Layers 1 to a — 1 to be MSR codes.

In the following, we show that by applying Construction 1
to the vector MSR code [19] and the RS MSR code [20],
we can construct flexible MSR codes.

1) Flexible MSR Codes With Parity Check Matrices: Below
we present codes defined by parity check matrices similar to
Example 3. We show in Theorem 4 that with certain choices
of the parity check matrices, one obtains a flexible MSR code.

Construction 4: The code is defined in some F* parame-
terized by (k;,¢;),7 € [a] such that k;¢; = kl, k1 > ko >
... kg =k, 0, = €. We define the parity check matrix for the
m-th row in Layer j € [a] as:

Hj,mj = [hj!mj’l

hl’Q C,1,2, which can be either

Giymkj—ka »

(28)

Fjmgns Gjmg 1

where each 1, i, 9j,m;,i 18 an 7L X L matrix with elements
in F. The (n + k; — ko, k;) MDS code in the m-th row of
Layer j is defined by

H]',m] X

. T . T . T v T ’ T
[Cj,mj,l 7CJ,m‘7,2 T 7CJ,m‘7,n 7Cj,mj,1 [ 7Cj,mj,kj—ka ]
=0, 29)

where Cj ;i are the stored codeword symbols and C7,,
are the extra parities. In this construction, when we encode the
extra parities into lower layers, we set the codeword symbols
and the corresponding parity check matrix entries exactly the

same. Specifically, for Layers j < j' < a, we set

iy = Njrar s (30)
Clay=Cirary. 31)
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Here, given j,x € [I; —lj_1],y, we set j’ such that k;j; — ko +
1<y<kj_1— kg and set
x(kj/,l — kj/) + yJ
Ky !
y' = (e(kj -1 = kjr) +y) mod kj,

2=

(32)
(33)

where “mod” denotes the modulo operation.

For instance, in Example 3, the 2 extra parities in Layer
1 are exactly the same as the first 2 symbols in Layer 2 with
Ciia=0Co11,91010 = happand Cf 51 = Co12,0121 =
ha 1,2

Theorem 4: Assume the parity check matrices of Construc-
tion 4 in (28) satisfy

1). [MDS condition.] The codes defined by (28) are (n +
k;j — kq, k;) MDS codes.

2). [Rank condition.] The same repair matrices S,, * € [n]
can be used for every parity check matrix such that

Lyo=x .
Loidw i€n.

Then, the code defined by Construction 4 is a flexible MSR
code.

Proof: 1). If the MDS property is satisfied, Construction 4
is the same as Construction 1 by defining the MDS codes with
parity check matrices. The flexible reconstruction of the entire
information is presented in Theorem 1.

2). For repair, assume node *, * € [n], is failed. We use the
repair matrix S, in each row to repair it:

rank(S«hjm; i) = { (34)

Sx X Hjm; %
T T T / T / T
[C]',m],l 7Cj,mj,2 y e 7Cj7mj," 7Cj,m],1 y e 7Cj,m],k]7ka ]
=0. (35)
. y y . .
Notice that C%,,, 1, -+, C] ., are also the information

symbols in the lower layers with the same parity check sub-
matrices, and the corresponding required information can be
retrieved from the lower layers. Thus, the failed node can be
repaired from n — 1 helpers.

Clearly from (34), we only need L/r symbols from each
helper and the optimal repair bandwidth is achieved. [ ]

We will now take Ye and Barg’s construction [19] to
show how to construct the flexible MSR codes satisfying the
conditions in Theorem 4. The code structure in one row is
similar to [52].

Assume the field size [E| > rn and \; ; € E,i € [n],j =

0,1,...,r7—1 are rn distinct elements. The parity check matrix
for the (n, k) MSR code in [19] can be represented as:
T I .. T
Al A2 R An
H=1 . . s (36)
ATt oALt Ar=t

L—1
where [ is the L x L identity matrix and A; = )\i,ziezezT.
z=0
e, is a vector of length L = r™ with all zeros except the z-th
element which is equal to 1. We write the r-ary expansion of
zas z=(zn,2Zn-1,-..,21), where 0 < z; <r — 1 is the i-th
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r—1 .
digit from the right and z = > z;r*. Clearly, A; isan L x L
i=0
diagonal matrix with elementg Ai,z;- The L x rL repair matrix
Sy, * € [n] are also defined in [19] and [52, Sec. IV-A] as a
diagonal block matrix:

S, = Diag(D,, D, ..., D,), 37)

with % x L matrix D.,. It is shown that

I
A
rank | S,

e
K3

D,

D.A;

=rank
DAY
L,i=x

-{ris
Here, for0 < z < 7" 1—1,0 <y < r"—1, the (z, y)-th entry

of D, is equal to 1 if the r-ary expansion of x and y satisfies

(xnfla Tp—15--, xl) = (yn; Yn—15- s Yit1, Yi—1,--- ,y1)
and otherwise it is equal to O.
Consider an extended field F from E and denote F* £

(38)

F\{0}, E* £ E\{0}. Then, F* can be partitioned to
t & “]Ig*‘l cosets: {G1E*, BoE*, ..., B, E*}, for some elements
0B1,82,...,0; in F [8, Lemma 1]. Now, we define for the
storage nodes (the first n nodes)
1

Bg,mj A%
hj,m,J,i = 5j,m] A’L ’ (39)

rfl' r—

5]mJAz !

where 3; ., is chosen from {31, B2, ..., B¢ }. We say (3 n; is
the additional coefficient. Then, the extra parity entries g;m,;
can be obtained accordingly from (32) and (33). Also, notice
that A; might appear in H. jm several times since the extra
parity matrices are the same as the information symbols in
lower layers. We choose the additional coefficients as below.

Condition 1: In each H jymy» the additional coefficients for
the same A; are distinct.

Corollary 1: With parity check matrices defined by (39)
and Condition 1, Construction 4 is a flexible MSR code.

Proof: We will prove the construction is flexible MSR
using Theorem 4. We consider the m;-th row in Layer j,
J € lal,m; € [l; — £;1].

1) [MDS condition.] For the codeword (cf,cl,...,
Chik,—k,) defined by the parity check matrix Hjn,,
we write each codeword symbol as ¢; = (cin,Cioy--osein)t.
Since A; is a diagonal matrix, for any z = 0,1,..., L —1, we
have (40), shown at the bottom of the next page.

In (40), 5j,m1,a1,a2,...,akﬁka are additional coeffi-
cients satisfying Condition 1. For y € [k; — k,], denote
vy = Ay',z,,» corresponding t0 gjm;y = hjrary, Where
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x',y’ are computed from (32) and (33) with = = m;.
Next, we show (40) corresponds to a Vandermonde matrix
of full rank, i.e., (¢1,,¢2,2,- -, cn+kj,kmz)T forms an (n +
kj — k‘a,k'j) Reed-Solomon code, which is MDS. We just
need to show that any two entries in the second row of the
r x (n + k;j — k,) matrix in (40) are distinct. Notice that
each entry is the product of an additional coefficient and a A
variable (or a 7y variable). There are three cases: (i) If the A
or the ~ values are identical, by Condition 1, their additional
coefficients differ. So, these two entries are distinct. (ii) If the
A or the ~y values are distinct and the additional coefficients are
identical, then the two entries are distinct. (iii) The A or the ~y
values are distinct and the additional coefficients are distinct.
Noticing A and y belong to E*, distinct additional coefficients
implies that the two entries are in distinct cosets.

After we combine z = 0,1,...,L — 1 together,
(cf L, .. .,cTTLJrk,?_k,a)T is an (n + k;j — kq, kj) MDS vector
code.

2) [Rank condition.] Multiplying the row of a matrix by a
constant does not change the rank. So, by (38) and (39),

D,
rank(S«hjm, ) =rank .
D.pr—tAr!
D,
D, A;
=rank .
DA
Lt =«
- { L Ly (1)

Since the code satisfies the above two conditions, using
Theorem 4, it is a flexible MSR code. [ |

To calculate the required field size, we study how many
additional coefficients are required for our flexible MSR codes
satisfying Condition 1. The required field size can be chosen
as |F| > t|E|, where ¢ is equal to the number of additional
coefficients. In the following, we propose two possible coef-
ficient assignments. It should be noticed that one might find
better assignments with smaller field sizes.

The simplest coefficient assignment sets different additional
coefficients to different rows, i.e., @}mj to Row m; in Layer
7 for the storage nodes (the first n nodes). By doing so, the
parity check matrix 3;,,,, A, j € [a],m; € [{; —£;_1],i € [n]
will show at most twice in Construction 4, i.e., in Layer j
corresponding to storage Node 4 and in Layer ;' corresponding
to an extra parity, for some j > j’. Hence, the same A; will
correspond to different additional coefficients in the same row
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and Condition 1 is satisfied. In this case, we need a field size
of (|E|.

In the second assignment, we assign different additional
coefficients in different layers for the storage nodes (the first
n nodes), but for different rows in the same layer, we might
use the same additional coefficient. For a given row, the
storage nodes will not conflict with the extra parities since
the latter correspond to the storage nodes in other layers.
Also, the extra parities will not conflict with each other if
they correspond to the storage nodes in different layers. Then,
we only need to check the extra parities in the same row
corresponding to storage nodes in the same layer. For the
extra parities/storage nodes g; o, = hjs » v, given j,z, 5, v/,
the additional coefficients should be different for different y.
In this case, kb — ko +1 <y < kjr_1 — ko and there will

k ’ 7k: ’ .
be at most [-~=—=-] choices of y that make y a constant
. . k: ’ _k'l .
in (33). As long as we assign [~-5—7] number of 3 in

Layer 5,7 > 2 (in Layer 1 we only need one (), Condition
1 is satisfied.
The total number of required additional coefficients is ¢t =

14 22[%%;%1. Notice that (k;_1 —k;)l; 1 = k;(£;—£;_1)
=

and;vehave
kil — ks
o1+ 3=y
j=2 /
Sl —
=2

a
ST+ (4= t1)
j=2

<. (42)
Moreover, in the best case when we have k;_; —k; < k; for all
j, the number of additional coefficients is a while |F| > a|E|.

Here, we briefly compare our construction with another
flexible MSR construction in [9]. In our code, each node
is in FX=k)" where |F| > t(n — k)n. Namely, each node
requires ¢(n — k)™ log,(t(n — k)n) bits. Tamo, Ye, and Barg
also considered the optimal repair of flexible codes in [9]
under their setting, i.e., the downloaded symbols instead of
the accessed symbols in each node is flexible to reconstruct
the entire information. Their nodes are elements in Fs("—F)"
with |F| > s(n—Fk)n, where s is defined such that s; /s = ¢, /¢
fraction of the information are downloaded in each node and
s is the least common multiple of sy, so, ..., s,. Without loss
of generality, we can choose ¢ = s in our construction. Hence,
for Eq. (42), the required field size of our construction is better
than that of the construction in [9].

Bijm; 1,21 Bjm; An,zn ar

(Bjim; A1) ! (Bjim; Anz) "

(ary)" !

1 Cl,z
Ok —ky Vhj—ka €2,z 0 “0)
(ke — ko Yoy —ha) Crtkj—ka,z
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2) Flexible RS MSR Codes: In this section, we introduce
the construction of RS MSR codes.
An RS(n, k) code over the finite field F is defined as

RS(TZ, k) - {(f(al)vf(QQ)v - ,f(Oén)) : f € F[x]v
deg(f) <k —1},

where the evaluation points are defined as {1, g, ..., a,} C
IF, and deg() denotes the degree of a polynomial. The encoding
polynomial is f(z) = wg + w1z + - -+ + up_128"1, where
u; € F,e=0,1,...,k—1 are the information symbols. Every
evaluation symbol f(«a;),i € [n] is called a codeword symbol.
RS codes are MDS codes, namely, from any k codeword
symbols, the information can be recovered.

Let B be the base field of IF such that F = B”. For repairing
RS codes, [49] and [8] show that any linear repair scheme for
a given RS(n,k) over the finite field F = B% is equivalent

to finding a set of repair polynomials {p. ,(z),v € [L]} such
that for the failed node f(w.), * € [n],
ranks({pso(co) v € [L]}) = L, (43)

where the rank rankg({y1,72,...,7:}) is defined as the

cardinality of a maximum subset of {v1,72,...,7;} that is
linearly independent over B.
The transmission from helper f(«;) is
(44)

Trg g (ps,o (i) f(i)), v € [L],
(

where the trace function T'rp /g x) is a linear function such
that for all x € IF, Trg/g(z) € B [53]. The repair bandwidth
for the i-th helper is

b'L = Tank]B({p*,v(ai) ve L}) (45)

symbols in B.

The flexible RS MSR code construction is similar to Con-
struction 4 based on parity check matrices, as presented below.

Construction 5: We define a code in F = GF(q") with
a set of pairs (k;,¢;),j € [a] such that k;j¢{; = k¢,
ki > ko > ... ko = k,ly = £, v = n — k. In the mj-th
row in Layer j € [a], the codeword symbols Cj ,, i,7 € [n]
are defined as:

Cj mj.i fjvmj (O‘j,mj,i)v (46)

and the extra parities C', i€ lk;—

Jomgio ko) are defined as

A

J,mj i
where { fj.m, (jm;.i),1 € [n+kj — ka|} is an RS(n +kj —
ka,k;) code. We next define the encoding polynomial f; ., ()
and the evaluation point o, ;.

In this construction, we set the extra parities and the corre-
sponding evaluation points exactly the same as the information
symbols in lower layers. We also arrange the extra parities the
same way as in Construction 4. Specifically, for Cj’ «,y in Layer
j,x €[lj —1j—1], when kj —kjy_1+1 <y <k; —kj for
j+1<j" <a,itis encoded to Layer j' with oy yin =
ity and CF = Cyr gy, with 2, y" in (32) (33). The
encoding polynomial f; ., ,(x) € IF in Layer j' is defined by
the k;. evaluation points and the codeword symbols from the

extra parities.

= fjﬂnj (O‘j,mj,iJrn)v 47

571

Theorem 5: Construction 5 is a flexible RS MSR code, if it
satisfies:

1) [MDS condition.] In Row my; of Layer j, o m;,i €
[n+ kj — k] are distinct elements in F.

2) [Rank condition.] The same set of repair polynomials
Pa,v(x), % € [n],v € [L], can be used in each row such that:

ranks ({p«,o(jm; +) 1 v € [L]}) = L,

bi = ranks({psv(jm;,q:) :v € [L]}) = £ si € [n]\{x}.
(49)

(48)

Proof: 1). In the case when i, € [n+k; — ko] are
distinct elements in IF, we have { f; m,;(®jm;,i),i € [n+k;j —
kq]} is RS(n + kj — kq, k;). Moreover, Layer j' is encoded
from the kj; extra parities in Layers 1,2,...,7 — 1. Thus,
Construction 5 is the same as Construction 1 by using the RS
codes as the MDS codes. The flexible reconstruction property
is shown in Theorem 1.

2). For the repair, since the extra parities share the same
codeword symbols and evaluation points with the storage
nodes in lower layers, from (44) we know that the transmission
for repair is also the same. Thus, we only transmit information
corresponding to the (n — 1) storage nodes.

From (5), we know that in each row, each helper transmits
L/r symbols, which is optimal. [ ]

We take the construction in [8] as the RS(n + k; —
ka,k;),j € [a] codes in Construction 5 to show how to
construct flexible RS MSR codes.

In [8, Theorem 5], the RS code is defined in F with evalua-
tion points chosen from the subset {1, B2, . .., Brav, i €
[n]} such that t = It for a subfield E = GF(q") of F, and
a; € B, i € [n] Here 051, ..., correspond to elements
in F such that {;E*,...,5;E*} forms a partition of F*
[8, Lemma 1]. For the repair polynomials p.. ,(z) in [8],

L,i=x,
L -
?az#*a

, Bt }. The required subfield size

ranks({p«o(Bei) : v € [L]}) = { (50)
for all 3 chosen from {fy, ...
in [8] is |E| ~ n™.

For Construction 5, we assign the evaluation points in the
storage nodes as v ;i = Bjm,; e € F, i € [n],j € [a],m; €
[l; — £;_1], where (3; . is chosen from {f,...,3;:}. The
evaluation points of the extra parities are given by the storage
nodes as in (32) and (33). We assign the additional coef-
ficient 3 to satisfy Condition 1. Similar to Construction 4,
we guarantee that in each row, the n + k; — k, evaluation
points are distinct and the total number of required 3 is
t =1+ Z( e kﬂ In the best case when we have

Jj=2
ki—1 —kj < Ej for all j, the number of § we required is

a. The required field size is a|E|.
Corollary 2: With the RS code in [8], Construction 5 is a
flexible RS MSR code.
Proof: We use Theorem 5 to prove that the code is a
flexible RS MSR code.
1) [MDS condition.] We have assigned the evaluation points
in each row as distinct elements in F.
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2) [Rank condition.] We know from (50) that the rank
condition in Theorem 5 is satisfied. [ |

IV. LATENCY

In this section, we analyze the latency of obtaining the entire
information using our codes with flexible number of nodes.

One of the key properties of the flexible storage codes
presented in this paper is that the decoding rows are the first ¢;
rows if we have R; available nodes. As a result, the decoder
can simply download symbols one by one from each node and
symbols of Layer j can be used for Layers 7,5+ 1,...,a

For one pair of (Rj,¢;), define a random variable Tj
associated with the time for the first R; nodes transmitting
the first £; symbols. T} is called the latency for the j-th
layer. Instead of predetermining a fixed pair (R,¢) for the
system, flexible storage codes allow us to use all possible pairs
(Rj,¢;),j € [a]. The decoder downloads symbols from all n
nodes and as long as it obtains £; symbols from R; nodes,
the download is complete. For flexible codes with Layers
1,2,....a, we use Th2, ., = min(7},j € [a]) to represent
the latency.

It is obvious that for the fixed code with the same failure
tolerance level, i.e., R = R,, ¢ = {,, the latency of the fixed
code (1,) is at least that of the flexible code:

Ti2,...a =min(T},j € [a]) < Ty, (51

and we reach the following remark.

Remark 2: Given the storage size per node ¢, the number of
nodes n, and recovery threshold R = R,, the flexible storage
code can reduce the latency of obtaining the entire information
compared to any fixed array code.

Assume the probability density function (PDF) of T is
PR, ¢, (t). We calculate the expected delay as

E(T]) :A ijRJ,Zj(Tj)de~ (52)
If a fixed code is adopted, one can optimize the expected
latency and get an optimal pair (R*,¢*) for a given dis-
tribution [30], [31]. However, a flexible storage code still
outperforms such an optimal fixed code in latency due to
Remark 2. Moreover, in practice the choice of (n,k, R, ¢)
depends on the system size and the desired failure tolerance
level and is not necessarily optimized for latency.

Next, we take the Hard Disk Drive (HDD) storage system
as an example to calculate the latency of our flexible storage
codes and show how much we can save compared to a fixed
MDS code. In this part, we compute the overall latency
of a flexible code with (Ry,¢1), (Rz,f2), and length n.
We compare it with the latency of fixed codes with (n, Ry, ¢1)
and (n, Ra, {2), respectively.

The HDD latency model is derived in [54], where the overall
latency consists of the positioning time and the data transfer
time. The positioning time measures the latency to move the
hard disk arm to the desired cylinder and rotate the desired
sector to the disk head. As the accessed physical address for
each node is arbitrary, we assume the positioning time is a
random variable uniformly distributed, denoted by U (0, tpos),

where #pos is the maximum latency required to move through
the entire disk. The data transfer time is simply a linear
function of the data size, and we assume the transfer time
for a single symbol in our code is fy,s. Therefore, the overall
latency model is X + £ - tyans, Where X ~ U(0, ¢p05) and £ is
the number of accessed symbols.

Consider an (n, R, ) fixed code. When R nodes finish
the transmission of ¢ symbols, we get all the information.
The corresponding latency is called the R-th order statistics.
For n independent random variables satisfying U (0, tpos), the
R-th order statistics for the positioning time, denoted by Ug,
satisfies the beta distribution [55]:

Ur ~Beta(R,n+1— R, 0, tp0s), (53)
with expectation E[Ugr| = niltpos. For a random variable
Y ~ Beta(a, ,a,c), the probability density function is
defined as

_ a—1 _ B—1
fY = yiaBa,0) = ((‘Z_Ziw(fl B(yoz 5 69
where
1
B(a,ﬁ)z/ t* (1 —t)PLdt (55)
0

is the Beta function.
The expectation of the overall latency for an (n, Ry, ()
fixed code, denoted by 77, is

Ry

n—Htpos + Elttrans-

E(Ty) = (56)

Similarly, the expected overall latency E(T5) for the fixed
(n, Ry, ¢3) code is

R
E(TQ) = n—_fltpos + £2ttrans~ (57)

Now, consider our flexible code with two layers. The
difference of the positioning times Ug, and Ug, is

AU =Ug, —Ug,

~Beta(Ry — Ra,n+1— (Ri1 — R2),0,tpos)- (58)

Thus, we can get the expectation of the overall latency for our
flexible code, denoted by T o, as

E(Ty 2)
= E(min(Ty,T3))
= B(Ty|T) = Ty, < 0)P(Ty — T> < 0)
+ E(To|Ty — T2 > 0)P(Ty — T> > 0)
= E(TY) — E(Ty — To|T), — Ty > 0)P(Ty — Ty > 0)
_ Rl
n+1 Fpos

tp(JS
+ Oyt — / IAT = (£ — £1)tuans) f(AU)AAU,
(£2 7£1 )t(rans

(59)
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where the last term is the saved latency compared to an
(n, Ry, ¢1) code. The saved latency can be calculated as:

E(Ty —Th2)
tpos
:/ [AU - (62 - El)ttrans]f(AU)dAU
(62_el)tlmns
_ Gtpos

Il—x(b; a—+ 1) - (62 - El)ttransll—x(b; Cl), (60)

+b
where = = bt_zlttrans, a=Ry— Ry, b=n—(R; — R2) + 1,

08

and I, (a,b) is the regularized incomplete beta function:

B(z;a,b)
ICE ;b — Y57 1 61
0= Ban) o0
with incomplete beta function
x
B(z;a,b) = / t7 11 — 1)’ L. (62)
t=0
Using the fact that I,(b,a+1) = I.(b,a)+ %, we have

E(Ty —Ti2)
Ry — Ry 2%(1 — z)®
n+1 aB(a,b)
(63)

:(E(Tl) - E(TQ))Il—;r(b, Cl) + tpos

Similarly, the saved latency compared to an (n, ks, 2) code
is

E(T2 — TLQ)

R1 — RQ J)a(l — J?)b
n+1 aB(a,b)
(64)

:(E(TQ) - E(Tl))lzr (a, b) + tpos

From (56) and (57), we can see that the latency of a fixed
MDS code is a function of n, R, ¢, ¢y, and tyans. One can
optimize the code reconstruction threshold R* similar to [30]
and [31] based on the other parameters. However, the system
parameters might change over time and one “optimal” R*
cannot provide low latency in all situations. For example,
with fixed n, ¢, and the total information size, a larger
Lians Tesults in a larger R*, while a larger t,, results in
a smaller R*. In our flexible codes, we can always pick
the best R; over all j € [a] and thus provide a lower
latency.

Fig. 2 shows the overall latency of fixed codes and flex-
ible recoverable codes. We fix the other parameters and
change the unit data transfer time t.,. For fixed codes,
a smaller R provides a lower latency with a smaller fyps
and when {fy.s grows, a larger R is preferred. However,
our flexible code always provides a smaller latency and can
save 2% ~ 5% compared to the better of the two fixed
codes.

Our flexible codes can also be applied to distributed comput-
ing systems for matrix-vector multiplications [30]. The matrix
is divided row-wisely and encoded to n servers using our
codes. Each server is assigned ¢ computation tasks. If any R;
servers complete /; tasks, we can obtain the final results. Sim-
ulation is carried out on Amazon clusters with n = 8 servers
(ml.small instances). And each task is a multiplication of a
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Fig. 3. Average latency of fixed codes and flexible codes for matrix-vector
multiplication in Amazon cluster. n = 8, Ry = 5, Ry = 4,41 = 12,
lo = 15.

square matrix and a vector. The results are shown in Fig. 3.
We can see a similar trend as that of Fig. 2. Our flexible code
improves the latency by about 6% compared to the better of
the two fixed codes when the matrix size is 1500 x 1500.

V. CONCLUSION

In this paper, we proposed flexible storage codes and inves-
tigated the construction of such codes under various settings.
Our analysis shows the benefit of our codes in terms of
latency. Open problems include flexible codes for distributed
computed problems other than matrix-vector multiplications,
code constructions with a smaller finite field size and a smaller
sub-packetization, and storage codes utilizing partial data
transmission from each node similar to universally decodable
matrices [10].
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