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Bounding Quantum Capacities via Partial Orders
and Complementarity

Christoph Hirche and Felix Leditzky

Abstract— Quantum capacities are fundamental quantities that
are notoriously hard to compute and can exhibit surprising
properties such as superadditivity. Thus, a vast amount of
literature is devoted to finding tight and computable bounds on
these capacities. We add a new viewpoint by giving operationally
motivated bounds on several capacities, including the quantum
capacity and private capacity of a quantum channel and the
one-way distillable entanglement and private key of a quantum
state. These bounds are generally phrased in terms of capacity
quantities involving the complementary channel or state. As a tool
to obtain these bounds, we discuss partial orders on quantum
channels and states, such as the less noisy and the more capable
order. Our bounds help to further understand the interplay
between different capacities, as they give operational limitations
on superadditivity and the difference between capacities in terms
of the information-theoretic properties of the complementary
channel or state. They can also be used as a new approach
towards numerically bounding capacities, as discussed with some
examples.

Index Terms— Coding and information theory.

I. OVERVIEW AND MAIN RESULTS

CAPACITIES give the optimal rate at which a certain
information theoretic task can be achieved. As such,

they play a fundamental role in understanding the capabilities
afforded by a specific resource such as a quantum channel
or a quantum state. Specific tasks of interest include for
example public or private information transmission over a
channel, and the distillation of maximally entangled or private
states. In many cases we even know of mathematical formulas
that exactly determine these capacities. Those could already
be the end of our journey; however, to really understand
or even numerically evaluate these quantities still remains
an extremely challenging task. Two typical questions are as
follows. First, we know from operational arguments that the
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rate at which we can transmit private classical information over
a quantum channel is never smaller than the rate at which we
can send quantum information over the same channel. But it is
often unknown how much more exactly of the former can be
sent. Second, in both of these examples the capacity is given
by a regularized formula, meaning it has to be evaluated on
n copies of the channel in the limit of n going to infinity.
This makes numerical evaluation generally intractable. It is
again easy to see that the regularized quantity can never be
smaller than the single-copy version it is based on, but it is a
priori unclear how much bigger the regularized quantity can
become.

Due to these challenges, a significant part of the quantum
information literature strives to find better bounds on quan-
tum channel capacities that help us to narrow down their
numerical value, and hence give a better understanding of their
information-theoretic capabilities. A small collection of recent
results on upper bounds on capacities includes for example [1],
[2], [3], [4], [5], [6], [7], [8], [9], and [10]. Naturally, a main
focus in this area has been to find approximations of capac-
ities in terms of upper bounds that can be easily evaluated
numerically. However, it can often be difficult to assign any
operational understanding to these bounds. In this work we
address the latter point by finding bounds on capacities that
have an operational interpretation themselves, ideally phrased
in terms of capacities. These bounds may shed further light on
the information-theoretic structures that allow for phenomena
such as superadditivity.

An important concept in this work will be that of com-
plementarity. It is well known that one can think of any
quantum channel N as an isometric embedding into a larger
(tensor product) space, followed by discarding the auxiliary
system which is usually referred to as the environment. The
complement of that channel, denoted N c, is obtained by
keeping the environment while discarding the original output
system. Information-theoretically, the complementary channel
models the leakage of information to the environment. Note
that while the complement of a given channel is not unique, all
choices are information-theoretically equivalent. The concept
of complementarity can also be applied to mixed bipartite
states shared between two parties, say, Alice and Bob. Puri-
fying such a shared state and discarding Bob’s system results
in a complementary state quantifying the correlations between
Alice and the environment.

As a starting point for our discussion, consider the class
of degradable channels [11]. Those are channels for which
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the receiver can apply another channel D to simulate the
complementary channel, i.e., N c = D ◦ N . Intuitively,
this implies that the channel N should never be worse
at transmitting information than N c. As a consequence
of degradability, the quantum capacity Q(N ) and private
capacity P (N ) of a degradable channel N simplify [11],
[12] (see Sec. II-B for a more detailed discussion of these
capacities):

P (N ) = Q(N ) = Q(1)(N ) = P (1)(N ), (I.1)

where the channel’s coherent informationQ(1)(N ) and private
information P (1)(N ) are the corresponding non-regularized,
single-copy quantities, defined in (II.7) and (II.10) below,
respectively.

Equation (I.1) for degradable channels hints at the fact
that the relationship between a channel and its complement
determines properties of their capacities. Later, Watanabe [13]
made this idea more precise by translating the classical concept
of less noisy and more capable channels [14] to the quantum
setting. Both of these classes had previously proven useful
in classical information theory, but Watanabe realized that
they gain new meaning when applied to a quantum channel
and its complement. Namely, we call a channel regularized
less noisy when the private capacity of its complement is
zero, P (N c) = 0, and regularized more capable when its
complement’s quantum capacity is zero,Q(N c) = 0. Note that
regularized less noisy implies regularized more capable by the
well-known capacity inequalities 0 ≤ Q(N ) ≤ P (N ) valid
for any quantum channel N . Moreover, a degradable channel
N satisfies P (N c) = 0, since the existence of the degrading
map makes it impossible for the sender to transmit private
information to the environment. Hence, degradability implies
both regularized less noisy and more capable. Watanabe [13]
showed that (a) relaxing degradability to regularized less noisy
is still sufficient for (I.1) to hold; (b) regularized more capable
still implies P (N ) = Q(N ).

Naturally, it is desirable to see what we can learn from these
results for general channels. To this end, Sutter et al. intro-
duced the concept of approximately degradable channels [1],
showing that the relations in Equation (I.1) still hold approx-
imately when a channel is close to being degradable in a
suitable sense. This idea led to some of the best capacity
bounds available which are even efficiently computable as the
optimal approximation constant is given by a convex optimiza-
tion problem. The recent work [15] introduced approximately
less noisy and more capable classes, leading to potentially
tighter bounds, however at the cost of generally losing the
efficient computability. Here, we remedy this disadvantage by
showing that the approach can be used to give bounds with
operational meaning that extend on the previously achieved
results.

We will now discuss the main results of this work, while
referring to the later sections for technical definitions, state-
ments and proofs. In particular, the technical sections include
new results on connections between classes of channels and
partial orders that might be of independent interest beyond the
capacity bounds presented here.

Our main results regarding quantum channels and their
capacities are discussed in Sec. II. As a warm-up to the
structure of our results, we give bounds on the classical capac-
ity C(N ) and the entanglement-assisted classical capacity
Cea(N ) in Theorem 2.2,

Q(N ) ≤ C(N ) ≤ Q(N ) + C(N c) (I.2)

2Q(1)(N ) ≤ Cea(N ) ≤ 2Q(1)(N ) + Cea(N c). (I.3)

Note that in contrast to the other capacity formulas discussed
here, Cea(N ) does not require regularization [16] and can be
efficiently computed [17] (see Sec. II-B for a more detailed
discussion).

Next, we focus on the private and quantum capacity.
In Corollary 2.4 we extend the results in [15], showing that
the quantum capacity of the complementary channel limits
how different the private and quantum capacity of the channel
can be:

Q(1)(N ) ≤ P (1)(N ) ≤ Q(1)(N ) +Q(1)(N c), (I.4)

Q(N ) ≤ P (N ) ≤ Q(N ) +Q(N c). (I.5)

Similarly, the entanglement-assisted private information
PE(N c) (defined in (II.13) below) limits the increase due to
regularization,

Q(1)(N ) ≤ Q(N ) ≤ Q(1)(N ) + PE(N c), (I.6)

P (1)(N ) ≤ P (N ) ≤ P (1)(N ) +Q(N c) + PE(N c). (I.7)

The entanglement-assisted private information PE(N ) was
proven in [18] to equal the entanglement-assisted private
capacity of degradable channels. This extends a result in [19]
which, translated to our notation, states that Q(1)(N ) = Q(N )
if PE(N c) = 0. While the condition PE(N c) = 0 is referred
to as ‘informationally degradable’ in [19], we refer to this
property as ‘fully quantum less noisy’ in this work.

The above bounds give an operationally meaningful, quan-
titative version of the results by Watanabe [13]. Furthermore,
they make the intuition precise that the properties of the
complementary channel of a general channel limit the pos-
sibility of having superadditivity or a higher private capacity
than quantum capacity in a fundamental way. In Sec. II-E
we discuss how our bounds can be used to obtain numerical
bounds on the private capacity. For example, we identify a
class of ‘approximately bi-PPT’ channels, for which both
the channel and its complement are close to being a PPT
channel [20] so that each has small quantum capacity [21].
For these channels our bound (I.5) implies a small private
capacity as well.

Section III then slightly changes focus from investigating
channels to discussing quantum states. Approximate degrad-
able quantum states were defined in [3] and used therein
to give bounds on the one-way distillable entanglement
D→(ρAB). Additionally, we consider here the one-way distill-
able private key K→(ρAB). We define new partial orders based
on these two quantities, which lead us to results similar to the
channel setting. First, we define the complementary state ρc

AB

of a state ρAB as ρc
AB := ρAE = TrB ΨABE where ΨABE is

a purification of ρAB . We then show in Theorem 3.4 that the
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one-way distillable entanglement of the complementary state
limits the difference between distillable key and entanglement,

D(1)
→ (ρAB) ≤ K(1)

→ (ρAB) ≤ D(1)
→ (ρAB) +D(1)

→ (ρc
AB) (I.8)

D→(ρAB) ≤ K→(ρAB) ≤ D→(ρAB) +D→(ρc
AB). (I.9)

Similarly, the complement state’s one-way distillable key
limits the increase due to regularization, see Theorem 3.3 and
Corollary 3.5,

D(1)
→ (ρAB) ≤ D→(ρAB) ≤ D(1)

→ (ρAB) +K→(ρc
AB) (I.10)

K(1)
→ (ρAB) ≤ K→(ρAB)

≤ K(1)
→ (ρAB) +K→(ρc

AB) +D→(ρc
AB). (I.11)

Note the formal equivalence between eqs. (I.4) to (I.7) and
eqs. (I.8) to (I.11). Together, these results show that a similar
intuition as for channels also holds for quantum states: the
possibility of extracting certain resources from the comple-
mentary state determines properties of the capacities of the
state itself.

Finally, in Section IV we discuss symmetric side-channel
assisted capacities and how superactivation is directly related
to the question whether the sets of degradable and regularized
less noisy channels are actually different. That is, we show
the implication

P (·) can be superactivated ⇒ DEG � LN∞, (I.12)

where DEG and LN∞ denote the classes of degradable and
regularized less noisy channels, respectively.

We end by discussing some open problems in Section V,
intended to inspire further research in this direction. The
appendices contain some additional proofs and observations
supporting the main text.

II. PARTIAL ORDERS ON CHANNELS AND THEIR

IMPLICATIONS

A. Definitions and Notation

In this paper classical and quantum systems are denoted by
capital letters. Generally,A, B, E denote quantum systems and
U , T , X denote classical systems. A (classical or quantum)
system R is associated with a finite-dimensional Hilbert space
HR. A quantum state ρR on R is a positive semidefinite linear
operator with unit trace acting on HR. A state ρR of rank 1 is
called pure, and we may choose a normalized vector |ψ�R ∈
HR satisfying ρR = |ψ��ψ|R. Otherwise, ρR is called a mixed
state. By the spectral theorem, every mixed state can be written
as a convex combination of pure states. For a pure state |φ�
we often use the shorthand φ ≡ |φ��φ|. For a classical system
X there is a distinguished orthonormal basis {|x�}dimHX

x=1 of
HX diagonalizing every state on X . For a quantum state ρA

we denote by H(A)ρ = −Tr ρA log ρA the von Neumann
entropy. For a bipartite state ρAB acting on the tensor product
space HA⊗HB , we denote by I(A : B)ρ = H(A)+H(B)−
H(AB) the mutual information. For a tripartite state ρABC

acting on the tensor product space HA⊗HB⊗HC , we denote
by I(A : B|C)ρ = H(AC) + H(BC) − H(ABC) − H(C)
the conditional mutual information.

A quantum channel N : A → B is a linear completely
positive and trace-preserving map from the space of linear
operators on HA to those on HB . For every quantum channel
N : A → B we can choose an auxiliary space HE , usually
called the environment, and an isometry V : HA → HB⊗HE ,
usually called a Stinespring isometry, such that N (XA) =
TrE(V XAV

†). A channel isometry gives rise to the so-called
complementary channel N c : A → E modeling the loss
of information to the environment, defined as N c(XA) =
TrB(V XAV

†). Letting |γ�AA′ =
∑dimHA

i=1 |i�A ⊗ |i�A′ be an
unnormalized maximally entangled state defined with respect
to an orthonormal basis {|i�A}i of HA, the Choi operator of
N is defined as τAB = (idA⊗N )(γAA′). A quantum channel
N : A → B with complementary channel N c : A → E is
called degradable if there exists another channel D : B → E
satisfying N c = D ◦ N [11]. A quantum channel is called
anti-degradable if its complementary channel is degradable.
In analogy to channels and their complementary channels,
we can also define the related concept of a complementary
state of a bipartite state ρAB: considering a purification
|ψ�ABE satisfying ρAB = TrE ψABE , the complementary
state is defined as ρc

AB := ρAE = TrB ψABE [3]. Degrad-
ability and antidegradability of states are defined similarly as
for channels.

B. Partial Orders and Channel Capacities

In classical information theory, the more capable and less
noisy orders play an important role [14]. These are generally
defined based on an entropic condition on the output states of a
channel required to hold for a specified set of inputs. There are
different ways to translate these classical concepts to the quan-
tum setting; here we focus on the regularized more capable and
less noisy orders introduced by Watanabe [13]. In these orders,
the second channel is fixed to be the complementary channel of
the first one, which then leads to a characterization of the chan-
nel’s capacities in terms of the capacities of the complementary
channel. A similar idea also underlies the so-called approxi-
mate degradability introduced by Sutter et al. [1], which we
discuss in more detail in Sec. II-D.

In this work, we consider the approximate partial orders
summarized in Table I, which were recently introduced in [15].
Generally speaking, the less noisy orders are based on mixed
states, i.e., either the set of mixed quantum states ρAA′ or
classical-quantum states

ρUA =
∑

u

p(u)|u��u| ⊗ ρu
A, (II.1)

where each ρu
A is a mixed state. In contrast, the more capable

orders are based on pure states, i.e., either the set of pure states
ΨAA′ or classical-quantum states

ρXA =
∑

u

p(x)|x��x| ⊗ Ψx
A, (II.2)

where each Ψx
A is a pure state.

We will now discuss the capacities of a quantum channel
used to formulate our main results. We focus on entropic
formulas for these capacities, and refer to [22] for detailed
operational definitions.
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TABLE I

APPROXIMATE PARTIAL ORDERS DISCUSSED IN THIS PAPER. FOR DEFINITIONS OF THE RELEVANT ENTROPIC QUANTITIES AND CAPACITY QUANTITIES,
SEE SEC. II-B. THE ENTROPIC FORMULATIONS ARE EASILY GENERALIZED TO AN ARBITRARY PAIR OF CHANNELS N AND M

The classical capacity C(N ) of a quantum channel N
characterizes the optimal rate of faithful classical information
transmission through the channel. It can be expressed as [23],
[24]

C(N ) = lim
n→∞

1
n
χ(N⊗n), (II.3)

χ(N ) = sup
ρXA

I(X : B), (II.4)

where the optimization in (II.4) is over classical-quantum
states ρXA as defined in Equation (II.2), which uses the
fact that the optimization can be restricted to pure state
ensembles [22]. The mutual information is evaluated on the
state (idX ⊗ N )(ρXA). The quantity χ(N ) is called the
Holevo quantity.

The entanglement-assisted classical capacity Cea(N ) is
defined as the optimal rate of faithful classical information
transmission assisted by unlimited entanglement, and can be
expressed as [16]

Cea(N ) = sup
ΨAA′

I(A : B), (II.5)

where the mutual information is evaluated on the state (idA ⊗
N )(ΨAA′). A significant difference between the formulas
(II.3) and (II.5) is that the former is regularized (or multi-
letter), referring to the limit n → ∞. This regularization
is necessary since the Holevo information is “superadditive”:
there are channels N such that χ(N⊗n) > nχ(N ) for some
n ∈ N [25], which renders the classical capacity C(N )
intractable to compute in general. Most capacity formulas
for quantum channels suffer from this regularization problem,
which creates the need for methods to bound these capacities;
this is a main motivation for the present work as well.
In contrast to the formula for the classical capacity, the
expression (II.5) for the entanglement-assisted classical capac-
ity is a so-called single-letter formula that can be computed
efficiently [17], [22].

The quantum capacity Q(N ) characterizes the optimal
rate of faithful quantum information transmission through a
channel. It can be expressed as [26], [27], [28], [29], [30]

Q(N ) = lim
n→∞

1
n
Q(1)(N⊗n), (II.6)

Q(1)(N ) = sup
ρXA

{I(X : B) − I(X : E)} (II.7)

= sup
ΨAA′

I(A�B), (II.8)

where the optimization in (II.7) is over classical-quantum
states of the form (II.2) with pure ensemble states, and the
mutual informations I(X : B) and I(X : E) are evaluated on
the states (idX ⊗ N )(ρXA) and (idX ⊗ N c)(ρXA), respec-
tively. The alternative expression in (II.8) uses the coherent
information I(A�B) = H(B) −H(AB).

The private capacity P (N ) characterizes the optimal rate of
faithful private information transmission through a quantum
channel, and can be expressed as [30], [31]

P (N ) = lim
n→∞

1
n
P (1)(N⊗n), (II.9)

P (1)(N ) = sup
ρUA

{I(U : B) − I(U : E)}, (II.10)

where the optimization in the last line is over
classical-quantum states as in Equation (II.1) with mixed
ensemble states, and the mutual informations I(U : B) and
I(U : E) are evaluated on the states (idU ⊗ N )(ρUA) and
(idU ⊗N c)(ρUA), respectively.

Similar to the classical capacity above, both the regular-
izations in the quantum capacity formula (II.6) and in the
private capacity formula (II.9) are necessary as well because
of superadditivity of the underlying information quantities
Q(1)(·) and P (1)(·) [32], [33], [34], [35], [36], [37], [38],
[39], [40], [41], [42]. The coding theorems for the quantum
and private capacity state that the single-letter information
quantities are achievable lower bounds on the true capacities:
For every quantum channel N ,

Q(1)(N ) ≤ Q(N ) P (1)(N ) ≤ P (N ). (II.11)

However, because of the superadditivity results mentioned
above it is not at all clear how large the gap in these
inequalities can be. Our capacity bounds in Cor. 2.4 imply
that this gap is controlled by the corresponding capacity
of the complementary channel, generalizing the results by
Watanabe [13] which in turn extended prior additivity results
for degradable and antidegradable channels [11], [12].

Operationally, faithful quantum information transmission
is necessarily private, and faithful private information trans-
mission is a particular form of faithful classical information
transmission. These observations translate to the following
capacity inequalities valid for any quantum channel N :

Q(N ) ≤ P (N ) ≤ C(N ). (II.12)

In this work we are particularly interested in the first inequal-
ity, and whether there is a gap between the quantum and



HIRCHE AND LEDITZKY: BOUNDING QUANTUM CAPACITIES VIA PARTIAL ORDERS AND COMPLEMENTARITY 287

private capacity. Only a few channels with a strict separation
between Q and P are known, among them the Horodecki
channel [43], [44], [45], [46], the ‘half-rocket’ channel [47],
and the recently introduced ‘platypus’ channel [42], [48], [49].
On the other hand, Watanabe [13] gave sufficient criteria
implying Q(N ) = P (N ), which was previously known
for degradable channels [12] and antidegradable channels
(for which both capacities vanish). One of our main results
(Cor. 2.4) gives a quantitative bound on the separation between
Q and P that generalizes the result of [13].

Finally, we introduce two additional quantities: the
entanglement-assisted private information [18]

PE(N ) = sup
ρAA′

{I(A : B) − I(A : E)}, (II.13)

where the mutual informations I(A : B) and I(A : E)
are evaluated on the states (idA ⊗ N )(ρAA′) and (idA ⊗
N c)(ρAA′), respectively, and its restriction to pure states,

QE(N ) = sup
ΨAA′

{I(A : B) − I(A : E)}. (II.14)

It was shown in [18] that for degradable channels
PE(N ) = QE(N ), and then both correspond to the
entanglement-assisted private capacity of the degraded channel
N as considered in [18]. We will further expand on this
comment at the end of this section. Also, if one desires an
upper bound that has an operational interpretation for all
channels, observe that

P (1)(N ) ≤ PE(N ) ≤ 2 Qss(N ), (II.15)

where Qss(·) is the quantum capacity with symmetric side
channel assistance [50]. It can be defined as Qss(N ) =
supd Q

(1)(N ⊗ Ad), where Ad is a symmetric channel with
d(d + 1)/2-dimensional input and d-dimensional output, and
zero quantum capacity by itself, Q(Ad) = 0 for all d.
We discuss Qss(·) in more detail in Sec. IV. A proof of the
second inequality in (II.15) is provided in Section A-B.

Before we start exploring the desired capacity bounds,
we make a useful observation regarding the fully quantum
more capable order and its associated capacity formula.

Lemma 2.1: For a quantum channel N , we have

QE(N ) = 2 Q(1)(N ), (II.16)

and therefore,

N is �-more capable

⇔ N is 2�-fully quantum more capable. (II.17)

Proof: Let V : HA → HB⊗HE be a Stinespring isometry
of the channel N : A → B. For an arbitrary pure state ΨAA′

and ΨABE = VΨAA′V †, we have

I(A�B) = H(B) −H(AB)

=
1
2

(H(B) +H(AE) −H(AB) −H(E))

=
1
2

(I(A : B) − I(A : E)) . (II.18)

This holds for every pure state ΨAA′ , and hence proves the
first statement. The second statement then follows by definition
of the orders. �

C. Capacity Bounds

We start by discussing the classical capacities of a quantum
channel as a warm-up.

Theorem 2.2: For a quantum channel N , we have

Q(1)(N ) ≤ χ(N ) ≤ Q(1)(N ) + χ(N c) (II.19)

Q(N ) ≤ C(N ) ≤ Q(N ) + C(N c) (II.20)

2Q(1)(N ) ≤ Cea(N ) ≤ QE(N ) + Cea(N c)

= 2Q(1)(N ) + Cea(N c) (II.21)

Proof: For each statement the first inequality is well
known and is meant for comparison. The second inequal-
ity in the first statement follows by picking the optimal
classical-quantum state ρXA (defined in terms of a pure-state
ensemble) for χ(N ), and noting that

χ(N ) = I(X : B)
= I(X : B) − I(X : E) + I(X : E)

≤ Q(1)(N ) + χ(N c), (II.22)

where the entropies are evaluated on the state (IX ⊗
UN )ρXA(IX ⊗ UN )†, with UN : HA → HB ⊗ HE a Stine-
spring isometry for N . The second statement follows from the
first by regularizing. The third statement follows similarly to
the first, using Lemma 2.1 for the last equality. �
To make the connection to partial orders, one can note the
following as direct consequences: If a channel N is anti-more
capable, we immediately have

χ(N ) ≤ χ(N c) (II.23)

Cea(N ) ≤ Cea(N c). (II.24)

Similarly, if N is anti-regularized more capable,

C(N ) ≤ C(N c). (II.25)

Thm. 2.2 gives our first simple bounds, and exemplifies the
intuition that capacities are limited by the usefulness of the
channel’s complement.

We will now consider the more interesting case of quantum
capacities of quantum channels. In [15] the approximate partial
orders defined at the beginning of the section were used
to proof a quantitative version of the previous results by
Watanabe [13]. Those results will serve as starting point.

Theorem 2.3 ([15]): Let N be a quantum channel.

(i) If N is �-more capable, then
Q(1)(N ) ≤ P (1)(N ) ≤ Q(1)(N ) + �.

(ii) If N is �-regularized more capable, then
Q(N ) ≤ P (N ) ≤ Q(N ) + �.

(iii) If N is �-fully quantum less noisy, then
Q(1)(N ) ≤ Q(N ) ≤ Q(1)(N ) + �.

(iv) If N is �-fully quantum less noisy and �-regularized more
capable, then
P (1)(N ) ≤ P (N ) ≤ P (1)(N ) + 2�.

Here, we record the following simple but important observa-
tion: for any quantum channel N , approximate partial orders
can always be satisfied when considering the approximation
parameters in terms of capacities of the complementary chan-
nel N c. For example, every channel is �-regularized more
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capable if we choose � = Q(N c), and similarly for the other
orders. This immediately leads us to the following result.

Corollary 2.4: For a quantum channel N , we have

Q(1)(N ) ≤ P (1)(N ) ≤ Q(1)(N ) +Q(1)(N c), (II.26)

Q(N ) ≤ P (N ) ≤ Q(N ) +Q(N c), (II.27)

Q(1)(N ) ≤ Q(N ) ≤ Q(1)(N ) + PE(N c), (II.28)

P (1)(N ) ≤ P (N ) ≤ P (1)(N ) +Q(N c) + PE(N c).
(II.29)

Proof: They are a direct consequence of Theorem 2.3 and
the previous observations. An alternative proof of eqs. (II.26)
and (II.27) is given in Section A-A, and of the inequality
(II.40) in Section A-B. �
The corollary gives operationally meaningful bounds on the
maximal difference between the private and the quantum
capacity and the possible advantage to be gained from reg-
ularizing the information quantities Q(1) and P (1).

Although we are mostly concerned with upper bounds in
this work, we mention here that a similar idea can also be
used to detect differences between the capacities. To this end,
Watanabe [13] proved that a channel being more capable is
often also a necessary condition for the private information
and the coherent information of a channel to be equal. The
following is essentially [13, Proposition 2] restated in the
language of this work.

Corollary 2.5: Let ρ∗A be the optimal state achieving
Q(1)(N ). If ρ∗A is full rank and Q(1)(N c) > 0, then

P (1)(N ) > Q(1)(N ). (II.30)

If |A| = 2 and P (1)(N ) > 0, then Q(1)(N c) = 0 if and only
if

P (1)(N ) = Q(1)(N ). (II.31)

Proof: If Q(1)(N c) > 0 then there exists at least one state
ρ for which I(A�E)ρ > 0, and equivalently I(A�B)ρ < 0.
In this case the conditions for [13, Proposition 2] are fulfilled,
which proves the first statement. The second statement is a
direct translation of the second part of [13, Proposition 2]. �
This result is similar in spirit to work on the detection
of positive quantum capacity in [51], which also includes
structure theorems for more capable channels.

It was furthermore shown in [13] that a channel being less
noisy is equivalent to concavity of the channel’s coherent
information. We now give an approximate version of this
observation leading to “approximate” concavity and convexity
results for general quantum channels.

Lemma 2.6: For quantum states ρi
A and a probability dis-

tribution p(i), we define ρA =
∑

i p(i)ρ
i
A. A channel N being

�-approximate less noisy is equivalent to the statement∑
i

p(i)I(A�B)ρi ≤ I(A�B)ρ + �, (II.32)

where I(A�B)ρ is evaluated on the state N (ΨAA′) with
ΨAA′ a purification of ρA. Similarly, a channel N being �-
approximate anti-less noisy is equivalent to∑

i

p(i)I(A�B)ρi ≥ I(A�B)ρ − �. (II.33)

For an arbitrary quantum channel N , we have

I(A�B)ρ − P (1)(N ) ≤
∑

i

p(i)I(A�B)ρi (II.34)

≤ I(A�B)ρ + P (1)(N c). (II.35)

Proof: The first and second statement follow by adjusting
the proof of [13, Proposition 3] using the approximate order.
The third statement is then a direct consequence of the fact that
every channel is �-approximate less noisy with � = P (1)(N c)
and �-approximate anti-less noisy with � = P (1)(N ). �

While we use the fully quantum less noisy order in Theo-
rem 2.3, it was shown in [13] that for � = 0 the same can be
proved using the regularized less noisy order. To this end, the
author takes a detour using an alternative partial order based
on the quantum relative entropy

D(ρ�σ) =

{
Tr[ρ(log ρ− log σ)] if supp ρ ⊂ suppσ,

∞ otherwise,

(II.36)

where suppX := Im(limα→0X
α) denotes the support of an

operator X . We will for now define the following auxiliary
quantities.

Definition 2.7: For a quantum channel N we define the
following quantities,

R(1)(N ) = sup
ρA,σA

D(N (ρ)�N (σ)) −D(N c(ρ)�N c(σ)),

(II.37)

R(N ) = lim
n→∞

1
n
R(1)(N⊗n). (II.38)

Going back to the work of [13], one can find the following
inequality by adjusting their proof,

Q(1)(N ) ≤ Q(N ) ≤ Q(1)(N ) +R(N c). (II.39)

The quantity R(N c) is interesting here, because it was shown
in [13] that the condition R(N c) = 0 is equivalent to
P (N c) = 0, i.e., the partial orders induced by the two
quantities are the same. Unfortunately, the same is not known
to be true for values other than 0, i.e., the approximate partial
orders; see Appendix B for an example. In summary we can
prove the following result.

Theorem 2.8: For a quantum channel N we have

Q(1)(N ) ≤ Q(N ) ≤ Q(1)(N ) +M(N c) (II.40)

P (1)(N ) ≤ P (N ) ≤ P (1)(N ) +Q(N c) +M(N c), (II.41)

where M(N c) = min{R(N c), PE(N c)}.
Motivated by the above discussion, we make the following
conjecture, which is a fully operational (and thus more appeal-
ing) version of Theorem 2.8 in terms of capacities:

Conjecture 2.9: For a quantum channel N we have

Q(1)(N ) ≤ Q(N ) ≤ Q(1)(N ) + P (N c) (II.42)

P (1)(N ) ≤ P (N ) ≤ P (1)(N ) +Q(N c) + P (N c)

≤ P (1)(N ) + 2P (N c). (II.43)

We refer to Appendix B for a relationship between the private
capacity P and the quantity R in Theorem 2.8.
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Finally, we derive bounds that relate the quantities PE and
QE .

Theorem 2.10: Let N be an �-fully quantum less noisy
quantum channel. Then,

QE(N ) ≤ PE(N ) ≤ QE(N ) + �. (II.44)

Therefore, we have for any quantum channel N that

QE(N ) ≤ PE(N ) ≤ QE(N ) + PE(N c), (II.45)

and equivalently,

Q(1)(N ) ≤ 1
2
PE(N ) ≤ Q(1)(N ) +

1
2
PE(N c). (II.46)

Proof: The first inequality in Equation (II.44) follows be
definition of the two quantities. We now prove the second
inequality. Let ρAA′ be the state that achieves the optimal value
of PE(N ), and let ΨABER = N (ΨAA′R) where ΨAA′R is a
purification of ρAA′ . Observe the following,

I(A : B) − I(A : E) (II.47)

= H(B) −H(AB) −H(E) +H(AE) (II.48)

= H(B) −H(ER) −H(E) +H(BR)
−H(RA) +H(RA) −H(RAB) +H(E)
+H(RAE) −H(B) (II.49)

= I(RA : B) − I(RA : E) + I(R : E) − I(R : B) (II.50)

≤ QE(N ) + �, (II.51)

where the second equality makes several uses of the purity
of ΨABER. The inequality follows since the system AR
purifies the channel input, and because N is �-fully quantum
less noisy.

The next statement of the theorem follows because every
channel is �-fully quantum less noisy with � = PE(N c). The
last statement follows from Lemma 2.1. �
A special case of the above is that, if N is fully quantum less
noisy, then

PE(N ) = QE(N ) = 2Q(N ). (II.52)

This should be compared to [18] where the first equality was
shown for the potentially smaller set of degradable channels,
but on the other hand in the more general setting of broadcast
channels.

D. Comparison to Approximate Degradability Bounds

A particularly useful order for bounding channel capacities
is �-degradabiltiy introduced by Sutter et al. [1]. To define
it, we consider the diamond norm of a superoperator
Φ: B(H1) → B(H2) between the algebras B(Hi) of linear
operators on Hilbert spaces H1 and H2,

�Φ�� := sup{�(idH1 ⊗ Φ)(X)�1 :
X ∈ B(H1 ⊗H1), �X�1 = 1}, (II.53)

where �X�1 = Tr
√
X†X denotes the trace norm. Both the

diamond norm and the trace norm can be computed efficiently
using semidefinite programming [52], [53].

Definition 2.11 ( [1]): A channel N is said to be an �-
degraded version of M if there exists a channel Θ such that
�N − Θ ◦M�� ≤ �.
We will show in this section that approximate degradability
implies the orders considered in Sec. II-C; as a consequence,
our bounds are at least as good as the ones derived in [1], and
can sometime improve upon them. A similar discussion can be
found in [15], but we will add a few new elements leading to
slightly improved constants and a simpler derivation. We start
by defining the following two functions,

f1(|E|, �) =
�

2
log(|E| − 1) + h

( �
2

)
, (II.54)

f2(|E|, �) = � log |E| +
(
1 +

�

2

)
h

(
�

2 + �

)
, (II.55)

f+(|E|, �) = f1(|E|, �) + f2(|E|, �), (II.56)

where h(x) is the binary entropy. Note that f1(|E|, �) ≤
f2(|E|, �). As a special case of Def. 2.11, a channel N is
called �-degradable if there exists another channel D such that

�N c −D ◦ N�� ≤ �. (II.57)

The main results of [1] can be stated as follows.
Theorem 2.12 ( [1], Th. 3.4): Let N be �-degradable, then

Q(1)(N ) ≤ Q(N ) ≤ Q(1)(N ) + f+(|E|, �), (II.58)

P (1)(N ) ≤ P (N ) ≤ P (1)(N ) + f+(|E|, �)
+ 2 f2(|E|, �), (II.59)

Q(1)(N ) ≤ P (1)(N ) ≤ Q(1)(N ) + f+(|E|, �). (II.60)

The proofs of these results are reminiscent of [54], and
use continuity bounds from [55], [56] as the main tool.
We state these continuity bounds here, adding a third one for
classical-quantum states recently proved in [57]. For two states
ρ and σ with 1

2�ρ− σ�1 ≤ �, it holds that

|H(A)ρ −H(A)σ | ≤ f1(|A|, 2�), (II.61)

|H(A|X)ρ −H(A|X)σ| ≤ f1(|A|, 2�), (II.62)

|H(A|B)ρ −H(A|B)σ | ≤ f2(|A|, 2�). (II.63)

It was also shown in [1] that, if N is �-anti degradable, then

Q(N ) ≤ P (N ) ≤ f1(|B|, �) + f2(|B|, �). (II.64)

Similarly, we can easily see the following.
Lemma 2.13: If N is �-anti degradable, then

PE(N ) ≤ f1(|B|, �) + f2(|B|, �), (II.65)

Q(1)(N ) ≤ P (1)(N ) ≤ 2 f1(|B|, �). (II.66)

Proof: This follows directly from data-processing and the
continuity bounds mentioned above. �
Combining this with our new capacity bounds, we obtain the
following result.

Corollary 2.14: If N is �-degradable, then

Q(1)(N ) ≤ Q(N ) ≤ Q(1)(N ) + f+(|E|, �), (II.67)

P (1)(N ) ≤ P (N ) ≤ P (1)(N ) + 2 f+(|E|, �), (II.68)

Q(1)(N ) ≤ P (1)(N ) ≤ Q(1)(N ) + 2f1(|E|, �), (II.69)

Q(N ) ≤ P (N ) ≤ Q(N ) + f+(|E|, �). (II.70)
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As the bounds in Theorem 2.12 are also primarily based on
continuity bounds, our improvements are mostly due to the
different proof technique, the fact that our bounds allow the
use of the improved continuity bound from [57], and a clean
regularization for the final inequality. The approximate degrad-
ability bounds above follow directly from further manipulating
our operational capacity bounds, and hence our bounds must
be at least as good as those in [1].

E. Examples

The bounds in this work provide new operational insights
into how different capacities interact with each other. By them-
selves, our bounds are competitive to the best bounds in the
literature; in particular, they are at least as good as those
obtained from approximate degradability [1]. Furthermore, our
bounds can easily be combined with other capacity bounds
to also give numerical bounds on the discussed capacities.
Notably, only few bounds for the private capacity and the
one-way distillable key are known (see [48] for a recently
defined efficiently computable bound on P (·) based on a
result of [10]). Using available quantum capacity bounds,
our results yield bounds on these private capacity quantities
as an application. To illustrate this technique, we consider
the Horodecki channel NH [43], [44], [45], a so-called
entanglement-binding channel [20] satisfying 0 = Q(NH) <
P (NH). To obtain a bound on P (NH), we may combine our
bound in (I.5) with any available quantum capacity bound.
Using the SDP-computable bound from [6] gives

P (NH) ≤ Q(NH) +Q(N c
H) ≤ 0.7284. (II.71)

Evidently, the bound P (N ) ≤ Q(N ) + Q(N c) in (I.5) is
particularly strong when both N and N c have small quantum
capacity. This holds for example when both N and N c are
approximately PPT channels, i.e., all of their output states are
close (e.g., in trace distance) to a PPT state. Since a channel
is PPT if and only if its Choi operator is PPT, we thus look
for channels N such that the Choi operators of N and N c are
both close to PPT states. We found numerical examples of such
channels in low dimensions, e.g., dimHA = 3 = dimHB and
dimHE = 4. The SDP upper bound on Q(·) from [6] detects
(approximately) PPT channels, and thus yields small values for
these channels. For example, we found channels N for which
both Q(N ) and Q(N c) are ≈ 0.02, implying small private
capacity via our bound (I.5). Interestingly, these channels still
have strictly positive quantum and private capacity, as we
were also able to certify strictly positive coherent information
(typically ≈ 10−4) for them.

It is also interesting to consider the exact case of the above
examples, i.e., quantum channels N for which both N and
N c are PPT. For such ‘bi-PPT’ channels, our bound (I.5)
implies P (N ) = 0, and hence these channels would comprise
a new class of zero-private-capacity channels, provided they
are not also antidegradable. This search is motivated by the
fact that having two different classes of zero-private-capacity
channels may lead to an observation of superactivation of
the private capacity [58], which has not been found so far.
Our approximate examples mentioned above may provide

promising candidates towards this goal. However, shortly
after this work appeared it was shown by [59] that non-
antidegradable exact bi-PPT channels do not exist; every
bi-PPT channel is necessarily entanglement-breaking.

III. PARTIAL ORDERS ON QUANTUM STATES

Recently the concept of (approximate) degradability was
transferred to quantum states in [3]. We consider a bipartite
quantum state ρAB with purification ΦABE . The state ρAB is
called degradable if there exists a channel DB→E such that

ρAE = DB→E(ρAB), (III.1)

where ρAE = TrB ΦABE . From now on we will sometimes
use the notation ρAE =: ρc

AB to emphasize the role of ρAE

as the complementary state, in analogy to the complementary
channel of a quantum channel.

It seems natural now to define new partial orders on states
motivated by operational quantities. We pick the one-way
distillable entanglement and secret key as our quantities of
choice. Devetak and Winter showed [60] that the one-way
distillable secret key is given by

K→(ρABE) = lim
n→∞

1
n
K(1)

→ (ρ⊗n
ABE) (III.2)

with

K(1)
→ (ρABE) = max

Q,T |X
I(X : B|T ) − I(X : E|T ) (III.3)

evaluated on

ωTXBE =
∑
t,x

R(t|x)P (x)|t��t|T ⊗ |x��x|X (III.4)

⊗ TrA(ρABE(Qx ⊗ IBE)). (III.5)

Here, {Qx}x is a positive operator-valued measure (POVM),
that is, Qx ≥ 0 for all x and

∑
x Qx = IA. The one-way

distillable entanglement is given by

D→(ρAB) = lim
n→∞

1
n
D(1)

→ (ρ⊗n
AB) (III.6)

with

D(1)
→ (ρAB) = max

T
I(A′�BX), (III.7)

evaluated on TA→A′X(ρAB) where TA→A′X is a quantum
instrument.

Generally, a quantum instrument is a map TA→A′X(·) =∑
x Tx(·) ⊗ |x��x|X with each map Tx being CP and such

that
∑

x Tx is also TP. It was shown in [60] that, when con-
sidering the one-way distillable entanglement, it is sufficient to
optimize over instruments where each Tx is described by only
one Kraus operator, i.e., Tx(·) = Kx ·K†

x. Additionally, they
showed that one can further restrict to the case where Kx ≥
0. With these observations it follows that every considered
instrument is equivalently described by a POVM {K2

x}x. For
the remainder of this work all instruments will be of this
restricted form and this will allow us to discuss secret key
and entanglement on equal footing.

Next, for the purpose of this work we shall specify a setting
that brings both quantities defined above closer together.
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We want to consider a state ρAB with purification ΦABE .
When distilling secret key we give the full environment system
to the eavesdropper and define K→(ρAB) := K→(ΦABE).
Instead of the measurement Q we can optimize over an
instrument, of the form as just discussed, and discard the
output quantum state. We can further generalize by considering
an isometric extension of the instrument V := VA→A′XX̄ ,
as e.g. done in [3]. Taking all this together, we define the
following pure quantum state:

ΨXX̄A′BE = V ΦABEV
†

=
∑
x,y

√
P (x)P (y)|x��y|X ⊗ |x��y|X̄ ⊗KxΦABEK

†
y,

(III.8)

for which

TrX̄ ΨXX̄A′BE = TA→A′X(ΦABE)

=
∑

x

P (x)|x��x|X ⊗KxΦABEK
†
x, (III.9)

is exactly the state we optimize over in the distillable entan-
glement. Now, applying a classical channel R : X → T to the
system X , we get the following state,

ωTXA′BE

=
∑
t,x

R(t|x)P (x)|t��t|T ⊗ |x��x|X ⊗ Tx(ΦABE), (III.10)

which is the state we optimize over when considering the
distillable secret key. It follows that we can evaluate both
K(1)

→ (ρAB) and D(1)
→ (ρAB) on essentially the same state.

We now define the partial orders discussed in the sequel.
Definition 3.1: A quantum state ρAB is called:

• �-regularized more secret if K→(ρc
AB) ≤ �;

• �-more secret if K(1)
→ (ρc

AB) ≤ �;
• �-regularized more informative if D→(ρc

AB) ≤ �;
• �-more informative if D(1)

→ (ρc
AB) ≤ �.

For � = 0 we drop the � in the name in each case. We define
the corresponding anti-orders by exchanging ρc

AB with ρAB .
It is clear from Definition 3.1 that e.g. �-anti regular-

ized more secret implies small distillable secret key, i.e.,
K→(ρAB) ≤ �, and similar for the others.

Our next goal is to rephrase the partial orders in terms
of entropic inequalities. K(1)

→ already has a convenient form
for that, but it will be useful to find an alternate expression
for D(1)

→ . Note that we can evaluate D(1)
→ on the pure state

ΨXX̄A′BE defined above. We then get

I(A′�BX) = H(BX) −H(A′BX) (III.11)

= H(BX) −H(X̄E) (III.12)

= H(BX) −H(XE) (III.13)

= H(B|X) −H(E|X), (III.14)

allowing us to write

D(1)
→ (ρAB) = max

T
H(B|X) −H(E|X). (III.15)

We are now ready to give the following equivalences.

Lemma 3.2: The state ρAB is:

• �-regularized more secret iff for all n ≥ 1, classical
channels R and quantum instruments T applied to ρ⊗n

AB ,
we have

I(X : En|T ) ≤ I(X : Bn|T ) + n�; (III.16)

• �-more secret iff for all R, T applied to ρAB , we have

I(X : E|T ) ≤ I(X : B|T ) + �; (III.17)

• �-regularized more informative iff for all n ≥ 1 and T
applied to ρ⊗n

AB , we have

H(En|X) ≤ H(Bn|X) + n�; (III.18)

• �-more informative iff for all T applied to ρAB , we have

H(E|X) ≤ H(B|X) + �. (III.19)

Proof: Follows from the above considerations. �
Although not immediately obvious from the entropic for-

mulation, we have D(1)
→ (ρAB) ≤ K(1)

→ (ρAB). Hence, more
secret implies more informative and the same holds for the
corresponding regularizations. Note that �-regularized more
secret also implies the weaker condition,

I(X : En) ≤ I(X : Bn) + n�, (III.20)

to hold for every instrument T and all n ≥ 1. This follows
simply by considering the special case where the classical map
R is trivial.

We now come to the first application.
Theorem 3.3: If the state ρAB is �-regularized more secret,

then we have

D(1)
→ (ρAB) ≤ D→(ρAB) ≤ D(1)

→ (ρAB) + �, (III.21)

and therefore for every state ρAB ,

D(1)
→ (ρAB) ≤ D→(ρAB) ≤ D(1)

→ (ρAB) +K→(ρc
AB)

(III.22)

Proof: We start by proving the first claim. Note that
D(1)

→ (ρAB) ≤ D→(ρAB) holds by definition. Next, we show
that D(1)

→ (ρAB) is approximately additive if ρAB is �-
regularized more secret:

D(1)
→ (ρAB) = max

T
H(B|X)Ψ −H(E|X)Ψ (III.23)

≤ H(B)Ψ −H(E)Ψ + � (III.24)

= H(B)Φ −H(E)Φ + � (III.25)

= H(B)Φ −H(AB)Φ + � (III.26)

= I(A�B)Φ + �, (III.27)

where the inequality follows from (III.20), and the second
equality is because ΨBE = ΦBE . The other steps are straight-
forward. Applying the same steps to ρ⊗n

AB , we get

D(1)
→ (ρ⊗n

AB) = I(An�Bn)Φ⊗n + n� = nI(A�B)Φ + n�,

(III.28)

because the coherent information is additive on product states.
Regularizing finishes the proof of the first statement. By
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definition of the order, every state is �-regularized more secret
with � = K→(ρc

AB), which proves the second claim. �
Note that Equation (III.21) is similar to one of the main

results in [3], but with a weaker requirement on the state.
We also remark that the proof of Theorem 3.3 does not use
the full power of the more secret ordering, but only the weaker
condition in Equation III.20. Hence, this condition could itself
be seen as a partial order on quantum states.

Our next results bounds the distillable secret key in terms
of the distillable entanglement:

Theorem 3.4: If the state ρAB is �-more informative, then
we have that

D(1)
→ (ρAB) ≤ K(1)

→ (ρAB) ≤ D(1)
→ (ρAB) + �, (III.29)

If the state ρAB is �-regularized more informative, then we
have that

D→(ρAB) ≤ K→(ρAB) ≤ D→(ρAB) + �. (III.30)

Therefore, for every state ρAB ,

D(1)
→ (ρAB) ≤ K(1)

→ (ρAB) ≤ D(1)
→ (ρAB) +D(1)

→ (ρc
AB)

(III.31)

D→(ρAB) ≤ K→(ρAB) ≤ D→(ρAB) +D→(ρc
AB) (III.32)

Proof: We fix the measurement and channel achieving the
maximum in K(1)

→ (ρAB), and we let ω be the corresponding
output state. Then,

K(1)
→ (ρAB)

= I(X : B|T ) − I(X : E|T ) (III.33)

= I(XT : B) − I(XT : E) + I(T : E) − I(T : B)
(III.34)

= H(E|XT )−H(B|XT ) +H(B|T ) −H(E|T ) (III.35)

= H(E|X) −H(B|X) +H(B|T ) −H(E|T ) (III.36)

≤ �+H(B|T ) −H(E|T ) (III.37)

≤ �+D(1)
→ (ρAB), (III.38)

where the first three equalities are by definition of the involved
quantities. The final equality is because we have A → X →
T and therefore T does not provide additional information
over X . The first inequality follows by definition of the
more informative partial order. The second inequality follows
because the remaining entropies are independent of X , and we
can absorb the channel X → T into the choice of instrument.
This proves the first claim.

The second statement follows in the same way by consider-
ing ρ⊗n

AB using the assumption that ρAB is �-regularized more
informative, followed by regularizing the resulting inequality.

The final claim follows easily from the previous two,
noticing that every state fulfills the needed condition for
appropriately large �. �

Finally, we can combine the previous results to get one more
corollary.

Corollary 3.5: If the state ρAB is �-regularized more secret,
then we have that

K(1)
→ (ρAB) ≤ K→(ρAB) ≤ K(1)

→ (ρAB) + 2�, (III.39)

and for every state ρAB ,

K(1)
→ (ρAB) ≤ K→(ρAB) (III.40)

≤ K(1)
→ (ρAB) +K→(ρc

AB) +D→(ρc
AB)

(III.41)

≤ K(1)
→ (ρAB) + 2K→(ρc

AB). (III.42)

Proof: This follows simply by combining the previous
two theorems. �

IV. PARTIAL ORDERS WITH SYMMETRIC SIDE CHANNEL

ASSISTANCE

The works [50] and [12] discuss versions of the quantum
and private capacities assisted by a symmetric side channel.
Since the assistance can only help, they are naturally an
upper bound on the respective capacities. The symmetric
side channel by itself has zero quantum and private capacity
and is both degradable and anti-degradable. The assisted
capacities are particularly interesting, since they were proven
in [50] and [12] to be additive, i.e., Q(1)

ss (N ) = Qss(N ) and
P

(1)
ss (N ) = Pss(N ). One can define side channel assisted

partial orders based on these quantities, analogous to the ones
previously discussed. Because of the additivity of the side
channel assisted quantities, it is not necessary to consider
regularizations. Note here that we have

P (1)
ss (N ) = Pss(N ) ≥ Q(1)

ss (N ) = Qss(N ) ≥ 1
2
P(N ),

(IV.1)

where the final inequality was proven in [61]. This implies in
particular that

Q(1)
ss (N c) = 0 ⇒ P(N c) = 0, (IV.2)

which could provide us with an easier (non-regularized) con-
dition to determine whether a channel is regularized less noisy.
On the other hand, we still lack an example of a channel that
is regularized less noisy but not degradable. We know that the
quantum capacity is superadditive [49], [61], [62], [63] and
can in particular be superactivated, i.e., there exists a channel
for which Q(N ) = 0 but Qss(N ) > 0 [61]. Note that if we
had a channel with P (N c) = 0, but

P (1)
ss (N c) > 0 ⇒ N not degradable, (IV.3)

it would give us the desired example. It seems intuitive that
a similar construction works more generally and there is
a deeper connection between superactivation of the private
capacity and such examples. We can make this more precise
in the following observation.

Corollary 4.1: If the private capacity can be superactivated
then degradable channels are a strict subset of regularized less
noisy channels, i.e.

P (·) can be superactivated ⇒ DEG � LN∞. (IV.4)

Proof: Let us assume that the private capacity can be
superactivated, meaning there exist channels N and M such
that P (N ) = P (M) = 0, but P (N ⊗M) > 0. We observe
that if N and M are anti-degradable, then so is N ⊗M, and
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we would have P (N ⊗ M) = 0. Therefore, by assumption,
at least one of N or M has to be non-anti-degradable.
However, again by assumption, their complements N c and
Mc are regularized less noisy. In summary, at least one of
N c or Mc is regularized less noisy but not degradable, which
concludes the proof. �
Interestingly, the question whether the private capacity can be
superactivated is still open, despite significant effort to find an
answer [62], [64], [65]. Of course, the above corollary implies
that if all regularized less noisy channels are also degradable,
the private capacity cannot be superactivated.

Before ending this section, we briefly observe a result
similar to the main theme of this work and state some bounds
on the symmetric side channel assisted capacity.

Corollary 4.2: Let N be a quantum channel. We have

Qss(N ) ≤ Pss(N ) ≤ Qss(N ) +Qss(N c). (IV.5)

Proof: This follows because according to [50] and [12]
we can write

Qss(N ) = Q(1)
ss (N ) = sup

d
Q(1)(N ⊗Ad) (IV.6)

Pss(N ) = P (1)
ss (N ) = sup

d
P (1)(N ⊗Ad), (IV.7)

as well as noticing that (N ⊗Ad)c = N c ⊗Ac
d = N c ⊗Ad.

Finally, combining both observations with Corollary 2.4 leads
to the first result. �

V. OUTLOOK AND OPEN PROBLEMS

In this work we derived operationally meaningful bounds
on the capacities of quantum channels and quantum states.
It is an interesting (but hard) open problem to derive similar
bounds for the distillable entanglement and distillable key
under LOCC or PPT-preserving operations. Moreover, channel
capacities with e.g. two-way assistance might obey similar
bounds. Overall, it would be interesting to investigate whether
there is a more general framework in which such results can
be proven.

Finally, it would be interesting to further study the
class of approximately bi-PPT channels, as explained in
Section II-E. While exact bi-PPT channels are necessarily
entanglement-breaking by the results of [59] and thus less
interesting, approximately bi-PPT channels could still be use-
ful for demonstrating superactivation of the private capacity.
More generally, any example of a channel that is regularized
less noisy but not degradable would give a promising candi-
dates to show superactivation of the private capacity.

On a related note, it is also interesting to ponder the
relationship between our results and the main result of [59],
which says that the complementary channel of a PPT channel
has positive two-way quantum capacity. In the state picture,
it says that any complementary state of a PPT state is (two-
way) distillable, and one may ask under what condition it
is also one-way distillable. Since PPT channels have zero
(one- or two-way) quantum capacity, our bounds in (I.4)
and (I.5) imply that for such a “co-PPT” channel N , i.e.,
a channel whose complement is PPT, the coherent information
and private information coincide, Q(1)(N ) = P (1)(N ), and

similarly for quantum and private capacity, Q(N ) = P (N ).1

Furthermore, similar statements hold for the one-way distill-
able entanglement and one-way distillable key of a co-PPT
state via the inequalities (I.8) and (I.9). However, due to
the existence of (entanglement-binding) PPT channels with
positive private capacity [43], [45] we cannot infer from our
bound (I.6) that the coherent information of co-PPT channels
is additive.
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APPENDIX A
SIMPLE ENTROPIC PROOFS OF SOME CAPACITY BOUNDS

In this appendix we provide simple entropic proofs of some
of the capacity bounds stated in Section II-C.

A. Bound on Private Information and Private Capacity

We first prove the following inequalities from Corollary 2.4,
giving bounds on the private information and private capacity
of a quantum channel:

P (1)(N ) ≤ Q(1)(N ) +Q(1)(Nc) (A.1)

P (N ) ≤ Q(N ) +Q(Nc). (A.2)

Let {p(u), ρu
A}u be a mixed quantum state ensemble achiev-

ing P (1)(N ), and let WN : HA → HB ⊗HE be a Stinespring
isometry for N . For each u, we consider spectral decomposi-
tions of the state ρu

A,

ρu
A =

∑
v

p(v|u)|φu, v��φu, v|A. (A.3)

We then form the classical-quantum state

σUV BE =
∑
u, v

p(u) p(v|u) |u��u|U ⊗ |v��v|V

⊗WN |φu, v��φu, v|AW †
N , (A.4)

and note that σUBE is the classical-quantum state satisfying
P (1)(N ) = I(U : B)σ − I(U : E)σ . Consider now the
following:

P (1)(N )

= I(U : B)σ − I(U : E)σ (A.5)

= I(UV : B) − I(UV : E)

+ I(V : E|U) − I(V : B|U) (A.6)

= I(UV : B) − I(UV : E)

+
∑

u

p(u) [I(V : E|U = u) − I(V : B|U = u)] (A.7)

1This also follows directly from the results in [13].
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≤ Q(1)(N ) +
∑

u

p(u)Q(1)(Nc) (A.8)

= Q(1)(N ) +Q(1)(Nc) . (A.9)

In the third equality we used the fact that I(R : Q|X)τ =∑
x p(x)I(R : Q|X = x)τ , where I(R : Q|X =

x)τ = I(R : Q)τx for a classical-quantum state τXRQ =∑
x p(x)|x��x|X ⊗ τx

RQ. For the inequality, we used (II.7) for
each difference term. The inequality (A.2) now follows from
regularizing (A.1).

B. Bound on Quantum Capacity

Here we prove the following bound on the quantum capac-
ity, which was stated in Equation (II.28):

Q(N ) ≤ Q(1)(N ) + PE(N c). (A.10)

Let ρAn be a state achieving Q(1)(N⊗n), and let
UN : HA → HB ⊗ HE be a Stinespring isometry for N .
Consider now the following steps, which are inspired by [1],
[54], and [19]:

Q(1)(N⊗n) = H(Bn) −H(En) (A.11)

= H(B1 . . . Bn) −H(E1B2 . . . Bn)

+H(E1B2 . . . Bn) −H(E1E2B3 . . . Bn)

+ . . .

+H(E1 . . . En−1Bn) −H(E1 . . . En).

(A.12)

Using the notation Rj
i = RiRi+1 . . . Rj−1Rj for i < j,

we have for each i = 1, . . . , n that

H(Ei−1
1 BiB

n
i+1) −H(Ei−1

1 EiB
n
i+1) (A.13)

= H(Bi) −H(Ei) + I(Ei : Ei−1
1 Bn

i+1) (A.14)

− I(Bi : Ei−1
1 Bn

i+1) (A.15)

≤ Q(1)(N ) + PE(N c). (A.16)

Combining (A.12) and (A.16) yields

Q(1)(N⊗n) ≤ nQ(1)(N ) + nPE(N c), (A.17)

from which (A.10) follows by dividing by n and taking the
limit n→ ∞.

Finally, we show the following inequality stated in (II.15):

PE(N ) ≤ 2 Qss(N ). (A.18)

To see this, recall the following rewriting of the symmetric
side channel assisted capacity proved in [50]:

Qss(N ) = max
ρV W A

1
2
{I(V : WB)σ − I(V : WE)σ} ,

(A.19)

with the entropies evaluated on the state σV WBE := (IV W ⊗
UN )ρV WA(IV W ⊗UN )†. Comparing this expression with the
definition (II.13) of the entanglement-assisted private informa-
tion, we obtain (A.18) by choosing the system W to be trivial.

Combining (A.10) and (A.18) further shows that

Q(N ) ≤ Q(1)(N ) + 2 Qss(N c). (A.20)

APPENDIX B
ON RELATIONSHIPS BETWEEN APPROXIMATE PARTIAL

ORDERS

The relationships between different partial orders are a
fundamental problem and have been investigated at several
points in the literature. In particular, the relationships between
most of the orders discussed in this work have been recently
investigated in [15], however only in the case � = 0. Focusing
on approximate orders, it is worth noting that the picture
becomes substantially more complicated when � > 0.

We first start with a simple example motivated by
Section IV. Note that we have the following implications:

P (1)
ss (N c) = 0 ⇒ Q(1)

ss (N c) = 0 ⇒ P(N c) = 0. (B.1)

However, when allowing an approximation, if we go via
Q

(1)
ss (N c), the best we can currently show is

P (1)
ss (N c) ≤ � ⇒ Q(1)

ss (N c) ≤ � ⇒ P(N c) ≤ 2�, (B.2)

although generally we also have

P (1)
ss (N c) ≤ � ⇒ P(N c) ≤ �. (B.3)

Therefore the implied exact partial orders have a simpler
relationship than the more general approximate versions.

We now discuss the main part of this section. Recall the
definition of R(1)(N ), which is, similar to the other quantities
defined in this work, related to a partial order. For two quantum
channels N and M we denote N ��

rel M if

D(M(ρ)�M(σ)) ≤ D(N (ρ)�N (σ)) + � ∀ρ, σ (B.4)

and simply N �rel M if � = 0. An important technical result
in [13] was the following observation,

N �rel M ⇔ N �l.n. M. (B.5)

Following the proof in [13] it can easily be seen that in the
approximate case we still have

N ��
rel M ⇒ N ��

l.n. M. (B.6)

Whenever M = N c, this is equivalent to R(1)(N ) ≥
P (1)(N ), and hence also implies

R(N ) ≥ P (N ). (B.7)

However, we will now see that the opposite direction is
generally not true.

To this end, consider two erasure channels E1 and E2 with
erasure probabilities �1 and �2, respectively. We know that
for an erasure channel I(A : B) = (1 − �)I(A : A′)
and D(E(ρ)�E(σ)) = (1 − �)D(ρ�σ). First, consider the
approximate less noisy condition, which for our example
evaluates to

(1 − �2)I(U : A) ≤ (1 − �1)I(U : A) + �. (B.8)

It can now easily be seen that the two channels are always
�-approximately less noisy if � = max{0, 2(�1 − �2) log |A|},
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because I(U : A) ≤ 2 log |A|. Next, note that the condition
for the partial order based on relative entropy defined in (B.4)
can be written as

(1 − �2)D(ρ�σ) ≤ (1 − �1)D(ρ�σ) + �. (B.9)

Since the relative entropy can be arbitrarily large for suitably
chosen ρ and σ, there is in general no � such that the above
inequality always holds provided that �1 > �2. This proves
that the reverse implication of Equation (B.6) cannot hold.

Note that this counterexample does not seem to work in the
asymptotic setting, because both quantities collect prefactors
of order �n that converge to 0 for n→ ∞. Finally, the example
can easily be specialized to the case where M = N c, as the
complementary channel of an erasure channel with erasure
probability �1 is an erasure channel with erasure probability
�2 = 1 − �1.

APPENDIX C
ENERGY-CONSTRAINED PARTIAL ORDERS ON QUANTUM

CHANNELS

In this section we return to the theme of quantum channels,
but we add a twist by considering energy-constrained settings.
We will again base our partial orders on the quantum and
private capacities of a quantum channel, but this time we
focus on their energy-constrained variants. Based on [66]
we consider the following quantities: The energy-constrained
quantum capacity

QHA,E(N ) = lim
n→∞

1
n
Q

(1)
HAn ,nE(N⊗n) (C.1)

with

Q
(1)
HA,E(N ) = sup

ρA

Tr HAρA≤E

{H(N (ρA)) −H(N c(ρA))},

(C.2)

and the energy-constrained private capacity

PHA,E(N ) = lim
n→∞

1
n
P

(1)
HAn ,nE(N⊗n) (C.3)

with

P
(1)
HA,E(N ) = sup

ρUA

Tr HAρA≤E

{I(U : B) − I(U : E)}. (C.4)

For the energy constraint, we define the Hamiltonian HAn on
n copies of the input quantum system as the extension of the
single system Hamiltonian HA as

HAn = HA ⊗ IA ⊗ · · · ⊗ IA + . . .

+ IA ⊗ · · · ⊗ IA ⊗HA. (C.5)

Throughout this section we will assume that the finite output
entropy condition holds, that is,

sup
ρA

Tr HAρA≤E

H(N (ρA)) <∞. (C.6)

It was shown in [66] that if this condition holds for a channel
N , it also holds for the complementary channel N c. We can
now define the following energy-constrained partial orders.

Definition 3.1: A channel N is called:

• (�,HA, E)-regularized less noisy if
PHA,E(N c) ≤ �;

• (�,HA, E)-less noisy if P (1)
HA,E(N c) ≤ �;

• (�,HA, E)-regularized more capable if
QHA,E(N c) ≤ �;

• (�,HA, E)-more capable if Q(1)
HA,E(N c) ≤ �.

Note that each of these partial orders has an equivalent def-
inition via a mutual information-based condition similar to the
unconstrained case, with the difference that the condition only
needs to be checked on states satisfying the energy constraint.
For the less noisy orderings, this is fairly obvious from the
definition. For the more capable orderings, consider a state
ρA =

∑
i λi|Ψi��Ψi| and its extension ρUA =

∑
i λi|i��i| ⊗

|Ψi��Ψi|. The energy constraint TrHAρA ≤ E remains the
same and can be interpreted as an average energy constraint
of the ensemble {λi, |Ψi�} as

∑
i λi TrHA|Ψi��Ψi| ≤ E,

similarly to the less noisy setting.
In the unconstrained case we saw that the less noisy order

is closely related to the concavity of a channel’s coherent
information. A careful check reveals that the same holds true
if an energy constraint is to be obeyed.

Lemma 3.2: A channel N is (�,HA, E)-approximate less
noisy if and only if its channel coherent information is
approximately concave for all quantum states ρi

A and prob-
ability distributions p(i) satisfying TrHAρA ≤ E with ρA =∑

i p(i)ρ
i
A: ∑

i

p(i)I(A�B)ρi ≤ I(A�B)ρ + �, (C.7)

where I(A�B)ρ is evaluated on the state N (ΨAA′) with ΨAA′

a purification of ρA. Similarly, a channel N being (�,HA, E)-
approximate anti-less noisy is equivalent to∑

i

p(i)I(A�B)ρi ≥ I(A�B)ρ − �. (C.8)

For an arbitrary quantum channel N and states obeying
TrHAρA ≤ E, we have

I(A�B)ρ − P
(1)
HA,E(N ) ≤

∑
i

p(i)I(A�B)ρi

≤ I(A�B)ρ + P
(1)
HA,E(N c). (C.9)

Now we would like to briefly discuss to what extent the
bounds and results on channel capacities can be extended to
the energy-constrained setting. To this end, we briefly revisit
the approach in [13]. Take quantum states ρu

A and a probability
distribution p(u), define ρUA =

∑
u p(u)|u��u|⊗ρu

A and ρA =
TrU ρUA. A central observation to the proofs in [13] is that
the following equality holds,

I(U : B) − I(U : E)

= I(A�B)ρ −
∑

i

p(i)I(A�B)ρi (C.10)

= I(A�B)ρ +
∑

i

p(i)I(A�E)ρi . (C.11)

If we fix ρUA to be the optimizing state in P
(1)
HA,E(N c),

we easily get

P
(1)
HA,E(N ) ≤ Q

(1)
HA,E(N ) +

∑
i

p(i)I(A�E)ρi . (C.12)
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In the unconstrained case it is now easy to bound each
of the remaining coherent informations by Q(1)(N c), which
makes the average irrelevant and leads to our previously
stated inequality. However, in the constrained case, we can not
simply do the same using Q(1)

HA,E(N c) because the individual
ρi might not fulfill the energy constraint TrHAρ

i
A ≤ E.

One might be tempted to remedy this problem by using
concavity, but from the previous lemma it is clear that this
doesn’t seem to help for general channels. In [66] it was
shown that Q(1)

HA,E(N ) equals both the energy-constrained
quantum and private capacity of a degradable channel. How
is this compatible with the above observations? To us, the
most likely explanation seems to be the following. Note
that degradability is usually defined via the diamond norm
and therefore considering all possible input states without
constraint. Equivalently, we can prove

P
(1)
HA,E(N ) ≤ Q

(1)
HA,E(N ) +Q(1)(N c), (C.13)

showing that P (1)
HA,E(N ) = Q

(1)
HA,E(N ) for all �-less noisy

channels N , which is a significantly weaker requirement than
degradability.

One could similarly define a weaker form of degradability
that obeys an energy constraint. It is an interesting question
whether results like those in [13] hold under this requirement.

Definition 3.3: A channel N is called (�,HA, E)-
degradable if there exists a channel D such that

�N c −D ◦ N�HA,E
� ≤ �, (C.14)

where �Δ�HA,E
� is the energy-constrained diamond norm

defined in [67] (see also [68] for a slightly different definition).
The energy-constrained diamond norm has already found sev-
eral applications, in particular for infinite dimensional systems,
see e.g. [67], [69].

Finally, we comment on single-letter upper bounds on
regularized capacities. Note that, following the proof in [19],
one obtains

I(A�Bn) ≤
∑

i

I(A�Bi) +
∑

i

[I(V |Bi) − I(V |Ei)].

(C.15)

However, while the state ρAn obeys the constraint
TrHAnρAn ≤ nE, the best we can say about the individual
ρAi is that they also obey TrHAρAi ≤ nE. This leads us to
the somewhat unsatisfying result

Q
(1)
HA,E(N⊗n) ≤ nQ

(1)
HA,nE(N ) + nPHA,nE

E (N c), (C.16)

where PHA,E
E is the energy-constrained entanglement-assisted

private information defined as

PHA,E
E (N ) = sup

ρAA′
Tr HAρA′≤E

{I(A : B) − I(A : E)}. (C.17)

If one wishes to regularize, the energy constraints on the
right hand side would become meaningless, resulting in the
inequality

QHA,E(N ) ≤ Q(1)(N ) + PE(N c). (C.18)

This implies once more that the desired simplifications only
seem to hold if a requirement without energy-restriction holds.
Note that the above behavior is certainly intuitive as the
way energy-constrained capacities are regularized allows for
strategies where a single input uses an arbitrarily high amount
of energy as long as it is compensated by the other channel
uses. The problem would be resolved if one considered a
more restricted way of regularizing the quantities where each
channel input is subject to a fixed energy constraint instead of
an average energy constraint on the overall state. This might
also be a practically more relevant scenario.
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